gp: [N,k,chi] = [336,4,Mod(193,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.193");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,6,0,-5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 + 337 x 2 + 336 x + 112896 x^{4} - x^{3} + 337x^{2} + 336x + 112896 x 4 − x 3 + 3 3 7 x 2 + 3 3 6 x + 1 1 2 8 9 6
x^4 - x^3 + 337*x^2 + 336*x + 112896
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 3 + 337 ν 2 − 337 ν + 112896 ) / 113232 ( -\nu^{3} + 337\nu^{2} - 337\nu + 112896 ) / 113232 ( − ν 3 + 3 3 7 ν 2 − 3 3 7 ν + 1 1 2 8 9 6 ) / 1 1 3 2 3 2
(-v^3 + 337*v^2 - 337*v + 112896) / 113232
β 3 \beta_{3} β 3 = = =
( ν 3 + 673 ) / 337 ( \nu^{3} + 673 ) / 337 ( ν 3 + 6 7 3 ) / 3 3 7
(v^3 + 673) / 337
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 336 β 2 + β 1 − 337 \beta_{3} + 336\beta_{2} + \beta _1 - 337 β 3 + 3 3 6 β 2 + β 1 − 3 3 7
b3 + 336*b2 + b1 - 337
ν 3 \nu^{3} ν 3 = = =
337 β 3 − 673 337\beta_{3} - 673 3 3 7 β 3 − 6 7 3
337*b3 - 673
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− β 2 -\beta_{2} − β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 4 + 5 T 5 3 + 355 T 5 2 − 1650 T 5 + 108900 T_{5}^{4} + 5T_{5}^{3} + 355T_{5}^{2} - 1650T_{5} + 108900 T 5 4 + 5 T 5 3 + 3 5 5 T 5 2 − 1 6 5 0 T 5 + 1 0 8 9 0 0
T5^4 + 5*T5^3 + 355*T5^2 - 1650*T5 + 108900
acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 − 3 T + 9 ) 2 (T^{2} - 3 T + 9)^{2} ( T 2 − 3 T + 9 ) 2
(T^2 - 3*T + 9)^2
5 5 5
T 4 + 5 T 3 + ⋯ + 108900 T^{4} + 5 T^{3} + \cdots + 108900 T 4 + 5 T 3 + ⋯ + 1 0 8 9 0 0
T^4 + 5*T^3 + 355*T^2 - 1650*T + 108900
7 7 7
T 4 − 659 T 2 + 117649 T^{4} - 659 T^{2} + 117649 T 4 − 6 5 9 T 2 + 1 1 7 6 4 9
T^4 - 659*T^2 + 117649
11 11 1 1
T 4 − 67 T 3 + ⋯ + 617796 T^{4} - 67 T^{3} + \cdots + 617796 T 4 − 6 7 T 3 + ⋯ + 6 1 7 7 9 6
T^4 - 67*T^3 + 3703*T^2 - 52662*T + 617796
13 13 1 3
( T 2 − 41 T + 84 ) 2 (T^{2} - 41 T + 84)^{2} ( T 2 − 4 1 T + 8 4 ) 2
(T^2 - 41*T + 84)^2
17 17 1 7
T 4 − 92 T 3 + ⋯ + 10653696 T^{4} - 92 T^{3} + \cdots + 10653696 T 4 − 9 2 T 3 + ⋯ + 1 0 6 5 3 6 9 6
T^4 - 92*T^3 + 11728*T^2 + 300288*T + 10653696
19 19 1 9
T 4 − 43 T 3 + ⋯ + 6574096 T^{4} - 43 T^{3} + \cdots + 6574096 T 4 − 4 3 T 3 + ⋯ + 6 5 7 4 0 9 6
T^4 - 43*T^3 + 4413*T^2 + 110252*T + 6574096
23 23 2 3
T 4 − 148 T 3 + ⋯ + 9216 T^{4} - 148 T^{3} + \cdots + 9216 T 4 − 1 4 8 T 3 + ⋯ + 9 2 1 6
T^4 - 148*T^3 + 21808*T^2 - 14208*T + 9216
29 29 2 9
( T 2 − 77 T − 39204 ) 2 (T^{2} - 77 T - 39204)^{2} ( T 2 − 7 7 T − 3 9 2 0 4 ) 2
(T^2 - 77*T - 39204)^2
31 31 3 1
T 4 + ⋯ + 4389725025 T^{4} + \cdots + 4389725025 T 4 + ⋯ + 4 3 8 9 7 2 5 0 2 5
T^4 + 520*T^3 + 204145*T^2 + 34452600*T + 4389725025
37 37 3 7
T 4 + 7 T 3 + ⋯ + 741146176 T^{4} + 7 T^{3} + \cdots + 741146176 T 4 + 7 T 3 + ⋯ + 7 4 1 1 4 6 1 7 6
T^4 + 7*T^3 + 27273*T^2 - 190568*T + 741146176
41 41 4 1
( T 2 + 426 T + 33264 ) 2 (T^{2} + 426 T + 33264)^{2} ( T 2 + 4 2 6 T + 3 3 2 6 4 ) 2
(T^2 + 426*T + 33264)^2
43 43 4 3
( T 2 − 107 T − 72794 ) 2 (T^{2} - 107 T - 72794)^{2} ( T 2 − 1 0 7 T − 7 2 7 9 4 ) 2
(T^2 - 107*T - 72794)^2
47 47 4 7
T 4 + ⋯ + 1191906576 T^{4} + \cdots + 1191906576 T 4 + ⋯ + 1 1 9 1 9 0 6 5 7 6
T^4 - 576*T^3 + 297252*T^2 - 19885824*T + 1191906576
53 53 5 3
T 4 − 243 T 3 + ⋯ + 137733696 T^{4} - 243 T^{3} + \cdots + 137733696 T 4 − 2 4 3 T 3 + ⋯ + 1 3 7 7 3 3 6 9 6
T^4 - 243*T^3 + 47313*T^2 - 2851848*T + 137733696
59 59 5 9
T 4 + ⋯ + 44160500736 T^{4} + \cdots + 44160500736 T 4 + ⋯ + 4 4 1 6 0 5 0 0 7 3 6
T^4 + 7*T^3 + 210193*T^2 - 1471008*T + 44160500736
61 61 6 1
T 4 + 224 T 3 + ⋯ + 51322896 T^{4} + 224 T^{3} + \cdots + 51322896 T 4 + 2 2 4 T 3 + ⋯ + 5 1 3 2 2 8 9 6
T^4 + 224*T^3 + 43012*T^2 + 1604736*T + 51322896
67 67 6 7
T 4 + ⋯ + 5976217636 T^{4} + \cdots + 5976217636 T 4 + ⋯ + 5 9 7 6 2 1 7 6 3 6
T^4 - 687*T^3 + 394663*T^2 - 53109222*T + 5976217636
71 71 7 1
( T 2 + 472 T − 78804 ) 2 (T^{2} + 472 T - 78804)^{2} ( T 2 + 4 7 2 T − 7 8 8 0 4 ) 2
(T^2 + 472*T - 78804)^2
73 73 7 3
T 4 + ⋯ + 39938423716 T^{4} + \cdots + 39938423716 T 4 + ⋯ + 3 9 9 3 8 4 2 3 7 1 6
T^4 - 921*T^3 + 1048087*T^2 + 184058166*T + 39938423716
79 79 7 9
T 4 + ⋯ + 2270427201 T^{4} + \cdots + 2270427201 T 4 + ⋯ + 2 2 7 0 4 2 7 2 0 1
T^4 + 526*T^3 + 229027*T^2 + 25063374*T + 2270427201
83 83 8 3
( T 2 − 221 T − 197946 ) 2 (T^{2} - 221 T - 197946)^{2} ( T 2 − 2 2 1 T − 1 9 7 9 4 6 ) 2
(T^2 - 221*T - 197946)^2
89 89 8 9
T 4 + ⋯ + 196582277376 T^{4} + \cdots + 196582277376 T 4 + ⋯ + 1 9 6 5 8 2 2 7 7 3 7 6
T^4 + 774*T^3 + 1042452*T^2 - 343173024*T + 196582277376
97 97 9 7
( T 2 − 1953 T + 541646 ) 2 (T^{2} - 1953 T + 541646)^{2} ( T 2 − 1 9 5 3 T + 5 4 1 6 4 6 ) 2
(T^2 - 1953*T + 541646)^2
show more
show less