gp: [N,k,chi] = [336,4,Mod(193,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.193");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,9,0,11]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − 3 x 5 + 58 x 4 − 111 x 3 + 802 x 2 − 747 x + 189 x^{6} - 3x^{5} + 58x^{4} - 111x^{3} + 802x^{2} - 747x + 189 x 6 − 3 x 5 + 5 8 x 4 − 1 1 1 x 3 + 8 0 2 x 2 − 7 4 7 x + 1 8 9
x^6 - 3*x^5 + 58*x^4 - 111*x^3 + 802*x^2 - 747*x + 189
:
β 1 \beta_{1} β 1 = = =
( − ν 5 − 3 ν 4 − 43 ν 3 − 81 ν 2 − 331 ν + 213 ) / 66 ( -\nu^{5} - 3\nu^{4} - 43\nu^{3} - 81\nu^{2} - 331\nu + 213 ) / 66 ( − ν 5 − 3 ν 4 − 4 3 ν 3 − 8 1 ν 2 − 3 3 1 ν + 2 1 3 ) / 6 6
(-v^5 - 3*v^4 - 43*v^3 - 81*v^2 - 331*v + 213) / 66
β 2 \beta_{2} β 2 = = =
( ν 4 − 2 ν 3 + 29 ν 2 − 28 ν + 3 ) / 6 ( \nu^{4} - 2\nu^{3} + 29\nu^{2} - 28\nu + 3 ) / 6 ( ν 4 − 2 ν 3 + 2 9 ν 2 − 2 8 ν + 3 ) / 6
(v^4 - 2*v^3 + 29*v^2 - 28*v + 3) / 6
β 3 \beta_{3} β 3 = = =
( − 2 ν 5 + 5 ν 4 − 108 ν 3 + 157 ν 2 − 1366 ν + 723 ) / 132 ( -2\nu^{5} + 5\nu^{4} - 108\nu^{3} + 157\nu^{2} - 1366\nu + 723 ) / 132 ( − 2 ν 5 + 5 ν 4 − 1 0 8 ν 3 + 1 5 7 ν 2 − 1 3 6 6 ν + 7 2 3 ) / 1 3 2
(-2*v^5 + 5*v^4 - 108*v^3 + 157*v^2 - 1366*v + 723) / 132
β 4 \beta_{4} β 4 = = =
( − ν 4 + 2 ν 3 − 41 ν 2 + 40 ν − 219 ) / 12 ( -\nu^{4} + 2\nu^{3} - 41\nu^{2} + 40\nu - 219 ) / 12 ( − ν 4 + 2 ν 3 − 4 1 ν 2 + 4 0 ν − 2 1 9 ) / 1 2
(-v^4 + 2*v^3 - 41*v^2 + 40*v - 219) / 12
β 5 \beta_{5} β 5 = = =
( 29 ν 5 − 67 ν 4 + 1687 ν 3 − 2249 ν 2 + 23415 ν − 10203 ) / 132 ( 29\nu^{5} - 67\nu^{4} + 1687\nu^{3} - 2249\nu^{2} + 23415\nu - 10203 ) / 132 ( 2 9 ν 5 − 6 7 ν 4 + 1 6 8 7 ν 3 − 2 2 4 9 ν 2 + 2 3 4 1 5 ν − 1 0 2 0 3 ) / 1 3 2
(29*v^5 - 67*v^4 + 1687*v^3 - 2249*v^2 + 23415*v - 10203) / 132
ν \nu ν = = =
( − 2 β 3 + β 2 + 2 β 1 + 4 ) / 6 ( -2\beta_{3} + \beta_{2} + 2\beta _1 + 4 ) / 6 ( − 2 β 3 + β 2 + 2 β 1 + 4 ) / 6
(-2*b3 + b2 + 2*b1 + 4) / 6
ν 2 \nu^{2} ν 2 = = =
( − 3 β 4 − β 3 − β 2 + β 1 − 52 ) / 3 ( -3\beta_{4} - \beta_{3} - \beta_{2} + \beta _1 - 52 ) / 3 ( − 3 β 4 − β 3 − β 2 + β 1 − 5 2 ) / 3
(-3*b4 - b3 - b2 + b1 - 52) / 3
ν 3 \nu^{3} ν 3 = = =
( 6 β 5 − 6 β 4 + 142 β 3 − 32 β 2 − 55 β 1 − 230 ) / 6 ( 6\beta_{5} - 6\beta_{4} + 142\beta_{3} - 32\beta_{2} - 55\beta _1 - 230 ) / 6 ( 6 β 5 − 6 β 4 + 1 4 2 β 3 − 3 2 β 2 − 5 5 β 1 − 2 3 0 ) / 6
(6*b5 - 6*b4 + 142*b3 - 32*b2 - 55*b1 - 230) / 6
ν 4 \nu^{4} ν 4 = = =
( 6 β 5 + 81 β 4 + 143 β 3 + 29 β 2 − 56 β 1 + 1325 ) / 3 ( 6\beta_{5} + 81\beta_{4} + 143\beta_{3} + 29\beta_{2} - 56\beta _1 + 1325 ) / 3 ( 6 β 5 + 8 1 β 4 + 1 4 3 β 3 + 2 9 β 2 − 5 6 β 1 + 1 3 2 5 ) / 3
(6*b5 + 81*b4 + 143*b3 + 29*b2 - 56*b1 + 1325) / 3
ν 5 \nu^{5} ν 5 = = =
( − 294 β 5 + 258 β 4 − 6140 β 3 + 1033 β 2 + 1481 β 1 + 10318 ) / 6 ( -294\beta_{5} + 258\beta_{4} - 6140\beta_{3} + 1033\beta_{2} + 1481\beta _1 + 10318 ) / 6 ( − 2 9 4 β 5 + 2 5 8 β 4 − 6 1 4 0 β 3 + 1 0 3 3 β 2 + 1 4 8 1 β 1 + 1 0 3 1 8 ) / 6
(-294*b5 + 258*b4 - 6140*b3 + 1033*b2 + 1481*b1 + 10318) / 6
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− β 3 -\beta_{3} − β 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 6 − 11 T 5 5 + 341 T 5 4 + 2524 T 5 3 + 47828 T 5 2 + 11440 T 5 + 2704 T_{5}^{6} - 11T_{5}^{5} + 341T_{5}^{4} + 2524T_{5}^{3} + 47828T_{5}^{2} + 11440T_{5} + 2704 T 5 6 − 1 1 T 5 5 + 3 4 1 T 5 4 + 2 5 2 4 T 5 3 + 4 7 8 2 8 T 5 2 + 1 1 4 4 0 T 5 + 2 7 0 4
T5^6 - 11*T5^5 + 341*T5^4 + 2524*T5^3 + 47828*T5^2 + 11440*T5 + 2704
acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
( T 2 − 3 T + 9 ) 3 (T^{2} - 3 T + 9)^{3} ( T 2 − 3 T + 9 ) 3
(T^2 - 3*T + 9)^3
5 5 5
T 6 − 11 T 5 + ⋯ + 2704 T^{6} - 11 T^{5} + \cdots + 2704 T 6 − 1 1 T 5 + ⋯ + 2 7 0 4
T^6 - 11*T^5 + 341*T^4 + 2524*T^3 + 47828*T^2 + 11440*T + 2704
7 7 7
T 6 − T 5 + ⋯ + 40353607 T^{6} - T^{5} + \cdots + 40353607 T 6 − T 5 + ⋯ + 4 0 3 5 3 6 0 7
T^6 - T^5 - 16*T^4 - 9793*T^3 - 5488*T^2 - 117649*T + 40353607
11 11 1 1
T 6 + 19 T 5 + ⋯ + 10732176 T^{6} + 19 T^{5} + \cdots + 10732176 T 6 + 1 9 T 5 + ⋯ + 1 0 7 3 2 1 7 6
T^6 + 19*T^5 + 985*T^4 - 18408*T^3 + 327132*T^2 - 2044224*T + 10732176
13 13 1 3
( T 3 + 22 T 2 + ⋯ + 26976 ) 2 (T^{3} + 22 T^{2} + \cdots + 26976)^{2} ( T 3 + 2 2 T 2 + ⋯ + 2 6 9 7 6 ) 2
(T^3 + 22*T^2 - 3495*T + 26976)^2
17 17 1 7
T 6 − 104 T 5 + ⋯ + 16257024 T^{6} - 104 T^{5} + \cdots + 16257024 T 6 − 1 0 4 T 5 + ⋯ + 1 6 2 5 7 0 2 4
T^6 - 104*T^5 + 8256*T^4 - 274304*T^3 + 6972928*T^2 + 10321920*T + 16257024
19 19 1 9
T 6 + ⋯ + 4954933537024 T^{6} + \cdots + 4954933537024 T 6 + ⋯ + 4 9 5 4 9 3 3 5 3 7 0 2 4
T^6 - 202*T^5 + 48047*T^4 - 2988850*T^3 + 502106585*T^2 - 16122686224*T + 4954933537024
23 23 2 3
T 6 + ⋯ + 2349279645696 T^{6} + \cdots + 2349279645696 T 6 + ⋯ + 2 3 4 9 2 7 9 6 4 5 6 9 6
T^6 + 280*T^5 + 71424*T^4 + 5018752*T^3 + 477830656*T^2 - 10692366336*T + 2349279645696
29 29 2 9
( T 3 + 73 T 2 + ⋯ + 970992 ) 2 (T^{3} + 73 T^{2} + \cdots + 970992)^{2} ( T 3 + 7 3 T 2 + ⋯ + 9 7 0 9 9 2 ) 2
(T^3 + 73*T^2 - 29024*T + 970992)^2
31 31 3 1
T 6 + ⋯ + 17277381752449 T^{6} + \cdots + 17277381752449 T 6 + ⋯ + 1 7 2 7 7 3 8 1 7 5 2 4 4 9
T^6 + 131*T^5 + 65030*T^4 + 2042375*T^3 + 2835956678*T^2 + 198972620483*T + 17277381752449
37 37 3 7
T 6 − 326 T 5 + ⋯ + 316697616 T^{6} - 326 T^{5} + \cdots + 316697616 T 6 − 3 2 6 T 5 + ⋯ + 3 1 6 6 9 7 6 1 6
T^6 - 326*T^5 + 111523*T^4 + 1674930*T^3 + 33332505*T^2 - 93375612*T + 316697616
41 41 4 1
( T 3 + 516 T 2 + ⋯ − 15002144 ) 2 (T^{3} + 516 T^{2} + \cdots - 15002144)^{2} ( T 3 + 5 1 6 T 2 + ⋯ − 1 5 0 0 2 1 4 4 ) 2
(T^3 + 516*T^2 + 4404*T - 15002144)^2
43 43 4 3
( T 3 + 36 T 2 + ⋯ − 7204222 ) 2 (T^{3} + 36 T^{2} + \cdots - 7204222)^{2} ( T 3 + 3 6 T 2 + ⋯ − 7 2 0 4 2 2 2 ) 2
(T^3 + 36*T^2 - 141111*T - 7204222)^2
47 47 4 7
T 6 + ⋯ + 136472675351104 T^{6} + \cdots + 136472675351104 T 6 + ⋯ + 1 3 6 4 7 2 6 7 5 3 5 1 1 0 4
T^6 + 126*T^5 + 165816*T^4 - 42256744*T^3 + 21010052448*T^2 - 1751621870880*T + 136472675351104
53 53 5 3
T 6 + ⋯ + 31729584384 T^{6} + \cdots + 31729584384 T 6 + ⋯ + 3 1 7 2 9 5 8 4 3 8 4
T^6 - 385*T^5 + 168357*T^4 + 8107076*T^3 + 336718144*T^2 + 3586072896*T + 31729584384
59 59 5 9
T 6 + ⋯ + 3215681005824 T^{6} + \cdots + 3215681005824 T 6 + ⋯ + 3 2 1 5 6 8 1 0 0 5 8 2 4
T^6 - 285*T^5 + 131757*T^4 + 10815156*T^3 + 3064554144*T^2 - 90615599424*T + 3215681005824
61 61 6 1
T 6 + ⋯ + 494624360983104 T^{6} + \cdots + 494624360983104 T 6 + ⋯ + 4 9 4 6 2 4 3 6 0 9 8 3 1 0 4
T^6 - 34*T^5 + 294552*T^4 + 54455768*T^3 + 85325047648*T^2 + 6525171636192*T + 494624360983104
67 67 6 7
T 6 + ⋯ + 742397156205156 T^{6} + \cdots + 742397156205156 T 6 + ⋯ + 7 4 2 3 9 7 1 5 6 2 0 5 1 5 6
T^6 + 100*T^5 + 157039*T^4 + 39790032*T^3 + 24345164121*T^2 + 4006366633674*T + 742397156205156
71 71 7 1
( T 3 + 34 T 2 + ⋯ − 207049704 ) 2 (T^{3} + 34 T^{2} + \cdots - 207049704)^{2} ( T 3 + 3 4 T 2 + ⋯ − 2 0 7 0 4 9 7 0 4 ) 2
(T^3 + 34*T^2 - 779124*T - 207049704)^2
73 73 7 3
T 6 + ⋯ + 16 ⋯ 76 T^{6} + \cdots + 16\!\cdots\!76 T 6 + ⋯ + 1 6 ⋯ 7 6
T^6 - 108*T^5 + 990003*T^4 - 713655536*T^3 + 1001390270913*T^2 - 400784470459086*T + 167819737593389476
79 79 7 9
T 6 + ⋯ + 24 ⋯ 21 T^{6} + \cdots + 24\!\cdots\!21 T 6 + ⋯ + 2 4 ⋯ 2 1
T^6 + 2463*T^5 + 4117146*T^4 + 3815374727*T^3 + 2585751289386*T^2 + 960539593298703*T + 242832878411739121
83 83 8 3
( T 3 − 115 T 2 + ⋯ − 111709668 ) 2 (T^{3} - 115 T^{2} + \cdots - 111709668)^{2} ( T 3 − 1 1 5 T 2 + ⋯ − 1 1 1 7 0 9 6 6 8 ) 2
(T^3 - 115*T^2 - 486372*T - 111709668)^2
89 89 8 9
T 6 + ⋯ + 12 ⋯ 96 T^{6} + \cdots + 12\!\cdots\!96 T 6 + ⋯ + 1 2 ⋯ 9 6
T^6 - 110*T^5 + 1739124*T^4 - 504584288*T^3 + 3020812527616*T^2 - 599758242011136*T + 120602331558199296
97 97 9 7
( T 3 + 2941 T 2 + ⋯ + 866695284 ) 2 (T^{3} + 2941 T^{2} + \cdots + 866695284)^{2} ( T 3 + 2 9 4 1 T 2 + ⋯ + 8 6 6 6 9 5 2 8 4 ) 2
(T^3 + 2941*T^2 + 2811496*T + 866695284)^2
show more
show less