Properties

Label 2-3360-56.27-c1-0-57
Degree $2$
Conductor $3360$
Sign $0.921 + 0.387i$
Analytic cond. $26.8297$
Root an. cond. $5.17974$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + 5-s + (1 + 2.44i)7-s − 9-s − 2·11-s + 6.89·13-s + i·15-s − 4.89i·17-s − 6.89i·19-s + (−2.44 + i)21-s − 6i·23-s + 25-s i·27-s − 8.89i·29-s − 2·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.447·5-s + (0.377 + 0.925i)7-s − 0.333·9-s − 0.603·11-s + 1.91·13-s + 0.258i·15-s − 1.18i·17-s − 1.58i·19-s + (−0.534 + 0.218i)21-s − 1.25i·23-s + 0.200·25-s − 0.192i·27-s − 1.65i·29-s − 0.359·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3360\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.921 + 0.387i$
Analytic conductor: \(26.8297\)
Root analytic conductor: \(5.17974\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3360} (1231, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3360,\ (\ :1/2),\ 0.921 + 0.387i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.046695596\)
\(L(\frac12)\) \(\approx\) \(2.046695596\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 - T \)
7 \( 1 + (-1 - 2.44i)T \)
good11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 6.89T + 13T^{2} \)
17 \( 1 + 4.89iT - 17T^{2} \)
19 \( 1 + 6.89iT - 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
29 \( 1 + 8.89iT - 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + 7.79iT - 37T^{2} \)
41 \( 1 + 2.89iT - 41T^{2} \)
43 \( 1 - 8.89T + 43T^{2} \)
47 \( 1 + 10.8T + 47T^{2} \)
53 \( 1 + 9.79iT - 53T^{2} \)
59 \( 1 - 3.10iT - 59T^{2} \)
61 \( 1 + 0.898T + 61T^{2} \)
67 \( 1 - 4.89T + 67T^{2} \)
71 \( 1 - 12.8iT - 71T^{2} \)
73 \( 1 - 8.89iT - 73T^{2} \)
79 \( 1 + 4iT - 79T^{2} \)
83 \( 1 - 4iT - 83T^{2} \)
89 \( 1 - 1.10iT - 89T^{2} \)
97 \( 1 - 0.898iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.667261700917137734692002360832, −8.103284631705298564429962346739, −6.98174725827152296465513354929, −6.15061982122500072063404334700, −5.51852055777637463575538943162, −4.82818498611878239081539190874, −3.96459563471962245034649395768, −2.80153395349673607882482377546, −2.24078114780081284012721942793, −0.64776795670793888190028680830, 1.41013107511985705699499992600, 1.55490807684880440457249402100, 3.29404865414676675108920186287, 3.76682542561194716928389880873, 4.93038117692219436572411995923, 5.91609918605333307498718579149, 6.25075159919035403825449611042, 7.25403427035311819748239730550, 8.029309970149310554250646057994, 8.376875482300715591632106126138

Graph of the $Z$-function along the critical line