Properties

Label 336.4.q.l
Level 336336
Weight 44
Character orbit 336.q
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(193,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.193"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.q (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,9,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.10253065563.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x63x5+58x4111x3+802x2747x+189 x^{6} - 3x^{5} + 58x^{4} - 111x^{3} + 802x^{2} - 747x + 189 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 243 2^{4}\cdot 3
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3β3+3)q3+(β5β4+4β3)q5+(β43β3β2++2)q79β3q9+(β5+6β3+β2+6)q11++(9β49β2+54)q99+O(q100) q + ( - 3 \beta_{3} + 3) q^{3} + ( - \beta_{5} - \beta_{4} + 4 \beta_{3}) q^{5} + ( - \beta_{4} - 3 \beta_{3} - \beta_{2} + \cdots + 2) q^{7} - 9 \beta_{3} q^{9} + (\beta_{5} + 6 \beta_{3} + \beta_{2} + \cdots - 6) q^{11}+ \cdots + (9 \beta_{4} - 9 \beta_{2} + 54) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+9q3+11q5+q727q919q1144q13+66q15+104q17+202q1939q21280q23186q25162q27146q29131q31+57q33+252q35++342q99+O(q100) 6 q + 9 q^{3} + 11 q^{5} + q^{7} - 27 q^{9} - 19 q^{11} - 44 q^{13} + 66 q^{15} + 104 q^{17} + 202 q^{19} - 39 q^{21} - 280 q^{23} - 186 q^{25} - 162 q^{27} - 146 q^{29} - 131 q^{31} + 57 q^{33} + 252 q^{35}+ \cdots + 342 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x63x5+58x4111x3+802x2747x+189 x^{6} - 3x^{5} + 58x^{4} - 111x^{3} + 802x^{2} - 747x + 189 : Copy content Toggle raw display

β1\beta_{1}== (ν53ν443ν381ν2331ν+213)/66 ( -\nu^{5} - 3\nu^{4} - 43\nu^{3} - 81\nu^{2} - 331\nu + 213 ) / 66 Copy content Toggle raw display
β2\beta_{2}== (ν42ν3+29ν228ν+3)/6 ( \nu^{4} - 2\nu^{3} + 29\nu^{2} - 28\nu + 3 ) / 6 Copy content Toggle raw display
β3\beta_{3}== (2ν5+5ν4108ν3+157ν21366ν+723)/132 ( -2\nu^{5} + 5\nu^{4} - 108\nu^{3} + 157\nu^{2} - 1366\nu + 723 ) / 132 Copy content Toggle raw display
β4\beta_{4}== (ν4+2ν341ν2+40ν219)/12 ( -\nu^{4} + 2\nu^{3} - 41\nu^{2} + 40\nu - 219 ) / 12 Copy content Toggle raw display
β5\beta_{5}== (29ν567ν4+1687ν32249ν2+23415ν10203)/132 ( 29\nu^{5} - 67\nu^{4} + 1687\nu^{3} - 2249\nu^{2} + 23415\nu - 10203 ) / 132 Copy content Toggle raw display
ν\nu== (2β3+β2+2β1+4)/6 ( -2\beta_{3} + \beta_{2} + 2\beta _1 + 4 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (3β4β3β2+β152)/3 ( -3\beta_{4} - \beta_{3} - \beta_{2} + \beta _1 - 52 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (6β56β4+142β332β255β1230)/6 ( 6\beta_{5} - 6\beta_{4} + 142\beta_{3} - 32\beta_{2} - 55\beta _1 - 230 ) / 6 Copy content Toggle raw display
ν4\nu^{4}== (6β5+81β4+143β3+29β256β1+1325)/3 ( 6\beta_{5} + 81\beta_{4} + 143\beta_{3} + 29\beta_{2} - 56\beta _1 + 1325 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (294β5+258β46140β3+1033β2+1481β1+10318)/6 ( -294\beta_{5} + 258\beta_{4} - 6140\beta_{3} + 1033\beta_{2} + 1481\beta _1 + 10318 ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 11 β3-\beta_{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
0.500000 + 4.80466i
0.500000 5.58188i
0.500000 0.0888015i
0.500000 4.80466i
0.500000 + 5.58188i
0.500000 + 0.0888015i
0 1.50000 2.59808i 0 −5.07832 8.79590i 0 −4.83472 17.8781i 0 −4.50000 7.79423i 0
193.2 0 1.50000 2.59808i 0 −0.119644 0.207230i 0 −12.9074 + 13.2815i 0 −4.50000 7.79423i 0
193.3 0 1.50000 2.59808i 0 10.6980 + 18.5294i 0 18.2421 3.19770i 0 −4.50000 7.79423i 0
289.1 0 1.50000 + 2.59808i 0 −5.07832 + 8.79590i 0 −4.83472 + 17.8781i 0 −4.50000 + 7.79423i 0
289.2 0 1.50000 + 2.59808i 0 −0.119644 + 0.207230i 0 −12.9074 13.2815i 0 −4.50000 + 7.79423i 0
289.3 0 1.50000 + 2.59808i 0 10.6980 18.5294i 0 18.2421 + 3.19770i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 193.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.q.l 6
4.b odd 2 1 168.4.q.e 6
7.c even 3 1 inner 336.4.q.l 6
7.c even 3 1 2352.4.a.ch 3
7.d odd 6 1 2352.4.a.cj 3
12.b even 2 1 504.4.s.g 6
28.f even 6 1 1176.4.a.x 3
28.g odd 6 1 168.4.q.e 6
28.g odd 6 1 1176.4.a.y 3
84.n even 6 1 504.4.s.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.q.e 6 4.b odd 2 1
168.4.q.e 6 28.g odd 6 1
336.4.q.l 6 1.a even 1 1 trivial
336.4.q.l 6 7.c even 3 1 inner
504.4.s.g 6 12.b even 2 1
504.4.s.g 6 84.n even 6 1
1176.4.a.x 3 28.f even 6 1
1176.4.a.y 3 28.g odd 6 1
2352.4.a.ch 3 7.c even 3 1
2352.4.a.cj 3 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5611T55+341T54+2524T53+47828T52+11440T5+2704 T_{5}^{6} - 11T_{5}^{5} + 341T_{5}^{4} + 2524T_{5}^{3} + 47828T_{5}^{2} + 11440T_{5} + 2704 acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T23T+9)3 (T^{2} - 3 T + 9)^{3} Copy content Toggle raw display
55 T611T5++2704 T^{6} - 11 T^{5} + \cdots + 2704 Copy content Toggle raw display
77 T6T5++40353607 T^{6} - T^{5} + \cdots + 40353607 Copy content Toggle raw display
1111 T6+19T5++10732176 T^{6} + 19 T^{5} + \cdots + 10732176 Copy content Toggle raw display
1313 (T3+22T2++26976)2 (T^{3} + 22 T^{2} + \cdots + 26976)^{2} Copy content Toggle raw display
1717 T6104T5++16257024 T^{6} - 104 T^{5} + \cdots + 16257024 Copy content Toggle raw display
1919 T6++4954933537024 T^{6} + \cdots + 4954933537024 Copy content Toggle raw display
2323 T6++2349279645696 T^{6} + \cdots + 2349279645696 Copy content Toggle raw display
2929 (T3+73T2++970992)2 (T^{3} + 73 T^{2} + \cdots + 970992)^{2} Copy content Toggle raw display
3131 T6++17277381752449 T^{6} + \cdots + 17277381752449 Copy content Toggle raw display
3737 T6326T5++316697616 T^{6} - 326 T^{5} + \cdots + 316697616 Copy content Toggle raw display
4141 (T3+516T2+15002144)2 (T^{3} + 516 T^{2} + \cdots - 15002144)^{2} Copy content Toggle raw display
4343 (T3+36T2+7204222)2 (T^{3} + 36 T^{2} + \cdots - 7204222)^{2} Copy content Toggle raw display
4747 T6++136472675351104 T^{6} + \cdots + 136472675351104 Copy content Toggle raw display
5353 T6++31729584384 T^{6} + \cdots + 31729584384 Copy content Toggle raw display
5959 T6++3215681005824 T^{6} + \cdots + 3215681005824 Copy content Toggle raw display
6161 T6++494624360983104 T^{6} + \cdots + 494624360983104 Copy content Toggle raw display
6767 T6++742397156205156 T^{6} + \cdots + 742397156205156 Copy content Toggle raw display
7171 (T3+34T2+207049704)2 (T^{3} + 34 T^{2} + \cdots - 207049704)^{2} Copy content Toggle raw display
7373 T6++16 ⁣ ⁣76 T^{6} + \cdots + 16\!\cdots\!76 Copy content Toggle raw display
7979 T6++24 ⁣ ⁣21 T^{6} + \cdots + 24\!\cdots\!21 Copy content Toggle raw display
8383 (T3115T2+111709668)2 (T^{3} - 115 T^{2} + \cdots - 111709668)^{2} Copy content Toggle raw display
8989 T6++12 ⁣ ⁣96 T^{6} + \cdots + 12\!\cdots\!96 Copy content Toggle raw display
9797 (T3+2941T2++866695284)2 (T^{3} + 2941 T^{2} + \cdots + 866695284)^{2} Copy content Toggle raw display
show more
show less