gp: [N,k,chi] = [336,4,Mod(193,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.193");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,3,0,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 2 − 3 T 5 + 9 T_{5}^{2} - 3T_{5} + 9 T 5 2 − 3 T 5 + 9
T5^2 - 3*T5 + 9
acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
5 5 5
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
7 7 7
T 2 − 7 T + 343 T^{2} - 7T + 343 T 2 − 7 T + 3 4 3
T^2 - 7*T + 343
11 11 1 1
T 2 + 15 T + 225 T^{2} + 15T + 225 T 2 + 1 5 T + 2 2 5
T^2 + 15*T + 225
13 13 1 3
( T + 64 ) 2 (T + 64)^{2} ( T + 6 4 ) 2
(T + 64)^2
17 17 1 7
T 2 + 84 T + 7056 T^{2} + 84T + 7056 T 2 + 8 4 T + 7 0 5 6
T^2 + 84*T + 7056
19 19 1 9
T 2 + 16 T + 256 T^{2} + 16T + 256 T 2 + 1 6 T + 2 5 6
T^2 + 16*T + 256
23 23 2 3
T 2 + 84 T + 7056 T^{2} + 84T + 7056 T 2 + 8 4 T + 7 0 5 6
T^2 + 84*T + 7056
29 29 2 9
( T + 297 ) 2 (T + 297)^{2} ( T + 2 9 7 ) 2
(T + 297)^2
31 31 3 1
T 2 + 253 T + 64009 T^{2} + 253T + 64009 T 2 + 2 5 3 T + 6 4 0 0 9
T^2 + 253*T + 64009
37 37 3 7
T 2 − 316 T + 99856 T^{2} - 316T + 99856 T 2 − 3 1 6 T + 9 9 8 5 6
T^2 - 316*T + 99856
41 41 4 1
( T − 360 ) 2 (T - 360)^{2} ( T − 3 6 0 ) 2
(T - 360)^2
43 43 4 3
( T + 26 ) 2 (T + 26)^{2} ( T + 2 6 ) 2
(T + 26)^2
47 47 4 7
T 2 + 30 T + 900 T^{2} + 30T + 900 T 2 + 3 0 T + 9 0 0
T^2 + 30*T + 900
53 53 5 3
T 2 + 363 T + 131769 T^{2} + 363T + 131769 T 2 + 3 6 3 T + 1 3 1 7 6 9
T^2 + 363*T + 131769
59 59 5 9
T 2 + 15 T + 225 T^{2} + 15T + 225 T 2 + 1 5 T + 2 2 5
T^2 + 15*T + 225
61 61 6 1
T 2 − 118 T + 13924 T^{2} - 118T + 13924 T 2 − 1 1 8 T + 1 3 9 2 4
T^2 - 118*T + 13924
67 67 6 7
T 2 + 370 T + 136900 T^{2} + 370T + 136900 T 2 + 3 7 0 T + 1 3 6 9 0 0
T^2 + 370*T + 136900
71 71 7 1
( T − 342 ) 2 (T - 342)^{2} ( T − 3 4 2 ) 2
(T - 342)^2
73 73 7 3
T 2 + 362 T + 131044 T^{2} + 362T + 131044 T 2 + 3 6 2 T + 1 3 1 0 4 4
T^2 + 362*T + 131044
79 79 7 9
T 2 − 467 T + 218089 T^{2} - 467T + 218089 T 2 − 4 6 7 T + 2 1 8 0 8 9
T^2 - 467*T + 218089
83 83 8 3
( T + 477 ) 2 (T + 477)^{2} ( T + 4 7 7 ) 2
(T + 477)^2
89 89 8 9
T 2 + 906 T + 820836 T^{2} + 906T + 820836 T 2 + 9 0 6 T + 8 2 0 8 3 6
T^2 + 906*T + 820836
97 97 9 7
( T − 503 ) 2 (T - 503)^{2} ( T − 5 0 3 ) 2
(T - 503)^2
show more
show less