Properties

Label 336.4.q.c
Level 336336
Weight 44
Character orbit 336.q
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(193,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.193"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.q (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-3,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ63)q3+11ζ6q5+(21ζ6+7)q79ζ6q9+(39ζ6+39)q1132q1333q15+(12ζ612)q1788ζ6q19+351q99+O(q100) q + (3 \zeta_{6} - 3) q^{3} + 11 \zeta_{6} q^{5} + ( - 21 \zeta_{6} + 7) q^{7} - 9 \zeta_{6} q^{9} + ( - 39 \zeta_{6} + 39) q^{11} - 32 q^{13} - 33 q^{15} + (12 \zeta_{6} - 12) q^{17} - 88 \zeta_{6} q^{19} + \cdots - 351 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q3+11q57q79q9+39q1164q1366q1512q1788q19+105q2192q23+4q25+54q27+510q2935q31+117q33+308q35+702q99+O(q100) 2 q - 3 q^{3} + 11 q^{5} - 7 q^{7} - 9 q^{9} + 39 q^{11} - 64 q^{13} - 66 q^{15} - 12 q^{17} - 88 q^{19} + 105 q^{21} - 92 q^{23} + 4 q^{25} + 54 q^{27} + 510 q^{29} - 35 q^{31} + 117 q^{33} + 308 q^{35}+ \cdots - 702 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 + 2.59808i 0 5.50000 + 9.52628i 0 −3.50000 18.1865i 0 −4.50000 7.79423i 0
289.1 0 −1.50000 2.59808i 0 5.50000 9.52628i 0 −3.50000 + 18.1865i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.q.c 2
4.b odd 2 1 168.4.q.c 2
7.c even 3 1 inner 336.4.q.c 2
7.c even 3 1 2352.4.a.y 1
7.d odd 6 1 2352.4.a.o 1
12.b even 2 1 504.4.s.a 2
28.f even 6 1 1176.4.a.n 1
28.g odd 6 1 168.4.q.c 2
28.g odd 6 1 1176.4.a.c 1
84.n even 6 1 504.4.s.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.q.c 2 4.b odd 2 1
168.4.q.c 2 28.g odd 6 1
336.4.q.c 2 1.a even 1 1 trivial
336.4.q.c 2 7.c even 3 1 inner
504.4.s.a 2 12.b even 2 1
504.4.s.a 2 84.n even 6 1
1176.4.a.c 1 28.g odd 6 1
1176.4.a.n 1 28.f even 6 1
2352.4.a.o 1 7.d odd 6 1
2352.4.a.y 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5211T5+121 T_{5}^{2} - 11T_{5} + 121 acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
55 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
77 T2+7T+343 T^{2} + 7T + 343 Copy content Toggle raw display
1111 T239T+1521 T^{2} - 39T + 1521 Copy content Toggle raw display
1313 (T+32)2 (T + 32)^{2} Copy content Toggle raw display
1717 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
1919 T2+88T+7744 T^{2} + 88T + 7744 Copy content Toggle raw display
2323 T2+92T+8464 T^{2} + 92T + 8464 Copy content Toggle raw display
2929 (T255)2 (T - 255)^{2} Copy content Toggle raw display
3131 T2+35T+1225 T^{2} + 35T + 1225 Copy content Toggle raw display
3737 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
4141 (T16)2 (T - 16)^{2} Copy content Toggle raw display
4343 (T330)2 (T - 330)^{2} Copy content Toggle raw display
4747 T2+298T+88804 T^{2} + 298T + 88804 Copy content Toggle raw display
5353 T2717T+514089 T^{2} - 717T + 514089 Copy content Toggle raw display
5959 T2+217T+47089 T^{2} + 217T + 47089 Copy content Toggle raw display
6161 T2+386T+148996 T^{2} + 386T + 148996 Copy content Toggle raw display
6767 T2906T+820836 T^{2} - 906T + 820836 Copy content Toggle raw display
7171 (T34)2 (T - 34)^{2} Copy content Toggle raw display
7373 T2838T+702244 T^{2} - 838T + 702244 Copy content Toggle raw display
7979 T21325T+1755625 T^{2} - 1325 T + 1755625 Copy content Toggle raw display
8383 (T+1163)2 (T + 1163)^{2} Copy content Toggle raw display
8989 T254T+2916 T^{2} - 54T + 2916 Copy content Toggle raw display
9797 (T7)2 (T - 7)^{2} Copy content Toggle raw display
show more
show less