Properties

Label 336.4.q.e
Level 336336
Weight 44
Character orbit 336.q
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(193,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.193"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.q (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ6+3)q3+3ζ6q5+(21ζ67)q79ζ6q9+(15ζ615)q1164q13+9q15+(84ζ684)q1716ζ6q19++135q99+O(q100) q + ( - 3 \zeta_{6} + 3) q^{3} + 3 \zeta_{6} q^{5} + (21 \zeta_{6} - 7) q^{7} - 9 \zeta_{6} q^{9} + (15 \zeta_{6} - 15) q^{11} - 64 q^{13} + 9 q^{15} + (84 \zeta_{6} - 84) q^{17} - 16 \zeta_{6} q^{19} + \cdots + 135 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q3+3q5+7q79q915q11128q13+18q1584q1716q19+105q2184q23+116q2554q27594q29253q31+45q3384q35++270q99+O(q100) 2 q + 3 q^{3} + 3 q^{5} + 7 q^{7} - 9 q^{9} - 15 q^{11} - 128 q^{13} + 18 q^{15} - 84 q^{17} - 16 q^{19} + 105 q^{21} - 84 q^{23} + 116 q^{25} - 54 q^{27} - 594 q^{29} - 253 q^{31} + 45 q^{33} - 84 q^{35}+ \cdots + 270 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 2.59808i 0 1.50000 + 2.59808i 0 3.50000 + 18.1865i 0 −4.50000 7.79423i 0
289.1 0 1.50000 + 2.59808i 0 1.50000 2.59808i 0 3.50000 18.1865i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.q.e 2
4.b odd 2 1 21.4.e.a 2
7.c even 3 1 inner 336.4.q.e 2
7.c even 3 1 2352.4.a.i 1
7.d odd 6 1 2352.4.a.bd 1
12.b even 2 1 63.4.e.a 2
28.d even 2 1 147.4.e.h 2
28.f even 6 1 147.4.a.a 1
28.f even 6 1 147.4.e.h 2
28.g odd 6 1 21.4.e.a 2
28.g odd 6 1 147.4.a.b 1
84.h odd 2 1 441.4.e.c 2
84.j odd 6 1 441.4.a.k 1
84.j odd 6 1 441.4.e.c 2
84.n even 6 1 63.4.e.a 2
84.n even 6 1 441.4.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.e.a 2 4.b odd 2 1
21.4.e.a 2 28.g odd 6 1
63.4.e.a 2 12.b even 2 1
63.4.e.a 2 84.n even 6 1
147.4.a.a 1 28.f even 6 1
147.4.a.b 1 28.g odd 6 1
147.4.e.h 2 28.d even 2 1
147.4.e.h 2 28.f even 6 1
336.4.q.e 2 1.a even 1 1 trivial
336.4.q.e 2 7.c even 3 1 inner
441.4.a.k 1 84.j odd 6 1
441.4.a.l 1 84.n even 6 1
441.4.e.c 2 84.h odd 2 1
441.4.e.c 2 84.j odd 6 1
2352.4.a.i 1 7.c even 3 1
2352.4.a.bd 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T523T5+9 T_{5}^{2} - 3T_{5} + 9 acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
55 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
77 T27T+343 T^{2} - 7T + 343 Copy content Toggle raw display
1111 T2+15T+225 T^{2} + 15T + 225 Copy content Toggle raw display
1313 (T+64)2 (T + 64)^{2} Copy content Toggle raw display
1717 T2+84T+7056 T^{2} + 84T + 7056 Copy content Toggle raw display
1919 T2+16T+256 T^{2} + 16T + 256 Copy content Toggle raw display
2323 T2+84T+7056 T^{2} + 84T + 7056 Copy content Toggle raw display
2929 (T+297)2 (T + 297)^{2} Copy content Toggle raw display
3131 T2+253T+64009 T^{2} + 253T + 64009 Copy content Toggle raw display
3737 T2316T+99856 T^{2} - 316T + 99856 Copy content Toggle raw display
4141 (T360)2 (T - 360)^{2} Copy content Toggle raw display
4343 (T+26)2 (T + 26)^{2} Copy content Toggle raw display
4747 T2+30T+900 T^{2} + 30T + 900 Copy content Toggle raw display
5353 T2+363T+131769 T^{2} + 363T + 131769 Copy content Toggle raw display
5959 T2+15T+225 T^{2} + 15T + 225 Copy content Toggle raw display
6161 T2118T+13924 T^{2} - 118T + 13924 Copy content Toggle raw display
6767 T2+370T+136900 T^{2} + 370T + 136900 Copy content Toggle raw display
7171 (T342)2 (T - 342)^{2} Copy content Toggle raw display
7373 T2+362T+131044 T^{2} + 362T + 131044 Copy content Toggle raw display
7979 T2467T+218089 T^{2} - 467T + 218089 Copy content Toggle raw display
8383 (T+477)2 (T + 477)^{2} Copy content Toggle raw display
8989 T2+906T+820836 T^{2} + 906T + 820836 Copy content Toggle raw display
9797 (T503)2 (T - 503)^{2} Copy content Toggle raw display
show more
show less