Properties

Label 336.4.q.j
Level 336336
Weight 44
Character orbit 336.q
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(193,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.193"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.q (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,1345)\Q(\sqrt{-3}, \sqrt{1345})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+337x2+336x+112896 x^{4} - x^{3} + 337x^{2} + 336x + 112896 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3β2+3)q3+(2β2β1)q5+(β3+3β21)q79β2q9+(β334β2+β1+33)q11+(β3+20)q13++(9β3297)q99+O(q100) q + ( - 3 \beta_{2} + 3) q^{3} + ( - 2 \beta_{2} - \beta_1) q^{5} + ( - \beta_{3} + 3 \beta_{2} - 1) q^{7} - 9 \beta_{2} q^{9} + (\beta_{3} - 34 \beta_{2} + \beta_1 + 33) q^{11} + (\beta_{3} + 20) q^{13}+ \cdots + ( - 9 \beta_{3} - 297) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q35q518q9+67q11+82q1330q15+92q17+43q19+27q21+148q23435q25108q27+154q29520q31201q33650q357q37+1206q99+O(q100) 4 q + 6 q^{3} - 5 q^{5} - 18 q^{9} + 67 q^{11} + 82 q^{13} - 30 q^{15} + 92 q^{17} + 43 q^{19} + 27 q^{21} + 148 q^{23} - 435 q^{25} - 108 q^{27} + 154 q^{29} - 520 q^{31} - 201 q^{33} - 650 q^{35} - 7 q^{37}+ \cdots - 1206 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+337x2+336x+112896 x^{4} - x^{3} + 337x^{2} + 336x + 112896 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+337ν2337ν+112896)/113232 ( -\nu^{3} + 337\nu^{2} - 337\nu + 112896 ) / 113232 Copy content Toggle raw display
β3\beta_{3}== (ν3+673)/337 ( \nu^{3} + 673 ) / 337 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+336β2+β1337 \beta_{3} + 336\beta_{2} + \beta _1 - 337 Copy content Toggle raw display
ν3\nu^{3}== 337β3673 337\beta_{3} - 673 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 11 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
9.41856 + 16.3134i
−8.91856 15.4474i
9.41856 16.3134i
−8.91856 + 15.4474i
0 1.50000 2.59808i 0 −10.4186 18.0455i 0 18.3371 + 2.59808i 0 −4.50000 7.79423i 0
193.2 0 1.50000 2.59808i 0 7.91856 + 13.7153i 0 −18.3371 + 2.59808i 0 −4.50000 7.79423i 0
289.1 0 1.50000 + 2.59808i 0 −10.4186 + 18.0455i 0 18.3371 2.59808i 0 −4.50000 + 7.79423i 0
289.2 0 1.50000 + 2.59808i 0 7.91856 13.7153i 0 −18.3371 2.59808i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.q.j 4
4.b odd 2 1 42.4.e.c 4
7.c even 3 1 inner 336.4.q.j 4
7.c even 3 1 2352.4.a.bq 2
7.d odd 6 1 2352.4.a.ca 2
12.b even 2 1 126.4.g.g 4
28.d even 2 1 294.4.e.l 4
28.f even 6 1 294.4.a.m 2
28.f even 6 1 294.4.e.l 4
28.g odd 6 1 42.4.e.c 4
28.g odd 6 1 294.4.a.n 2
84.h odd 2 1 882.4.g.bf 4
84.j odd 6 1 882.4.a.z 2
84.j odd 6 1 882.4.g.bf 4
84.n even 6 1 126.4.g.g 4
84.n even 6 1 882.4.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.e.c 4 4.b odd 2 1
42.4.e.c 4 28.g odd 6 1
126.4.g.g 4 12.b even 2 1
126.4.g.g 4 84.n even 6 1
294.4.a.m 2 28.f even 6 1
294.4.a.n 2 28.g odd 6 1
294.4.e.l 4 28.d even 2 1
294.4.e.l 4 28.f even 6 1
336.4.q.j 4 1.a even 1 1 trivial
336.4.q.j 4 7.c even 3 1 inner
882.4.a.v 2 84.n even 6 1
882.4.a.z 2 84.j odd 6 1
882.4.g.bf 4 84.h odd 2 1
882.4.g.bf 4 84.j odd 6 1
2352.4.a.bq 2 7.c even 3 1
2352.4.a.ca 2 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+5T53+355T521650T5+108900 T_{5}^{4} + 5T_{5}^{3} + 355T_{5}^{2} - 1650T_{5} + 108900 acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
55 T4+5T3++108900 T^{4} + 5 T^{3} + \cdots + 108900 Copy content Toggle raw display
77 T4659T2+117649 T^{4} - 659 T^{2} + 117649 Copy content Toggle raw display
1111 T467T3++617796 T^{4} - 67 T^{3} + \cdots + 617796 Copy content Toggle raw display
1313 (T241T+84)2 (T^{2} - 41 T + 84)^{2} Copy content Toggle raw display
1717 T492T3++10653696 T^{4} - 92 T^{3} + \cdots + 10653696 Copy content Toggle raw display
1919 T443T3++6574096 T^{4} - 43 T^{3} + \cdots + 6574096 Copy content Toggle raw display
2323 T4148T3++9216 T^{4} - 148 T^{3} + \cdots + 9216 Copy content Toggle raw display
2929 (T277T39204)2 (T^{2} - 77 T - 39204)^{2} Copy content Toggle raw display
3131 T4++4389725025 T^{4} + \cdots + 4389725025 Copy content Toggle raw display
3737 T4+7T3++741146176 T^{4} + 7 T^{3} + \cdots + 741146176 Copy content Toggle raw display
4141 (T2+426T+33264)2 (T^{2} + 426 T + 33264)^{2} Copy content Toggle raw display
4343 (T2107T72794)2 (T^{2} - 107 T - 72794)^{2} Copy content Toggle raw display
4747 T4++1191906576 T^{4} + \cdots + 1191906576 Copy content Toggle raw display
5353 T4243T3++137733696 T^{4} - 243 T^{3} + \cdots + 137733696 Copy content Toggle raw display
5959 T4++44160500736 T^{4} + \cdots + 44160500736 Copy content Toggle raw display
6161 T4+224T3++51322896 T^{4} + 224 T^{3} + \cdots + 51322896 Copy content Toggle raw display
6767 T4++5976217636 T^{4} + \cdots + 5976217636 Copy content Toggle raw display
7171 (T2+472T78804)2 (T^{2} + 472 T - 78804)^{2} Copy content Toggle raw display
7373 T4++39938423716 T^{4} + \cdots + 39938423716 Copy content Toggle raw display
7979 T4++2270427201 T^{4} + \cdots + 2270427201 Copy content Toggle raw display
8383 (T2221T197946)2 (T^{2} - 221 T - 197946)^{2} Copy content Toggle raw display
8989 T4++196582277376 T^{4} + \cdots + 196582277376 Copy content Toggle raw display
9797 (T21953T+541646)2 (T^{2} - 1953 T + 541646)^{2} Copy content Toggle raw display
show more
show less