Properties

Label 840.2.z.b.811.4
Level $840$
Weight $2$
Character 840.811
Analytic conductor $6.707$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(811,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.z (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.4
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 840.811
Dual form 840.2.z.b.811.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +1.00000i q^{3} -2.00000i q^{4} +1.00000 q^{5} +(-1.00000 - 1.00000i) q^{6} +(-1.00000 + 2.44949i) q^{7} +(2.00000 + 2.00000i) q^{8} -1.00000 q^{9} +(-1.00000 + 1.00000i) q^{10} +2.00000 q^{11} +2.00000 q^{12} +6.89898 q^{13} +(-1.44949 - 3.44949i) q^{14} +1.00000i q^{15} -4.00000 q^{16} +4.89898i q^{17} +(1.00000 - 1.00000i) q^{18} -6.89898i q^{19} -2.00000i q^{20} +(-2.44949 - 1.00000i) q^{21} +(-2.00000 + 2.00000i) q^{22} -6.00000i q^{23} +(-2.00000 + 2.00000i) q^{24} +1.00000 q^{25} +(-6.89898 + 6.89898i) q^{26} -1.00000i q^{27} +(4.89898 + 2.00000i) q^{28} +8.89898i q^{29} +(-1.00000 - 1.00000i) q^{30} +2.00000 q^{31} +(4.00000 - 4.00000i) q^{32} +2.00000i q^{33} +(-4.89898 - 4.89898i) q^{34} +(-1.00000 + 2.44949i) q^{35} +2.00000i q^{36} +7.79796i q^{37} +(6.89898 + 6.89898i) q^{38} +6.89898i q^{39} +(2.00000 + 2.00000i) q^{40} +2.89898i q^{41} +(3.44949 - 1.44949i) q^{42} -8.89898 q^{43} -4.00000i q^{44} -1.00000 q^{45} +(6.00000 + 6.00000i) q^{46} +10.8990 q^{47} -4.00000i q^{48} +(-5.00000 - 4.89898i) q^{49} +(-1.00000 + 1.00000i) q^{50} -4.89898 q^{51} -13.7980i q^{52} +9.79796i q^{53} +(1.00000 + 1.00000i) q^{54} +2.00000 q^{55} +(-6.89898 + 2.89898i) q^{56} +6.89898 q^{57} +(-8.89898 - 8.89898i) q^{58} +3.10102i q^{59} +2.00000 q^{60} -0.898979 q^{61} +(-2.00000 + 2.00000i) q^{62} +(1.00000 - 2.44949i) q^{63} +8.00000i q^{64} +6.89898 q^{65} +(-2.00000 - 2.00000i) q^{66} -4.89898 q^{67} +9.79796 q^{68} +6.00000 q^{69} +(-1.44949 - 3.44949i) q^{70} +12.8990i q^{71} +(-2.00000 - 2.00000i) q^{72} -8.89898i q^{73} +(-7.79796 - 7.79796i) q^{74} +1.00000i q^{75} -13.7980 q^{76} +(-2.00000 + 4.89898i) q^{77} +(-6.89898 - 6.89898i) q^{78} -4.00000i q^{79} -4.00000 q^{80} +1.00000 q^{81} +(-2.89898 - 2.89898i) q^{82} +4.00000i q^{83} +(-2.00000 + 4.89898i) q^{84} +4.89898i q^{85} +(8.89898 - 8.89898i) q^{86} -8.89898 q^{87} +(4.00000 + 4.00000i) q^{88} -1.10102i q^{89} +(1.00000 - 1.00000i) q^{90} +(-6.89898 + 16.8990i) q^{91} -12.0000 q^{92} +2.00000i q^{93} +(-10.8990 + 10.8990i) q^{94} -6.89898i q^{95} +(4.00000 + 4.00000i) q^{96} -0.898979i q^{97} +(9.89898 - 0.101021i) q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 8 q^{8} - 4 q^{9} - 4 q^{10} + 8 q^{11} + 8 q^{12} + 8 q^{13} + 4 q^{14} - 16 q^{16} + 4 q^{18} - 8 q^{22} - 8 q^{24} + 4 q^{25} - 8 q^{26} - 4 q^{30} + 8 q^{31}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.707107 + 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) 2.00000i 1.00000i
\(5\) 1.00000 0.447214
\(6\) −1.00000 1.00000i −0.408248 0.408248i
\(7\) −1.00000 + 2.44949i −0.377964 + 0.925820i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −1.00000 −0.333333
\(10\) −1.00000 + 1.00000i −0.316228 + 0.316228i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 2.00000 0.577350
\(13\) 6.89898 1.91343 0.956716 0.291022i \(-0.0939953\pi\)
0.956716 + 0.291022i \(0.0939953\pi\)
\(14\) −1.44949 3.44949i −0.387392 0.921915i
\(15\) 1.00000i 0.258199i
\(16\) −4.00000 −1.00000
\(17\) 4.89898i 1.18818i 0.804400 + 0.594089i \(0.202487\pi\)
−0.804400 + 0.594089i \(0.797513\pi\)
\(18\) 1.00000 1.00000i 0.235702 0.235702i
\(19\) 6.89898i 1.58273i −0.611341 0.791367i \(-0.709370\pi\)
0.611341 0.791367i \(-0.290630\pi\)
\(20\) 2.00000i 0.447214i
\(21\) −2.44949 1.00000i −0.534522 0.218218i
\(22\) −2.00000 + 2.00000i −0.426401 + 0.426401i
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) −2.00000 + 2.00000i −0.408248 + 0.408248i
\(25\) 1.00000 0.200000
\(26\) −6.89898 + 6.89898i −1.35300 + 1.35300i
\(27\) 1.00000i 0.192450i
\(28\) 4.89898 + 2.00000i 0.925820 + 0.377964i
\(29\) 8.89898i 1.65250i 0.563304 + 0.826250i \(0.309530\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(30\) −1.00000 1.00000i −0.182574 0.182574i
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 2.00000i 0.348155i
\(34\) −4.89898 4.89898i −0.840168 0.840168i
\(35\) −1.00000 + 2.44949i −0.169031 + 0.414039i
\(36\) 2.00000i 0.333333i
\(37\) 7.79796i 1.28198i 0.767551 + 0.640988i \(0.221475\pi\)
−0.767551 + 0.640988i \(0.778525\pi\)
\(38\) 6.89898 + 6.89898i 1.11916 + 1.11916i
\(39\) 6.89898i 1.10472i
\(40\) 2.00000 + 2.00000i 0.316228 + 0.316228i
\(41\) 2.89898i 0.452745i 0.974041 + 0.226372i \(0.0726866\pi\)
−0.974041 + 0.226372i \(0.927313\pi\)
\(42\) 3.44949 1.44949i 0.532268 0.223661i
\(43\) −8.89898 −1.35708 −0.678541 0.734563i \(-0.737387\pi\)
−0.678541 + 0.734563i \(0.737387\pi\)
\(44\) 4.00000i 0.603023i
\(45\) −1.00000 −0.149071
\(46\) 6.00000 + 6.00000i 0.884652 + 0.884652i
\(47\) 10.8990 1.58978 0.794890 0.606754i \(-0.207529\pi\)
0.794890 + 0.606754i \(0.207529\pi\)
\(48\) 4.00000i 0.577350i
\(49\) −5.00000 4.89898i −0.714286 0.699854i
\(50\) −1.00000 + 1.00000i −0.141421 + 0.141421i
\(51\) −4.89898 −0.685994
\(52\) 13.7980i 1.91343i
\(53\) 9.79796i 1.34585i 0.739709 + 0.672927i \(0.234963\pi\)
−0.739709 + 0.672927i \(0.765037\pi\)
\(54\) 1.00000 + 1.00000i 0.136083 + 0.136083i
\(55\) 2.00000 0.269680
\(56\) −6.89898 + 2.89898i −0.921915 + 0.387392i
\(57\) 6.89898 0.913792
\(58\) −8.89898 8.89898i −1.16849 1.16849i
\(59\) 3.10102i 0.403718i 0.979415 + 0.201859i \(0.0646984\pi\)
−0.979415 + 0.201859i \(0.935302\pi\)
\(60\) 2.00000 0.258199
\(61\) −0.898979 −0.115103 −0.0575513 0.998343i \(-0.518329\pi\)
−0.0575513 + 0.998343i \(0.518329\pi\)
\(62\) −2.00000 + 2.00000i −0.254000 + 0.254000i
\(63\) 1.00000 2.44949i 0.125988 0.308607i
\(64\) 8.00000i 1.00000i
\(65\) 6.89898 0.855713
\(66\) −2.00000 2.00000i −0.246183 0.246183i
\(67\) −4.89898 −0.598506 −0.299253 0.954174i \(-0.596737\pi\)
−0.299253 + 0.954174i \(0.596737\pi\)
\(68\) 9.79796 1.18818
\(69\) 6.00000 0.722315
\(70\) −1.44949 3.44949i −0.173247 0.412293i
\(71\) 12.8990i 1.53083i 0.643539 + 0.765414i \(0.277466\pi\)
−0.643539 + 0.765414i \(0.722534\pi\)
\(72\) −2.00000 2.00000i −0.235702 0.235702i
\(73\) 8.89898i 1.04155i −0.853695 0.520773i \(-0.825644\pi\)
0.853695 0.520773i \(-0.174356\pi\)
\(74\) −7.79796 7.79796i −0.906494 0.906494i
\(75\) 1.00000i 0.115470i
\(76\) −13.7980 −1.58273
\(77\) −2.00000 + 4.89898i −0.227921 + 0.558291i
\(78\) −6.89898 6.89898i −0.781156 0.781156i
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) −4.00000 −0.447214
\(81\) 1.00000 0.111111
\(82\) −2.89898 2.89898i −0.320139 0.320139i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) −2.00000 + 4.89898i −0.218218 + 0.534522i
\(85\) 4.89898i 0.531369i
\(86\) 8.89898 8.89898i 0.959602 0.959602i
\(87\) −8.89898 −0.954071
\(88\) 4.00000 + 4.00000i 0.426401 + 0.426401i
\(89\) 1.10102i 0.116708i −0.998296 0.0583540i \(-0.981415\pi\)
0.998296 0.0583540i \(-0.0185852\pi\)
\(90\) 1.00000 1.00000i 0.105409 0.105409i
\(91\) −6.89898 + 16.8990i −0.723210 + 1.77149i
\(92\) −12.0000 −1.25109
\(93\) 2.00000i 0.207390i
\(94\) −10.8990 + 10.8990i −1.12414 + 1.12414i
\(95\) 6.89898i 0.707820i
\(96\) 4.00000 + 4.00000i 0.408248 + 0.408248i
\(97\) 0.898979i 0.0912775i −0.998958 0.0456388i \(-0.985468\pi\)
0.998958 0.0456388i \(-0.0145323\pi\)
\(98\) 9.89898 0.101021i 0.999948 0.0102046i
\(99\) −2.00000 −0.201008
\(100\) 2.00000i 0.200000i
\(101\) −3.79796 −0.377911 −0.188956 0.981986i \(-0.560510\pi\)
−0.188956 + 0.981986i \(0.560510\pi\)
\(102\) 4.89898 4.89898i 0.485071 0.485071i
\(103\) −0.202041 −0.0199077 −0.00995385 0.999950i \(-0.503168\pi\)
−0.00995385 + 0.999950i \(0.503168\pi\)
\(104\) 13.7980 + 13.7980i 1.35300 + 1.35300i
\(105\) −2.44949 1.00000i −0.239046 0.0975900i
\(106\) −9.79796 9.79796i −0.951662 0.951662i
\(107\) −7.79796 −0.753857 −0.376929 0.926242i \(-0.623020\pi\)
−0.376929 + 0.926242i \(0.623020\pi\)
\(108\) −2.00000 −0.192450
\(109\) 4.00000i 0.383131i −0.981480 0.191565i \(-0.938644\pi\)
0.981480 0.191565i \(-0.0613564\pi\)
\(110\) −2.00000 + 2.00000i −0.190693 + 0.190693i
\(111\) −7.79796 −0.740150
\(112\) 4.00000 9.79796i 0.377964 0.925820i
\(113\) −1.79796 −0.169138 −0.0845689 0.996418i \(-0.526951\pi\)
−0.0845689 + 0.996418i \(0.526951\pi\)
\(114\) −6.89898 + 6.89898i −0.646149 + 0.646149i
\(115\) 6.00000i 0.559503i
\(116\) 17.7980 1.65250
\(117\) −6.89898 −0.637811
\(118\) −3.10102 3.10102i −0.285472 0.285472i
\(119\) −12.0000 4.89898i −1.10004 0.449089i
\(120\) −2.00000 + 2.00000i −0.182574 + 0.182574i
\(121\) −7.00000 −0.636364
\(122\) 0.898979 0.898979i 0.0813898 0.0813898i
\(123\) −2.89898 −0.261392
\(124\) 4.00000i 0.359211i
\(125\) 1.00000 0.0894427
\(126\) 1.44949 + 3.44949i 0.129131 + 0.307305i
\(127\) 0.898979i 0.0797715i −0.999204 0.0398858i \(-0.987301\pi\)
0.999204 0.0398858i \(-0.0126994\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) 8.89898i 0.783511i
\(130\) −6.89898 + 6.89898i −0.605081 + 0.605081i
\(131\) 7.10102i 0.620419i −0.950668 0.310210i \(-0.899601\pi\)
0.950668 0.310210i \(-0.100399\pi\)
\(132\) 4.00000 0.348155
\(133\) 16.8990 + 6.89898i 1.46533 + 0.598217i
\(134\) 4.89898 4.89898i 0.423207 0.423207i
\(135\) 1.00000i 0.0860663i
\(136\) −9.79796 + 9.79796i −0.840168 + 0.840168i
\(137\) 13.7980 1.17884 0.589420 0.807827i \(-0.299356\pi\)
0.589420 + 0.807827i \(0.299356\pi\)
\(138\) −6.00000 + 6.00000i −0.510754 + 0.510754i
\(139\) 6.89898i 0.585164i −0.956240 0.292582i \(-0.905486\pi\)
0.956240 0.292582i \(-0.0945144\pi\)
\(140\) 4.89898 + 2.00000i 0.414039 + 0.169031i
\(141\) 10.8990i 0.917860i
\(142\) −12.8990 12.8990i −1.08246 1.08246i
\(143\) 13.7980 1.15384
\(144\) 4.00000 0.333333
\(145\) 8.89898i 0.739020i
\(146\) 8.89898 + 8.89898i 0.736485 + 0.736485i
\(147\) 4.89898 5.00000i 0.404061 0.412393i
\(148\) 15.5959 1.28198
\(149\) 16.8990i 1.38442i −0.721697 0.692209i \(-0.756638\pi\)
0.721697 0.692209i \(-0.243362\pi\)
\(150\) −1.00000 1.00000i −0.0816497 0.0816497i
\(151\) 5.79796i 0.471831i −0.971774 0.235916i \(-0.924191\pi\)
0.971774 0.235916i \(-0.0758089\pi\)
\(152\) 13.7980 13.7980i 1.11916 1.11916i
\(153\) 4.89898i 0.396059i
\(154\) −2.89898 6.89898i −0.233606 0.555936i
\(155\) 2.00000 0.160644
\(156\) 13.7980 1.10472
\(157\) 16.6969 1.33256 0.666280 0.745701i \(-0.267885\pi\)
0.666280 + 0.745701i \(0.267885\pi\)
\(158\) 4.00000 + 4.00000i 0.318223 + 0.318223i
\(159\) −9.79796 −0.777029
\(160\) 4.00000 4.00000i 0.316228 0.316228i
\(161\) 14.6969 + 6.00000i 1.15828 + 0.472866i
\(162\) −1.00000 + 1.00000i −0.0785674 + 0.0785674i
\(163\) 22.6969 1.77776 0.888881 0.458139i \(-0.151484\pi\)
0.888881 + 0.458139i \(0.151484\pi\)
\(164\) 5.79796 0.452745
\(165\) 2.00000i 0.155700i
\(166\) −4.00000 4.00000i −0.310460 0.310460i
\(167\) 10.8990 0.843388 0.421694 0.906738i \(-0.361436\pi\)
0.421694 + 0.906738i \(0.361436\pi\)
\(168\) −2.89898 6.89898i −0.223661 0.532268i
\(169\) 34.5959 2.66122
\(170\) −4.89898 4.89898i −0.375735 0.375735i
\(171\) 6.89898i 0.527578i
\(172\) 17.7980i 1.35708i
\(173\) −11.7980 −0.896982 −0.448491 0.893787i \(-0.648038\pi\)
−0.448491 + 0.893787i \(0.648038\pi\)
\(174\) 8.89898 8.89898i 0.674630 0.674630i
\(175\) −1.00000 + 2.44949i −0.0755929 + 0.185164i
\(176\) −8.00000 −0.603023
\(177\) −3.10102 −0.233087
\(178\) 1.10102 + 1.10102i 0.0825250 + 0.0825250i
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 2.00000i 0.149071i
\(181\) −20.8990 −1.55341 −0.776704 0.629865i \(-0.783110\pi\)
−0.776704 + 0.629865i \(0.783110\pi\)
\(182\) −10.0000 23.7980i −0.741249 1.76402i
\(183\) 0.898979i 0.0664545i
\(184\) 12.0000 12.0000i 0.884652 0.884652i
\(185\) 7.79796i 0.573317i
\(186\) −2.00000 2.00000i −0.146647 0.146647i
\(187\) 9.79796i 0.716498i
\(188\) 21.7980i 1.58978i
\(189\) 2.44949 + 1.00000i 0.178174 + 0.0727393i
\(190\) 6.89898 + 6.89898i 0.500505 + 0.500505i
\(191\) 7.10102i 0.513812i −0.966436 0.256906i \(-0.917297\pi\)
0.966436 0.256906i \(-0.0827030\pi\)
\(192\) −8.00000 −0.577350
\(193\) −0.202041 −0.0145432 −0.00727162 0.999974i \(-0.502315\pi\)
−0.00727162 + 0.999974i \(0.502315\pi\)
\(194\) 0.898979 + 0.898979i 0.0645430 + 0.0645430i
\(195\) 6.89898i 0.494046i
\(196\) −9.79796 + 10.0000i −0.699854 + 0.714286i
\(197\) 13.7980i 0.983064i −0.870860 0.491532i \(-0.836437\pi\)
0.870860 0.491532i \(-0.163563\pi\)
\(198\) 2.00000 2.00000i 0.142134 0.142134i
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 2.00000 + 2.00000i 0.141421 + 0.141421i
\(201\) 4.89898i 0.345547i
\(202\) 3.79796 3.79796i 0.267223 0.267223i
\(203\) −21.7980 8.89898i −1.52992 0.624586i
\(204\) 9.79796i 0.685994i
\(205\) 2.89898i 0.202474i
\(206\) 0.202041 0.202041i 0.0140769 0.0140769i
\(207\) 6.00000i 0.417029i
\(208\) −27.5959 −1.91343
\(209\) 13.7980i 0.954425i
\(210\) 3.44949 1.44949i 0.238037 0.100024i
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 19.5959 1.34585
\(213\) −12.8990 −0.883824
\(214\) 7.79796 7.79796i 0.533058 0.533058i
\(215\) −8.89898 −0.606905
\(216\) 2.00000 2.00000i 0.136083 0.136083i
\(217\) −2.00000 + 4.89898i −0.135769 + 0.332564i
\(218\) 4.00000 + 4.00000i 0.270914 + 0.270914i
\(219\) 8.89898 0.601337
\(220\) 4.00000i 0.269680i
\(221\) 33.7980i 2.27350i
\(222\) 7.79796 7.79796i 0.523365 0.523365i
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 5.79796 + 13.7980i 0.387392 + 0.921915i
\(225\) −1.00000 −0.0666667
\(226\) 1.79796 1.79796i 0.119598 0.119598i
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 13.7980i 0.913792i
\(229\) 24.4949 1.61867 0.809334 0.587348i \(-0.199828\pi\)
0.809334 + 0.587348i \(0.199828\pi\)
\(230\) 6.00000 + 6.00000i 0.395628 + 0.395628i
\(231\) −4.89898 2.00000i −0.322329 0.131590i
\(232\) −17.7980 + 17.7980i −1.16849 + 1.16849i
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 6.89898 6.89898i 0.451000 0.451000i
\(235\) 10.8990 0.710971
\(236\) 6.20204 0.403718
\(237\) 4.00000 0.259828
\(238\) 16.8990 7.10102i 1.09540 0.460291i
\(239\) 2.69694i 0.174450i −0.996189 0.0872252i \(-0.972200\pi\)
0.996189 0.0872252i \(-0.0278000\pi\)
\(240\) 4.00000i 0.258199i
\(241\) 20.0000i 1.28831i −0.764894 0.644157i \(-0.777208\pi\)
0.764894 0.644157i \(-0.222792\pi\)
\(242\) 7.00000 7.00000i 0.449977 0.449977i
\(243\) 1.00000i 0.0641500i
\(244\) 1.79796i 0.115103i
\(245\) −5.00000 4.89898i −0.319438 0.312984i
\(246\) 2.89898 2.89898i 0.184832 0.184832i
\(247\) 47.5959i 3.02846i
\(248\) 4.00000 + 4.00000i 0.254000 + 0.254000i
\(249\) −4.00000 −0.253490
\(250\) −1.00000 + 1.00000i −0.0632456 + 0.0632456i
\(251\) 12.8990i 0.814176i 0.913389 + 0.407088i \(0.133456\pi\)
−0.913389 + 0.407088i \(0.866544\pi\)
\(252\) −4.89898 2.00000i −0.308607 0.125988i
\(253\) 12.0000i 0.754434i
\(254\) 0.898979 + 0.898979i 0.0564070 + 0.0564070i
\(255\) −4.89898 −0.306786
\(256\) 16.0000 1.00000
\(257\) 15.1010i 0.941976i −0.882140 0.470988i \(-0.843898\pi\)
0.882140 0.470988i \(-0.156102\pi\)
\(258\) 8.89898 + 8.89898i 0.554026 + 0.554026i
\(259\) −19.1010 7.79796i −1.18688 0.484542i
\(260\) 13.7980i 0.855713i
\(261\) 8.89898i 0.550833i
\(262\) 7.10102 + 7.10102i 0.438703 + 0.438703i
\(263\) 11.7980i 0.727493i −0.931498 0.363747i \(-0.881497\pi\)
0.931498 0.363747i \(-0.118503\pi\)
\(264\) −4.00000 + 4.00000i −0.246183 + 0.246183i
\(265\) 9.79796i 0.601884i
\(266\) −23.7980 + 10.0000i −1.45915 + 0.613139i
\(267\) 1.10102 0.0673814
\(268\) 9.79796i 0.598506i
\(269\) 15.7980 0.963219 0.481609 0.876386i \(-0.340052\pi\)
0.481609 + 0.876386i \(0.340052\pi\)
\(270\) 1.00000 + 1.00000i 0.0608581 + 0.0608581i
\(271\) −23.7980 −1.44562 −0.722812 0.691045i \(-0.757151\pi\)
−0.722812 + 0.691045i \(0.757151\pi\)
\(272\) 19.5959i 1.18818i
\(273\) −16.8990 6.89898i −1.02277 0.417545i
\(274\) −13.7980 + 13.7980i −0.833565 + 0.833565i
\(275\) 2.00000 0.120605
\(276\) 12.0000i 0.722315i
\(277\) 3.79796i 0.228197i −0.993469 0.114099i \(-0.963602\pi\)
0.993469 0.114099i \(-0.0363980\pi\)
\(278\) 6.89898 + 6.89898i 0.413773 + 0.413773i
\(279\) −2.00000 −0.119737
\(280\) −6.89898 + 2.89898i −0.412293 + 0.173247i
\(281\) 27.7980 1.65829 0.829144 0.559036i \(-0.188829\pi\)
0.829144 + 0.559036i \(0.188829\pi\)
\(282\) −10.8990 10.8990i −0.649025 0.649025i
\(283\) 9.79796i 0.582428i 0.956658 + 0.291214i \(0.0940592\pi\)
−0.956658 + 0.291214i \(0.905941\pi\)
\(284\) 25.7980 1.53083
\(285\) 6.89898 0.408660
\(286\) −13.7980 + 13.7980i −0.815890 + 0.815890i
\(287\) −7.10102 2.89898i −0.419160 0.171121i
\(288\) −4.00000 + 4.00000i −0.235702 + 0.235702i
\(289\) −7.00000 −0.411765
\(290\) −8.89898 8.89898i −0.522566 0.522566i
\(291\) 0.898979 0.0526991
\(292\) −17.7980 −1.04155
\(293\) −17.5959 −1.02796 −0.513982 0.857801i \(-0.671830\pi\)
−0.513982 + 0.857801i \(0.671830\pi\)
\(294\) 0.101021 + 9.89898i 0.00589164 + 0.577320i
\(295\) 3.10102i 0.180548i
\(296\) −15.5959 + 15.5959i −0.906494 + 0.906494i
\(297\) 2.00000i 0.116052i
\(298\) 16.8990 + 16.8990i 0.978932 + 0.978932i
\(299\) 41.3939i 2.39387i
\(300\) 2.00000 0.115470
\(301\) 8.89898 21.7980i 0.512929 1.25641i
\(302\) 5.79796 + 5.79796i 0.333635 + 0.333635i
\(303\) 3.79796i 0.218187i
\(304\) 27.5959i 1.58273i
\(305\) −0.898979 −0.0514754
\(306\) 4.89898 + 4.89898i 0.280056 + 0.280056i
\(307\) 23.5959i 1.34669i 0.739328 + 0.673345i \(0.235143\pi\)
−0.739328 + 0.673345i \(0.764857\pi\)
\(308\) 9.79796 + 4.00000i 0.558291 + 0.227921i
\(309\) 0.202041i 0.0114937i
\(310\) −2.00000 + 2.00000i −0.113592 + 0.113592i
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) −13.7980 + 13.7980i −0.781156 + 0.781156i
\(313\) 20.4949i 1.15844i −0.815171 0.579220i \(-0.803357\pi\)
0.815171 0.579220i \(-0.196643\pi\)
\(314\) −16.6969 + 16.6969i −0.942263 + 0.942263i
\(315\) 1.00000 2.44949i 0.0563436 0.138013i
\(316\) −8.00000 −0.450035
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) 9.79796 9.79796i 0.549442 0.549442i
\(319\) 17.7980i 0.996494i
\(320\) 8.00000i 0.447214i
\(321\) 7.79796i 0.435240i
\(322\) −20.6969 + 8.69694i −1.15340 + 0.484661i
\(323\) 33.7980 1.88057
\(324\) 2.00000i 0.111111i
\(325\) 6.89898 0.382687
\(326\) −22.6969 + 22.6969i −1.25707 + 1.25707i
\(327\) 4.00000 0.221201
\(328\) −5.79796 + 5.79796i −0.320139 + 0.320139i
\(329\) −10.8990 + 26.6969i −0.600880 + 1.47185i
\(330\) −2.00000 2.00000i −0.110096 0.110096i
\(331\) −35.3939 −1.94542 −0.972712 0.232017i \(-0.925467\pi\)
−0.972712 + 0.232017i \(0.925467\pi\)
\(332\) 8.00000 0.439057
\(333\) 7.79796i 0.427326i
\(334\) −10.8990 + 10.8990i −0.596366 + 0.596366i
\(335\) −4.89898 −0.267660
\(336\) 9.79796 + 4.00000i 0.534522 + 0.218218i
\(337\) 12.2020 0.664688 0.332344 0.943158i \(-0.392161\pi\)
0.332344 + 0.943158i \(0.392161\pi\)
\(338\) −34.5959 + 34.5959i −1.88177 + 1.88177i
\(339\) 1.79796i 0.0976517i
\(340\) 9.79796 0.531369
\(341\) 4.00000 0.216612
\(342\) −6.89898 6.89898i −0.373054 0.373054i
\(343\) 17.0000 7.34847i 0.917914 0.396780i
\(344\) −17.7980 17.7980i −0.959602 0.959602i
\(345\) 6.00000 0.323029
\(346\) 11.7980 11.7980i 0.634262 0.634262i
\(347\) −13.5959 −0.729867 −0.364934 0.931034i \(-0.618908\pi\)
−0.364934 + 0.931034i \(0.618908\pi\)
\(348\) 17.7980i 0.954071i
\(349\) −1.30306 −0.0697513 −0.0348756 0.999392i \(-0.511104\pi\)
−0.0348756 + 0.999392i \(0.511104\pi\)
\(350\) −1.44949 3.44949i −0.0774785 0.184383i
\(351\) 6.89898i 0.368240i
\(352\) 8.00000 8.00000i 0.426401 0.426401i
\(353\) 5.30306i 0.282253i 0.989992 + 0.141127i \(0.0450725\pi\)
−0.989992 + 0.141127i \(0.954927\pi\)
\(354\) 3.10102 3.10102i 0.164817 0.164817i
\(355\) 12.8990i 0.684607i
\(356\) −2.20204 −0.116708
\(357\) 4.89898 12.0000i 0.259281 0.635107i
\(358\) 10.0000 10.0000i 0.528516 0.528516i
\(359\) 16.8990i 0.891894i −0.895059 0.445947i \(-0.852867\pi\)
0.895059 0.445947i \(-0.147133\pi\)
\(360\) −2.00000 2.00000i −0.105409 0.105409i
\(361\) −28.5959 −1.50505
\(362\) 20.8990 20.8990i 1.09843 1.09843i
\(363\) 7.00000i 0.367405i
\(364\) 33.7980 + 13.7980i 1.77149 + 0.723210i
\(365\) 8.89898i 0.465794i
\(366\) 0.898979 + 0.898979i 0.0469904 + 0.0469904i
\(367\) 3.79796 0.198252 0.0991259 0.995075i \(-0.468395\pi\)
0.0991259 + 0.995075i \(0.468395\pi\)
\(368\) 24.0000i 1.25109i
\(369\) 2.89898i 0.150915i
\(370\) −7.79796 7.79796i −0.405397 0.405397i
\(371\) −24.0000 9.79796i −1.24602 0.508685i
\(372\) 4.00000 0.207390
\(373\) 14.0000i 0.724893i 0.932005 + 0.362446i \(0.118058\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) −9.79796 9.79796i −0.506640 0.506640i
\(375\) 1.00000i 0.0516398i
\(376\) 21.7980 + 21.7980i 1.12414 + 1.12414i
\(377\) 61.3939i 3.16195i
\(378\) −3.44949 + 1.44949i −0.177423 + 0.0745537i
\(379\) −27.3939 −1.40713 −0.703564 0.710631i \(-0.748409\pi\)
−0.703564 + 0.710631i \(0.748409\pi\)
\(380\) −13.7980 −0.707820
\(381\) 0.898979 0.0460561
\(382\) 7.10102 + 7.10102i 0.363320 + 0.363320i
\(383\) −18.8990 −0.965693 −0.482846 0.875705i \(-0.660397\pi\)
−0.482846 + 0.875705i \(0.660397\pi\)
\(384\) 8.00000 8.00000i 0.408248 0.408248i
\(385\) −2.00000 + 4.89898i −0.101929 + 0.249675i
\(386\) 0.202041 0.202041i 0.0102836 0.0102836i
\(387\) 8.89898 0.452361
\(388\) −1.79796 −0.0912775
\(389\) 2.69694i 0.136740i −0.997660 0.0683701i \(-0.978220\pi\)
0.997660 0.0683701i \(-0.0217799\pi\)
\(390\) −6.89898 6.89898i −0.349343 0.349343i
\(391\) 29.3939 1.48651
\(392\) −0.202041 19.7980i −0.0102046 0.999948i
\(393\) 7.10102 0.358199
\(394\) 13.7980 + 13.7980i 0.695131 + 0.695131i
\(395\) 4.00000i 0.201262i
\(396\) 4.00000i 0.201008i
\(397\) 16.6969 0.837995 0.418998 0.907987i \(-0.362382\pi\)
0.418998 + 0.907987i \(0.362382\pi\)
\(398\) −10.0000 + 10.0000i −0.501255 + 0.501255i
\(399\) −6.89898 + 16.8990i −0.345381 + 0.846007i
\(400\) −4.00000 −0.200000
\(401\) 7.79796 0.389411 0.194706 0.980862i \(-0.437625\pi\)
0.194706 + 0.980862i \(0.437625\pi\)
\(402\) 4.89898 + 4.89898i 0.244339 + 0.244339i
\(403\) 13.7980 0.687325
\(404\) 7.59592i 0.377911i
\(405\) 1.00000 0.0496904
\(406\) 30.6969 12.8990i 1.52346 0.640166i
\(407\) 15.5959i 0.773061i
\(408\) −9.79796 9.79796i −0.485071 0.485071i
\(409\) 4.00000i 0.197787i −0.995098 0.0988936i \(-0.968470\pi\)
0.995098 0.0988936i \(-0.0315304\pi\)
\(410\) −2.89898 2.89898i −0.143170 0.143170i
\(411\) 13.7980i 0.680603i
\(412\) 0.404082i 0.0199077i
\(413\) −7.59592 3.10102i −0.373771 0.152591i
\(414\) −6.00000 6.00000i −0.294884 0.294884i
\(415\) 4.00000i 0.196352i
\(416\) 27.5959 27.5959i 1.35300 1.35300i
\(417\) 6.89898 0.337844
\(418\) 13.7980 + 13.7980i 0.674880 + 0.674880i
\(419\) 34.2929i 1.67532i −0.546195 0.837658i \(-0.683924\pi\)
0.546195 0.837658i \(-0.316076\pi\)
\(420\) −2.00000 + 4.89898i −0.0975900 + 0.239046i
\(421\) 25.7980i 1.25732i −0.777682 0.628658i \(-0.783605\pi\)
0.777682 0.628658i \(-0.216395\pi\)
\(422\) −22.0000 + 22.0000i −1.07094 + 1.07094i
\(423\) −10.8990 −0.529927
\(424\) −19.5959 + 19.5959i −0.951662 + 0.951662i
\(425\) 4.89898i 0.237635i
\(426\) 12.8990 12.8990i 0.624958 0.624958i
\(427\) 0.898979 2.20204i 0.0435047 0.106564i
\(428\) 15.5959i 0.753857i
\(429\) 13.7980i 0.666172i
\(430\) 8.89898 8.89898i 0.429147 0.429147i
\(431\) 12.8990i 0.621322i −0.950521 0.310661i \(-0.899450\pi\)
0.950521 0.310661i \(-0.100550\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 34.6969i 1.66743i −0.552196 0.833714i \(-0.686210\pi\)
0.552196 0.833714i \(-0.313790\pi\)
\(434\) −2.89898 6.89898i −0.139155 0.331162i
\(435\) −8.89898 −0.426673
\(436\) −8.00000 −0.383131
\(437\) −41.3939 −1.98014
\(438\) −8.89898 + 8.89898i −0.425210 + 0.425210i
\(439\) 4.20204 0.200552 0.100276 0.994960i \(-0.468027\pi\)
0.100276 + 0.994960i \(0.468027\pi\)
\(440\) 4.00000 + 4.00000i 0.190693 + 0.190693i
\(441\) 5.00000 + 4.89898i 0.238095 + 0.233285i
\(442\) −33.7980 33.7980i −1.60760 1.60760i
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 15.5959i 0.740150i
\(445\) 1.10102i 0.0521934i
\(446\) 6.00000 6.00000i 0.284108 0.284108i
\(447\) 16.8990 0.799294
\(448\) −19.5959 8.00000i −0.925820 0.377964i
\(449\) 4.20204 0.198307 0.0991533 0.995072i \(-0.468387\pi\)
0.0991533 + 0.995072i \(0.468387\pi\)
\(450\) 1.00000 1.00000i 0.0471405 0.0471405i
\(451\) 5.79796i 0.273015i
\(452\) 3.59592i 0.169138i
\(453\) 5.79796 0.272412
\(454\) −12.0000 12.0000i −0.563188 0.563188i
\(455\) −6.89898 + 16.8990i −0.323429 + 0.792236i
\(456\) 13.7980 + 13.7980i 0.646149 + 0.646149i
\(457\) −7.79796 −0.364773 −0.182387 0.983227i \(-0.558382\pi\)
−0.182387 + 0.983227i \(0.558382\pi\)
\(458\) −24.4949 + 24.4949i −1.14457 + 1.14457i
\(459\) 4.89898 0.228665
\(460\) −12.0000 −0.559503
\(461\) −23.7980 −1.10838 −0.554191 0.832390i \(-0.686972\pi\)
−0.554191 + 0.832390i \(0.686972\pi\)
\(462\) 6.89898 2.89898i 0.320970 0.134873i
\(463\) 2.69694i 0.125337i 0.998034 + 0.0626687i \(0.0199611\pi\)
−0.998034 + 0.0626687i \(0.980039\pi\)
\(464\) 35.5959i 1.65250i
\(465\) 2.00000i 0.0927478i
\(466\) 16.0000 16.0000i 0.741186 0.741186i
\(467\) 2.20204i 0.101898i −0.998701 0.0509492i \(-0.983775\pi\)
0.998701 0.0509492i \(-0.0162246\pi\)
\(468\) 13.7980i 0.637811i
\(469\) 4.89898 12.0000i 0.226214 0.554109i
\(470\) −10.8990 + 10.8990i −0.502732 + 0.502732i
\(471\) 16.6969i 0.769354i
\(472\) −6.20204 + 6.20204i −0.285472 + 0.285472i
\(473\) −17.7980 −0.818351
\(474\) −4.00000 + 4.00000i −0.183726 + 0.183726i
\(475\) 6.89898i 0.316547i
\(476\) −9.79796 + 24.0000i −0.449089 + 1.10004i
\(477\) 9.79796i 0.448618i
\(478\) 2.69694 + 2.69694i 0.123355 + 0.123355i
\(479\) −11.5959 −0.529831 −0.264916 0.964272i \(-0.585344\pi\)
−0.264916 + 0.964272i \(0.585344\pi\)
\(480\) 4.00000 + 4.00000i 0.182574 + 0.182574i
\(481\) 53.7980i 2.45298i
\(482\) 20.0000 + 20.0000i 0.910975 + 0.910975i
\(483\) −6.00000 + 14.6969i −0.273009 + 0.668734i
\(484\) 14.0000i 0.636364i
\(485\) 0.898979i 0.0408206i
\(486\) −1.00000 1.00000i −0.0453609 0.0453609i
\(487\) 24.8990i 1.12828i 0.825679 + 0.564140i \(0.190792\pi\)
−0.825679 + 0.564140i \(0.809208\pi\)
\(488\) −1.79796 1.79796i −0.0813898 0.0813898i
\(489\) 22.6969i 1.02639i
\(490\) 9.89898 0.101021i 0.447190 0.00456364i
\(491\) 13.5959 0.613575 0.306788 0.951778i \(-0.400746\pi\)
0.306788 + 0.951778i \(0.400746\pi\)
\(492\) 5.79796i 0.261392i
\(493\) −43.5959 −1.96346
\(494\) 47.5959 + 47.5959i 2.14144 + 2.14144i
\(495\) −2.00000 −0.0898933
\(496\) −8.00000 −0.359211
\(497\) −31.5959 12.8990i −1.41727 0.578598i
\(498\) 4.00000 4.00000i 0.179244 0.179244i
\(499\) 10.0000 0.447661 0.223831 0.974628i \(-0.428144\pi\)
0.223831 + 0.974628i \(0.428144\pi\)
\(500\) 2.00000i 0.0894427i
\(501\) 10.8990i 0.486930i
\(502\) −12.8990 12.8990i −0.575710 0.575710i
\(503\) 38.4949 1.71640 0.858201 0.513313i \(-0.171582\pi\)
0.858201 + 0.513313i \(0.171582\pi\)
\(504\) 6.89898 2.89898i 0.307305 0.129131i
\(505\) −3.79796 −0.169007
\(506\) 12.0000 + 12.0000i 0.533465 + 0.533465i
\(507\) 34.5959i 1.53646i
\(508\) −1.79796 −0.0797715
\(509\) −1.59592 −0.0707378 −0.0353689 0.999374i \(-0.511261\pi\)
−0.0353689 + 0.999374i \(0.511261\pi\)
\(510\) 4.89898 4.89898i 0.216930 0.216930i
\(511\) 21.7980 + 8.89898i 0.964285 + 0.393668i
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) −6.89898 −0.304597
\(514\) 15.1010 + 15.1010i 0.666077 + 0.666077i
\(515\) −0.202041 −0.00890299
\(516\) −17.7980 −0.783511
\(517\) 21.7980 0.958673
\(518\) 26.8990 11.3031i 1.18187 0.496628i
\(519\) 11.7980i 0.517873i
\(520\) 13.7980 + 13.7980i 0.605081 + 0.605081i
\(521\) 42.8990i 1.87944i −0.341947 0.939719i \(-0.611086\pi\)
0.341947 0.939719i \(-0.388914\pi\)
\(522\) 8.89898 + 8.89898i 0.389498 + 0.389498i
\(523\) 35.5959i 1.55650i 0.627954 + 0.778250i \(0.283893\pi\)
−0.627954 + 0.778250i \(0.716107\pi\)
\(524\) −14.2020 −0.620419
\(525\) −2.44949 1.00000i −0.106904 0.0436436i
\(526\) 11.7980 + 11.7980i 0.514415 + 0.514415i
\(527\) 9.79796i 0.426806i
\(528\) 8.00000i 0.348155i
\(529\) −13.0000 −0.565217
\(530\) −9.79796 9.79796i −0.425596 0.425596i
\(531\) 3.10102i 0.134573i
\(532\) 13.7980 33.7980i 0.598217 1.46533i
\(533\) 20.0000i 0.866296i
\(534\) −1.10102 + 1.10102i −0.0476458 + 0.0476458i
\(535\) −7.79796 −0.337135
\(536\) −9.79796 9.79796i −0.423207 0.423207i
\(537\) 10.0000i 0.431532i
\(538\) −15.7980 + 15.7980i −0.681098 + 0.681098i
\(539\) −10.0000 9.79796i −0.430730 0.422028i
\(540\) −2.00000 −0.0860663
\(541\) 17.3939i 0.747821i −0.927465 0.373911i \(-0.878017\pi\)
0.927465 0.373911i \(-0.121983\pi\)
\(542\) 23.7980 23.7980i 1.02221 1.02221i
\(543\) 20.8990i 0.896861i
\(544\) 19.5959 + 19.5959i 0.840168 + 0.840168i
\(545\) 4.00000i 0.171341i
\(546\) 23.7980 10.0000i 1.01846 0.427960i
\(547\) 38.2929 1.63728 0.818642 0.574304i \(-0.194727\pi\)
0.818642 + 0.574304i \(0.194727\pi\)
\(548\) 27.5959i 1.17884i
\(549\) 0.898979 0.0383675
\(550\) −2.00000 + 2.00000i −0.0852803 + 0.0852803i
\(551\) 61.3939 2.61547
\(552\) 12.0000 + 12.0000i 0.510754 + 0.510754i
\(553\) 9.79796 + 4.00000i 0.416652 + 0.170097i
\(554\) 3.79796 + 3.79796i 0.161360 + 0.161360i
\(555\) −7.79796 −0.331005
\(556\) −13.7980 −0.585164
\(557\) 13.7980i 0.584638i −0.956321 0.292319i \(-0.905573\pi\)
0.956321 0.292319i \(-0.0944269\pi\)
\(558\) 2.00000 2.00000i 0.0846668 0.0846668i
\(559\) −61.3939 −2.59668
\(560\) 4.00000 9.79796i 0.169031 0.414039i
\(561\) −9.79796 −0.413670
\(562\) −27.7980 + 27.7980i −1.17259 + 1.17259i
\(563\) 21.7980i 0.918674i −0.888262 0.459337i \(-0.848087\pi\)
0.888262 0.459337i \(-0.151913\pi\)
\(564\) 21.7980 0.917860
\(565\) −1.79796 −0.0756407
\(566\) −9.79796 9.79796i −0.411839 0.411839i
\(567\) −1.00000 + 2.44949i −0.0419961 + 0.102869i
\(568\) −25.7980 + 25.7980i −1.08246 + 1.08246i
\(569\) −21.5959 −0.905348 −0.452674 0.891676i \(-0.649530\pi\)
−0.452674 + 0.891676i \(0.649530\pi\)
\(570\) −6.89898 + 6.89898i −0.288966 + 0.288966i
\(571\) −3.79796 −0.158940 −0.0794698 0.996837i \(-0.525323\pi\)
−0.0794698 + 0.996837i \(0.525323\pi\)
\(572\) 27.5959i 1.15384i
\(573\) 7.10102 0.296649
\(574\) 10.0000 4.20204i 0.417392 0.175390i
\(575\) 6.00000i 0.250217i
\(576\) 8.00000i 0.333333i
\(577\) 15.1010i 0.628664i −0.949313 0.314332i \(-0.898220\pi\)
0.949313 0.314332i \(-0.101780\pi\)
\(578\) 7.00000 7.00000i 0.291162 0.291162i
\(579\) 0.202041i 0.00839654i
\(580\) 17.7980 0.739020
\(581\) −9.79796 4.00000i −0.406488 0.165948i
\(582\) −0.898979 + 0.898979i −0.0372639 + 0.0372639i
\(583\) 19.5959i 0.811580i
\(584\) 17.7980 17.7980i 0.736485 0.736485i
\(585\) −6.89898 −0.285238
\(586\) 17.5959 17.5959i 0.726881 0.726881i
\(587\) 26.2020i 1.08147i 0.841192 + 0.540737i \(0.181855\pi\)
−0.841192 + 0.540737i \(0.818145\pi\)
\(588\) −10.0000 9.79796i −0.412393 0.404061i
\(589\) 13.7980i 0.568535i
\(590\) −3.10102 3.10102i −0.127667 0.127667i
\(591\) 13.7980 0.567572
\(592\) 31.1918i 1.28198i
\(593\) 3.10102i 0.127344i −0.997971 0.0636718i \(-0.979719\pi\)
0.997971 0.0636718i \(-0.0202811\pi\)
\(594\) 2.00000 + 2.00000i 0.0820610 + 0.0820610i
\(595\) −12.0000 4.89898i −0.491952 0.200839i
\(596\) −33.7980 −1.38442
\(597\) 10.0000i 0.409273i
\(598\) 41.3939 + 41.3939i 1.69272 + 1.69272i
\(599\) 8.89898i 0.363602i 0.983335 + 0.181801i \(0.0581927\pi\)
−0.983335 + 0.181801i \(0.941807\pi\)
\(600\) −2.00000 + 2.00000i −0.0816497 + 0.0816497i
\(601\) 5.79796i 0.236504i −0.992984 0.118252i \(-0.962271\pi\)
0.992984 0.118252i \(-0.0377290\pi\)
\(602\) 12.8990 + 30.6969i 0.525723 + 1.25111i
\(603\) 4.89898 0.199502
\(604\) −11.5959 −0.471831
\(605\) −7.00000 −0.284590
\(606\) 3.79796 + 3.79796i 0.154282 + 0.154282i
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) −27.5959 27.5959i −1.11916 1.11916i
\(609\) 8.89898 21.7980i 0.360605 0.883298i
\(610\) 0.898979 0.898979i 0.0363986 0.0363986i
\(611\) 75.1918 3.04194
\(612\) −9.79796 −0.396059
\(613\) 19.7980i 0.799632i 0.916595 + 0.399816i \(0.130926\pi\)
−0.916595 + 0.399816i \(0.869074\pi\)
\(614\) −23.5959 23.5959i −0.952254 0.952254i
\(615\) −2.89898 −0.116898
\(616\) −13.7980 + 5.79796i −0.555936 + 0.233606i
\(617\) 22.2020 0.893821 0.446910 0.894579i \(-0.352524\pi\)
0.446910 + 0.894579i \(0.352524\pi\)
\(618\) 0.202041 + 0.202041i 0.00812728 + 0.00812728i
\(619\) 24.2929i 0.976412i −0.872728 0.488206i \(-0.837651\pi\)
0.872728 0.488206i \(-0.162349\pi\)
\(620\) 4.00000i 0.160644i
\(621\) −6.00000 −0.240772
\(622\) 8.00000 8.00000i 0.320771 0.320771i
\(623\) 2.69694 + 1.10102i 0.108051 + 0.0441115i
\(624\) 27.5959i 1.10472i
\(625\) 1.00000 0.0400000
\(626\) 20.4949 + 20.4949i 0.819141 + 0.819141i
\(627\) 13.7980 0.551037
\(628\) 33.3939i 1.33256i
\(629\) −38.2020 −1.52322
\(630\) 1.44949 + 3.44949i 0.0577491 + 0.137431i
\(631\) 5.79796i 0.230813i −0.993318 0.115407i \(-0.963183\pi\)
0.993318 0.115407i \(-0.0368171\pi\)
\(632\) 8.00000 8.00000i 0.318223 0.318223i
\(633\) 22.0000i 0.874421i
\(634\) −12.0000 12.0000i −0.476581 0.476581i
\(635\) 0.898979i 0.0356749i
\(636\) 19.5959i 0.777029i
\(637\) −34.4949 33.7980i −1.36674 1.33912i
\(638\) −17.7980 17.7980i −0.704628 0.704628i
\(639\) 12.8990i 0.510276i
\(640\) −8.00000 8.00000i −0.316228 0.316228i
\(641\) −6.40408 −0.252946 −0.126473 0.991970i \(-0.540366\pi\)
−0.126473 + 0.991970i \(0.540366\pi\)
\(642\) 7.79796 + 7.79796i 0.307761 + 0.307761i
\(643\) 36.0000i 1.41970i −0.704352 0.709851i \(-0.748762\pi\)
0.704352 0.709851i \(-0.251238\pi\)
\(644\) 12.0000 29.3939i 0.472866 1.15828i
\(645\) 8.89898i 0.350397i
\(646\) −33.7980 + 33.7980i −1.32976 + 1.32976i
\(647\) −3.30306 −0.129857 −0.0649284 0.997890i \(-0.520682\pi\)
−0.0649284 + 0.997890i \(0.520682\pi\)
\(648\) 2.00000 + 2.00000i 0.0785674 + 0.0785674i
\(649\) 6.20204i 0.243451i
\(650\) −6.89898 + 6.89898i −0.270600 + 0.270600i
\(651\) −4.89898 2.00000i −0.192006 0.0783862i
\(652\) 45.3939i 1.77776i
\(653\) 44.0000i 1.72185i 0.508729 + 0.860927i \(0.330115\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) −4.00000 + 4.00000i −0.156412 + 0.156412i
\(655\) 7.10102i 0.277460i
\(656\) 11.5959i 0.452745i
\(657\) 8.89898i 0.347182i
\(658\) −15.7980 37.5959i −0.615869 1.46564i
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 4.00000 0.155700
\(661\) 30.6969 1.19397 0.596986 0.802251i \(-0.296365\pi\)
0.596986 + 0.802251i \(0.296365\pi\)
\(662\) 35.3939 35.3939i 1.37562 1.37562i
\(663\) −33.7980 −1.31260
\(664\) −8.00000 + 8.00000i −0.310460 + 0.310460i
\(665\) 16.8990 + 6.89898i 0.655314 + 0.267531i
\(666\) 7.79796 + 7.79796i 0.302165 + 0.302165i
\(667\) 53.3939 2.06742
\(668\) 21.7980i 0.843388i
\(669\) 6.00000i 0.231973i
\(670\) 4.89898 4.89898i 0.189264 0.189264i
\(671\) −1.79796 −0.0694094
\(672\) −13.7980 + 5.79796i −0.532268 + 0.223661i
\(673\) 25.5959 0.986650 0.493325 0.869845i \(-0.335781\pi\)
0.493325 + 0.869845i \(0.335781\pi\)
\(674\) −12.2020 + 12.2020i −0.470005 + 0.470005i
\(675\) 1.00000i 0.0384900i
\(676\) 69.1918i 2.66122i
\(677\) 12.2020 0.468963 0.234481 0.972121i \(-0.424661\pi\)
0.234481 + 0.972121i \(0.424661\pi\)
\(678\) 1.79796 + 1.79796i 0.0690502 + 0.0690502i
\(679\) 2.20204 + 0.898979i 0.0845066 + 0.0344997i
\(680\) −9.79796 + 9.79796i −0.375735 + 0.375735i
\(681\) −12.0000 −0.459841
\(682\) −4.00000 + 4.00000i −0.153168 + 0.153168i
\(683\) −31.7980 −1.21672 −0.608358 0.793663i \(-0.708171\pi\)
−0.608358 + 0.793663i \(0.708171\pi\)
\(684\) 13.7980 0.527578
\(685\) 13.7980 0.527193
\(686\) −9.65153 + 24.3485i −0.368497 + 0.929629i
\(687\) 24.4949i 0.934539i
\(688\) 35.5959 1.35708
\(689\) 67.5959i 2.57520i
\(690\) −6.00000 + 6.00000i −0.228416 + 0.228416i
\(691\) 14.4949i 0.551412i −0.961242 0.275706i \(-0.911088\pi\)
0.961242 0.275706i \(-0.0889116\pi\)
\(692\) 23.5959i 0.896982i
\(693\) 2.00000 4.89898i 0.0759737 0.186097i
\(694\) 13.5959 13.5959i 0.516094 0.516094i
\(695\) 6.89898i 0.261693i
\(696\) −17.7980 17.7980i −0.674630 0.674630i
\(697\) −14.2020 −0.537941
\(698\) 1.30306 1.30306i 0.0493216 0.0493216i
\(699\) 16.0000i 0.605176i
\(700\) 4.89898 + 2.00000i 0.185164 + 0.0755929i
\(701\) 32.8990i 1.24258i −0.783582 0.621289i \(-0.786609\pi\)
0.783582 0.621289i \(-0.213391\pi\)
\(702\) 6.89898 + 6.89898i 0.260385 + 0.260385i
\(703\) 53.7980 2.02903
\(704\) 16.0000i 0.603023i
\(705\) 10.8990i 0.410479i
\(706\) −5.30306 5.30306i −0.199583 0.199583i
\(707\) 3.79796 9.30306i 0.142837 0.349878i
\(708\) 6.20204i 0.233087i
\(709\) 10.2020i 0.383146i 0.981478 + 0.191573i \(0.0613588\pi\)
−0.981478 + 0.191573i \(0.938641\pi\)
\(710\) −12.8990 12.8990i −0.484090 0.484090i
\(711\) 4.00000i 0.150012i
\(712\) 2.20204 2.20204i 0.0825250 0.0825250i
\(713\) 12.0000i 0.449404i
\(714\) 7.10102 + 16.8990i 0.265749 + 0.632428i
\(715\) 13.7980 0.516014
\(716\) 20.0000i 0.747435i
\(717\) 2.69694 0.100719
\(718\) 16.8990 + 16.8990i 0.630664 + 0.630664i
\(719\) 45.7980 1.70798 0.853988 0.520293i \(-0.174177\pi\)
0.853988 + 0.520293i \(0.174177\pi\)
\(720\) 4.00000 0.149071
\(721\) 0.202041 0.494897i 0.00752440 0.0184309i
\(722\) 28.5959 28.5959i 1.06423 1.06423i
\(723\) 20.0000 0.743808
\(724\) 41.7980i 1.55341i
\(725\) 8.89898i 0.330500i
\(726\) 7.00000 + 7.00000i 0.259794 + 0.259794i
\(727\) −19.3939 −0.719279 −0.359640 0.933091i \(-0.617100\pi\)
−0.359640 + 0.933091i \(0.617100\pi\)
\(728\) −47.5959 + 20.0000i −1.76402 + 0.741249i
\(729\) −1.00000 −0.0370370
\(730\) 8.89898 + 8.89898i 0.329366 + 0.329366i
\(731\) 43.5959i 1.61245i
\(732\) −1.79796 −0.0664545
\(733\) −50.4949 −1.86507 −0.932536 0.361078i \(-0.882409\pi\)
−0.932536 + 0.361078i \(0.882409\pi\)
\(734\) −3.79796 + 3.79796i −0.140185 + 0.140185i
\(735\) 4.89898 5.00000i 0.180702 0.184428i
\(736\) −24.0000 24.0000i −0.884652 0.884652i
\(737\) −9.79796 −0.360912
\(738\) 2.89898 + 2.89898i 0.106713 + 0.106713i
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 15.5959 0.573317
\(741\) 47.5959 1.74848
\(742\) 33.7980 14.2020i 1.24076 0.521373i
\(743\) 6.00000i 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) −4.00000 + 4.00000i −0.146647 + 0.146647i
\(745\) 16.8990i 0.619131i
\(746\) −14.0000 14.0000i −0.512576 0.512576i
\(747\) 4.00000i 0.146352i
\(748\) 19.5959 0.716498
\(749\) 7.79796 19.1010i 0.284931 0.697936i
\(750\) −1.00000 1.00000i −0.0365148 0.0365148i
\(751\) 5.79796i 0.211571i 0.994389 + 0.105785i \(0.0337356\pi\)
−0.994389 + 0.105785i \(0.966264\pi\)
\(752\) −43.5959 −1.58978
\(753\) −12.8990 −0.470065
\(754\) −61.3939 61.3939i −2.23583 2.23583i
\(755\) 5.79796i 0.211009i
\(756\) 2.00000 4.89898i 0.0727393 0.178174i
\(757\) 33.5959i 1.22106i 0.791991 + 0.610532i \(0.209044\pi\)
−0.791991 + 0.610532i \(0.790956\pi\)
\(758\) 27.3939 27.3939i 0.994990 0.994990i
\(759\) 12.0000 0.435572
\(760\) 13.7980 13.7980i 0.500505 0.500505i
\(761\) 28.6969i 1.04026i −0.854086 0.520132i \(-0.825883\pi\)
0.854086 0.520132i \(-0.174117\pi\)
\(762\) −0.898979 + 0.898979i −0.0325666 + 0.0325666i
\(763\) 9.79796 + 4.00000i 0.354710 + 0.144810i
\(764\) −14.2020 −0.513812
\(765\) 4.89898i 0.177123i
\(766\) 18.8990 18.8990i 0.682848 0.682848i
\(767\) 21.3939i 0.772488i
\(768\) 16.0000i 0.577350i
\(769\) 12.4041i 0.447303i −0.974669 0.223651i \(-0.928202\pi\)
0.974669 0.223651i \(-0.0717977\pi\)
\(770\) −2.89898 6.89898i −0.104472 0.248622i
\(771\) 15.1010 0.543850
\(772\) 0.404082i 0.0145432i
\(773\) −0.202041 −0.00726691 −0.00363346 0.999993i \(-0.501157\pi\)
−0.00363346 + 0.999993i \(0.501157\pi\)
\(774\) −8.89898 + 8.89898i −0.319867 + 0.319867i
\(775\) 2.00000 0.0718421
\(776\) 1.79796 1.79796i 0.0645430 0.0645430i
\(777\) 7.79796 19.1010i 0.279750 0.685245i
\(778\) 2.69694 + 2.69694i 0.0966899 + 0.0966899i
\(779\) 20.0000 0.716574
\(780\) 13.7980 0.494046
\(781\) 25.7980i 0.923124i
\(782\) −29.3939 + 29.3939i −1.05112 + 1.05112i
\(783\) 8.89898 0.318024
\(784\) 20.0000 + 19.5959i 0.714286 + 0.699854i
\(785\) 16.6969 0.595939
\(786\) −7.10102 + 7.10102i −0.253285 + 0.253285i
\(787\) 3.59592i 0.128181i 0.997944 + 0.0640903i \(0.0204146\pi\)
−0.997944 + 0.0640903i \(0.979585\pi\)
\(788\) −27.5959 −0.983064
\(789\) 11.7980 0.420018
\(790\) 4.00000 + 4.00000i 0.142314 + 0.142314i
\(791\) 1.79796 4.40408i 0.0639281 0.156591i
\(792\) −4.00000 4.00000i −0.142134 0.142134i
\(793\) −6.20204 −0.220241
\(794\) −16.6969 + 16.6969i −0.592552 + 0.592552i
\(795\) −9.79796 −0.347498
\(796\) 20.0000i 0.708881i
\(797\) −13.5959 −0.481592 −0.240796 0.970576i \(-0.577408\pi\)
−0.240796 + 0.970576i \(0.577408\pi\)
\(798\) −10.0000 23.7980i −0.353996 0.842439i
\(799\) 53.3939i 1.88894i
\(800\) 4.00000 4.00000i 0.141421 0.141421i
\(801\) 1.10102i 0.0389026i
\(802\) −7.79796 + 7.79796i −0.275356 + 0.275356i
\(803\) 17.7980i 0.628076i
\(804\) −9.79796 −0.345547
\(805\) 14.6969 + 6.00000i 0.517999 + 0.211472i
\(806\) −13.7980 + 13.7980i −0.486012 + 0.486012i
\(807\) 15.7980i 0.556114i
\(808\) −7.59592 7.59592i −0.267223 0.267223i
\(809\) 4.20204 0.147736 0.0738679 0.997268i \(-0.476466\pi\)
0.0738679 + 0.997268i \(0.476466\pi\)
\(810\) −1.00000 + 1.00000i −0.0351364 + 0.0351364i
\(811\) 22.8990i 0.804092i −0.915619 0.402046i \(-0.868299\pi\)
0.915619 0.402046i \(-0.131701\pi\)
\(812\) −17.7980 + 43.5959i −0.624586 + 1.52992i
\(813\) 23.7980i 0.834631i
\(814\) −15.5959 15.5959i −0.546637 0.546637i
\(815\) 22.6969 0.795039
\(816\) 19.5959 0.685994
\(817\) 61.3939i 2.14790i
\(818\) 4.00000 + 4.00000i 0.139857 + 0.139857i
\(819\) 6.89898 16.8990i 0.241070 0.590498i
\(820\) 5.79796 0.202474
\(821\) 18.6969i 0.652528i 0.945279 + 0.326264i \(0.105790\pi\)
−0.945279 + 0.326264i \(0.894210\pi\)
\(822\) −13.7980 13.7980i −0.481259 0.481259i
\(823\) 8.49490i 0.296114i 0.988979 + 0.148057i \(0.0473018\pi\)
−0.988979 + 0.148057i \(0.952698\pi\)
\(824\) −0.404082 0.404082i −0.0140769 0.0140769i
\(825\) 2.00000i 0.0696311i
\(826\) 10.6969 4.49490i 0.372194 0.156397i
\(827\) −45.1918 −1.57147 −0.785737 0.618561i \(-0.787716\pi\)
−0.785737 + 0.618561i \(0.787716\pi\)
\(828\) 12.0000 0.417029
\(829\) 38.6969 1.34400 0.672000 0.740551i \(-0.265435\pi\)
0.672000 + 0.740551i \(0.265435\pi\)
\(830\) −4.00000 4.00000i −0.138842 0.138842i
\(831\) 3.79796 0.131750
\(832\) 55.1918i 1.91343i
\(833\) 24.0000 24.4949i 0.831551 0.848698i
\(834\) −6.89898 + 6.89898i −0.238892 + 0.238892i
\(835\) 10.8990 0.377175
\(836\) −27.5959 −0.954425
\(837\) 2.00000i 0.0691301i
\(838\) 34.2929 + 34.2929i 1.18463 + 1.18463i
\(839\) −45.7980 −1.58112 −0.790561 0.612384i \(-0.790211\pi\)
−0.790561 + 0.612384i \(0.790211\pi\)
\(840\) −2.89898 6.89898i −0.100024 0.238037i
\(841\) −50.1918 −1.73075
\(842\) 25.7980 + 25.7980i 0.889056 + 0.889056i
\(843\) 27.7980i 0.957413i
\(844\) 44.0000i 1.51454i
\(845\) 34.5959 1.19014
\(846\) 10.8990 10.8990i 0.374715 0.374715i
\(847\) 7.00000 17.1464i 0.240523 0.589158i
\(848\) 39.1918i 1.34585i
\(849\) −9.79796 −0.336265
\(850\) −4.89898 4.89898i −0.168034 0.168034i
\(851\) 46.7878 1.60386
\(852\) 25.7980i 0.883824i
\(853\) 15.3031 0.523967 0.261983 0.965072i \(-0.415623\pi\)
0.261983 + 0.965072i \(0.415623\pi\)
\(854\) 1.30306 + 3.10102i 0.0445898 + 0.106115i
\(855\) 6.89898i 0.235940i
\(856\) −15.5959 15.5959i −0.533058 0.533058i
\(857\) 36.4949i 1.24664i 0.781966 + 0.623321i \(0.214217\pi\)
−0.781966 + 0.623321i \(0.785783\pi\)
\(858\) −13.7980 13.7980i −0.471055 0.471055i
\(859\) 18.8990i 0.644825i 0.946599 + 0.322412i \(0.104494\pi\)
−0.946599 + 0.322412i \(0.895506\pi\)
\(860\) 17.7980i 0.606905i
\(861\) 2.89898 7.10102i 0.0987970 0.242002i
\(862\) 12.8990 + 12.8990i 0.439341 + 0.439341i
\(863\) 6.00000i 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) −4.00000 4.00000i −0.136083 0.136083i
\(865\) −11.7980 −0.401143
\(866\) 34.6969 + 34.6969i 1.17905 + 1.17905i
\(867\) 7.00000i 0.237732i
\(868\) 9.79796 + 4.00000i 0.332564 + 0.135769i
\(869\) 8.00000i 0.271381i
\(870\) 8.89898 8.89898i 0.301704 0.301704i
\(871\) −33.7980 −1.14520
\(872\) 8.00000 8.00000i 0.270914 0.270914i
\(873\) 0.898979i 0.0304258i
\(874\) 41.3939 41.3939i 1.40017 1.40017i
\(875\) −1.00000 + 2.44949i −0.0338062 + 0.0828079i
\(876\) 17.7980i 0.601337i
\(877\) 22.0000i 0.742887i 0.928456 + 0.371444i \(0.121137\pi\)
−0.928456 + 0.371444i \(0.878863\pi\)
\(878\) −4.20204 + 4.20204i −0.141812 + 0.141812i
\(879\) 17.5959i 0.593496i
\(880\) −8.00000 −0.269680
\(881\) 28.6969i 0.966824i −0.875393 0.483412i \(-0.839397\pi\)
0.875393 0.483412i \(-0.160603\pi\)
\(882\) −9.89898 + 0.101021i −0.333316 + 0.00340154i
\(883\) 8.49490 0.285876 0.142938 0.989732i \(-0.454345\pi\)
0.142938 + 0.989732i \(0.454345\pi\)
\(884\) 67.5959 2.27350
\(885\) −3.10102 −0.104240
\(886\) 6.00000 6.00000i 0.201574 0.201574i
\(887\) −6.49490 −0.218077 −0.109039 0.994038i \(-0.534777\pi\)
−0.109039 + 0.994038i \(0.534777\pi\)
\(888\) −15.5959 15.5959i −0.523365 0.523365i
\(889\) 2.20204 + 0.898979i 0.0738541 + 0.0301508i
\(890\) 1.10102 + 1.10102i 0.0369063 + 0.0369063i
\(891\) 2.00000 0.0670025
\(892\) 12.0000i 0.401790i
\(893\) 75.1918i 2.51620i
\(894\) −16.8990 + 16.8990i −0.565186 + 0.565186i
\(895\) −10.0000 −0.334263
\(896\) 27.5959 11.5959i 0.921915 0.387392i
\(897\) 41.3939 1.38210
\(898\) −4.20204 + 4.20204i −0.140224 + 0.140224i
\(899\) 17.7980i 0.593595i
\(900\) 2.00000i 0.0666667i
\(901\) −48.0000 −1.59911
\(902\) −5.79796 5.79796i −0.193051 0.193051i
\(903\) 21.7980 + 8.89898i 0.725391 + 0.296139i
\(904\) −3.59592 3.59592i −0.119598 0.119598i
\(905\) −20.8990 −0.694706
\(906\) −5.79796 + 5.79796i −0.192624 + 0.192624i
\(907\) 12.4949 0.414886 0.207443 0.978247i \(-0.433486\pi\)
0.207443 + 0.978247i \(0.433486\pi\)
\(908\) 24.0000 0.796468
\(909\) 3.79796 0.125970
\(910\) −10.0000 23.7980i −0.331497 0.788895i
\(911\) 32.8990i 1.08999i 0.838439 + 0.544996i \(0.183469\pi\)
−0.838439 + 0.544996i \(0.816531\pi\)
\(912\) −27.5959 −0.913792
\(913\) 8.00000i 0.264761i
\(914\) 7.79796 7.79796i 0.257934 0.257934i
\(915\) 0.898979i 0.0297193i
\(916\) 48.9898i 1.61867i
\(917\) 17.3939 + 7.10102i 0.574396 + 0.234496i
\(918\) −4.89898 + 4.89898i −0.161690 + 0.161690i
\(919\) 33.3939i 1.10156i 0.834650 + 0.550781i \(0.185670\pi\)
−0.834650 + 0.550781i \(0.814330\pi\)
\(920\) 12.0000 12.0000i 0.395628 0.395628i
\(921\) −23.5959 −0.777512
\(922\) 23.7980 23.7980i 0.783744 0.783744i
\(923\) 88.9898i 2.92913i
\(924\) −4.00000 + 9.79796i −0.131590 + 0.322329i
\(925\) 7.79796i 0.256395i
\(926\) −2.69694 2.69694i −0.0886269 0.0886269i
\(927\) 0.202041 0.00663590
\(928\) 35.5959 + 35.5959i 1.16849 + 1.16849i
\(929\) 10.4949i 0.344326i 0.985068 + 0.172163i \(0.0550756\pi\)
−0.985068 + 0.172163i \(0.944924\pi\)
\(930\) −2.00000 2.00000i −0.0655826 0.0655826i
\(931\) −33.7980 + 34.4949i −1.10768 + 1.13052i
\(932\) 32.0000i 1.04819i
\(933\) 8.00000i 0.261908i
\(934\) 2.20204 + 2.20204i 0.0720530 + 0.0720530i
\(935\) 9.79796i 0.320428i
\(936\) −13.7980 13.7980i −0.451000 0.451000i
\(937\) 12.4949i 0.408191i −0.978951 0.204095i \(-0.934575\pi\)
0.978951 0.204095i \(-0.0654252\pi\)
\(938\) 7.10102 + 16.8990i 0.231857 + 0.551771i
\(939\) 20.4949 0.668826
\(940\) 21.7980i 0.710971i
\(941\) −3.79796 −0.123810 −0.0619050 0.998082i \(-0.519718\pi\)
−0.0619050 + 0.998082i \(0.519718\pi\)
\(942\) −16.6969 16.6969i −0.544016 0.544016i
\(943\) 17.3939 0.566423
\(944\) 12.4041i 0.403718i
\(945\) 2.44949 + 1.00000i 0.0796819 + 0.0325300i
\(946\) 17.7980 17.7980i 0.578662 0.578662i
\(947\) 12.2020 0.396513 0.198257 0.980150i \(-0.436472\pi\)
0.198257 + 0.980150i \(0.436472\pi\)
\(948\) 8.00000i 0.259828i
\(949\) 61.3939i 1.99293i
\(950\) 6.89898 + 6.89898i 0.223832 + 0.223832i
\(951\) −12.0000 −0.389127
\(952\) −14.2020 33.7980i −0.460291 1.09540i
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 9.79796 + 9.79796i 0.317221 + 0.317221i
\(955\) 7.10102i 0.229784i
\(956\) −5.39388 −0.174450
\(957\) −17.7980 −0.575326
\(958\) 11.5959 11.5959i 0.374647 0.374647i
\(959\) −13.7980 + 33.7980i −0.445559 + 1.09139i
\(960\) −8.00000 −0.258199
\(961\) −27.0000 −0.870968
\(962\) −53.7980 53.7980i −1.73452 1.73452i
\(963\) 7.79796 0.251286
\(964\) −40.0000 −1.28831
\(965\) −0.202041 −0.00650393
\(966\) −8.69694 20.6969i −0.279819 0.665913i
\(967\) 7.50510i 0.241348i 0.992692 + 0.120674i \(0.0385055\pi\)
−0.992692 + 0.120674i \(0.961494\pi\)
\(968\) −14.0000 14.0000i −0.449977 0.449977i
\(969\) 33.7980i 1.08575i
\(970\) 0.898979 + 0.898979i 0.0288645 + 0.0288645i
\(971\) 12.8990i 0.413948i 0.978346 + 0.206974i \(0.0663615\pi\)
−0.978346 + 0.206974i \(0.933638\pi\)
\(972\) 2.00000 0.0641500
\(973\) 16.8990 + 6.89898i 0.541756 + 0.221171i
\(974\) −24.8990 24.8990i −0.797815 0.797815i
\(975\) 6.89898i 0.220944i
\(976\) 3.59592 0.115103
\(977\) −55.1918 −1.76574 −0.882872 0.469614i \(-0.844393\pi\)
−0.882872 + 0.469614i \(0.844393\pi\)
\(978\) −22.6969 22.6969i −0.725768 0.725768i
\(979\) 2.20204i 0.0703775i
\(980\) −9.79796 + 10.0000i −0.312984 + 0.319438i
\(981\) 4.00000i 0.127710i
\(982\) −13.5959 + 13.5959i −0.433863 + 0.433863i
\(983\) 6.89898 0.220043 0.110022 0.993929i \(-0.464908\pi\)
0.110022 + 0.993929i \(0.464908\pi\)
\(984\) −5.79796 5.79796i −0.184832 0.184832i
\(985\) 13.7980i 0.439640i
\(986\) 43.5959 43.5959i 1.38838 1.38838i
\(987\) −26.6969 10.8990i −0.849773 0.346918i
\(988\) −95.1918 −3.02846
\(989\) 53.3939i 1.69783i
\(990\) 2.00000 2.00000i 0.0635642 0.0635642i
\(991\) 20.0000i 0.635321i −0.948205 0.317660i \(-0.897103\pi\)
0.948205 0.317660i \(-0.102897\pi\)
\(992\) 8.00000 8.00000i 0.254000 0.254000i
\(993\) 35.3939i 1.12319i
\(994\) 44.4949 18.6969i 1.41129 0.593031i
\(995\) 10.0000 0.317021
\(996\) 8.00000i 0.253490i
\(997\) −52.2929 −1.65613 −0.828066 0.560631i \(-0.810559\pi\)
−0.828066 + 0.560631i \(0.810559\pi\)
\(998\) −10.0000 + 10.0000i −0.316544 + 0.316544i
\(999\) 7.79796 0.246717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.z.b.811.4 yes 4
4.3 odd 2 3360.2.z.b.1231.1 4
7.6 odd 2 840.2.z.a.811.4 yes 4
8.3 odd 2 840.2.z.a.811.1 4
8.5 even 2 3360.2.z.a.1231.2 4
28.27 even 2 3360.2.z.a.1231.3 4
56.13 odd 2 3360.2.z.b.1231.4 4
56.27 even 2 inner 840.2.z.b.811.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.a.811.1 4 8.3 odd 2
840.2.z.a.811.4 yes 4 7.6 odd 2
840.2.z.b.811.1 yes 4 56.27 even 2 inner
840.2.z.b.811.4 yes 4 1.1 even 1 trivial
3360.2.z.a.1231.2 4 8.5 even 2
3360.2.z.a.1231.3 4 28.27 even 2
3360.2.z.b.1231.1 4 4.3 odd 2
3360.2.z.b.1231.4 4 56.13 odd 2