Properties

Label 336.4.q
Level 336336
Weight 44
Character orbit 336.q
Rep. character χ336(193,)\chi_{336}(193,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 4848
Newform subspaces 1313
Sturm bound 256256
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.q (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 13 13
Sturm bound: 256256
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 408 48 360
Cusp forms 360 48 312
Eisenstein series 48 0 48

Trace form

48q+6q318q7216q9+20q11+318q19+80q23516q25108q27400q29402q3112q33+468q35+8q37+210q39592q41892q43+360q99+O(q100) 48 q + 6 q^{3} - 18 q^{7} - 216 q^{9} + 20 q^{11} + 318 q^{19} + 80 q^{23} - 516 q^{25} - 108 q^{27} - 400 q^{29} - 402 q^{31} - 12 q^{33} + 468 q^{35} + 8 q^{37} + 210 q^{39} - 592 q^{41} - 892 q^{43}+ \cdots - 360 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
336.4.q.a 336.q 7.c 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 168.4.q.a 00 3-3 7-7 3535 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+3ζ6)q37ζ6q5+(217ζ6)q7+q+(-3+3\zeta_{6})q^{3}-7\zeta_{6}q^{5}+(21-7\zeta_{6})q^{7}+\cdots
336.4.q.b 336.q 7.c 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 168.4.q.b 00 3-3 2-2 35-35 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+3ζ6)q32ζ6q5+(14+)q7+q+(-3+3\zeta_{6})q^{3}-2\zeta_{6}q^{5}+(-14+\cdots)q^{7}+\cdots
336.4.q.c 336.q 7.c 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 168.4.q.c 00 3-3 1111 7-7 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+3ζ6)q3+11ζ6q5+(721ζ6)q7+q+(-3+3\zeta_{6})q^{3}+11\zeta_{6}q^{5}+(7-21\zeta_{6})q^{7}+\cdots
336.4.q.d 336.q 7.c 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 42.4.e.b 00 3-3 1515 35-35 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+3ζ6)q3+15ζ6q5+(21+)q7+q+(-3+3\zeta_{6})q^{3}+15\zeta_{6}q^{5}+(-21+\cdots)q^{7}+\cdots
336.4.q.e 336.q 7.c 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 21.4.e.a 00 33 33 77 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(33ζ6)q3+3ζ6q5+(7+21ζ6)q7+q+(3-3\zeta_{6})q^{3}+3\zeta_{6}q^{5}+(-7+21\zeta_{6})q^{7}+\cdots
336.4.q.f 336.q 7.c 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 42.4.e.a 00 33 66 77 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(33ζ6)q3+6ζ6q5+(1421ζ6)q7+q+(3-3\zeta_{6})q^{3}+6\zeta_{6}q^{5}+(14-21\zeta_{6})q^{7}+\cdots
336.4.q.g 336.q 7.c 44 19.82519.825 Q(3,505)\Q(\sqrt{-3}, \sqrt{505}) None 168.4.q.d 00 6-6 9-9 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+3β2)q3+(β14β2)q5+q+(-3+3\beta _{2})q^{3}+(-\beta _{1}-4\beta _{2})q^{5}+\cdots
336.4.q.h 336.q 7.c 44 19.82519.825 Q(3,19)\Q(\sqrt{-3}, \sqrt{-19}) None 84.4.i.b 00 6-6 33 2020 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+3β2q3+(1+2β1+2β2β3)q5+q+3\beta _{2}q^{3}+(1+2\beta _{1}+2\beta _{2}-\beta _{3})q^{5}+\cdots
336.4.q.i 336.q 7.c 44 19.82519.825 Q(3,193)\Q(\sqrt{-3}, \sqrt{193}) None 84.4.i.a 00 66 11-11 6-6 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(33β2)q3+(β16β2)q5+(12β1+)q7+q+(3-3\beta _{2})q^{3}+(\beta _{1}-6\beta _{2})q^{5}+(1-2\beta _{1}+\cdots)q^{7}+\cdots
336.4.q.j 336.q 7.c 44 19.82519.825 Q(3,1345)\Q(\sqrt{-3}, \sqrt{1345}) None 42.4.e.c 00 66 5-5 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(33β2)q3+(β12β2)q5+(1+)q7+q+(3-3\beta _{2})q^{3}+(-\beta _{1}-2\beta _{2})q^{5}+(-1+\cdots)q^{7}+\cdots
336.4.q.k 336.q 7.c 66 19.82519.825 6.0.9924270768.1 None 21.4.e.b 00 9-9 11-11 1313 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+3β3q3+(4+β24β3+β4+)q5+q+3\beta _{3}q^{3}+(-4+\beta _{2}-4\beta _{3}+\beta _{4}+\cdots)q^{5}+\cdots
336.4.q.l 336.q 7.c 66 19.82519.825 6.0.\cdots.1 None 168.4.q.e 00 99 1111 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(33β3)q3+(4β3β4β5)q5+q+(3-3\beta _{3})q^{3}+(4\beta _{3}-\beta _{4}-\beta _{5})q^{5}+\cdots
336.4.q.m 336.q 7.c 88 19.82519.825 Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots) None 168.4.q.f 00 1212 4-4 18-18 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q3β1q3+(1β1+β6)q5+(2+)q7+q-3\beta _{1}q^{3}+(-1-\beta _{1}+\beta _{6})q^{5}+(-2+\cdots)q^{7}+\cdots

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces