gp: [N,k,chi] = [336,4,Mod(193,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.193");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-3,0,11]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 2 − 11 T 5 + 121 T_{5}^{2} - 11T_{5} + 121 T 5 2 − 1 1 T 5 + 1 2 1
T5^2 - 11*T5 + 121
acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 3 T + 9 T^{2} + 3T + 9 T 2 + 3 T + 9
T^2 + 3*T + 9
5 5 5
T 2 − 11 T + 121 T^{2} - 11T + 121 T 2 − 1 1 T + 1 2 1
T^2 - 11*T + 121
7 7 7
T 2 + 7 T + 343 T^{2} + 7T + 343 T 2 + 7 T + 3 4 3
T^2 + 7*T + 343
11 11 1 1
T 2 − 39 T + 1521 T^{2} - 39T + 1521 T 2 − 3 9 T + 1 5 2 1
T^2 - 39*T + 1521
13 13 1 3
( T + 32 ) 2 (T + 32)^{2} ( T + 3 2 ) 2
(T + 32)^2
17 17 1 7
T 2 + 12 T + 144 T^{2} + 12T + 144 T 2 + 1 2 T + 1 4 4
T^2 + 12*T + 144
19 19 1 9
T 2 + 88 T + 7744 T^{2} + 88T + 7744 T 2 + 8 8 T + 7 7 4 4
T^2 + 88*T + 7744
23 23 2 3
T 2 + 92 T + 8464 T^{2} + 92T + 8464 T 2 + 9 2 T + 8 4 6 4
T^2 + 92*T + 8464
29 29 2 9
( T − 255 ) 2 (T - 255)^{2} ( T − 2 5 5 ) 2
(T - 255)^2
31 31 3 1
T 2 + 35 T + 1225 T^{2} + 35T + 1225 T 2 + 3 5 T + 1 2 2 5
T^2 + 35*T + 1225
37 37 3 7
T 2 − 4 T + 16 T^{2} - 4T + 16 T 2 − 4 T + 1 6
T^2 - 4*T + 16
41 41 4 1
( T − 16 ) 2 (T - 16)^{2} ( T − 1 6 ) 2
(T - 16)^2
43 43 4 3
( T − 330 ) 2 (T - 330)^{2} ( T − 3 3 0 ) 2
(T - 330)^2
47 47 4 7
T 2 + 298 T + 88804 T^{2} + 298T + 88804 T 2 + 2 9 8 T + 8 8 8 0 4
T^2 + 298*T + 88804
53 53 5 3
T 2 − 717 T + 514089 T^{2} - 717T + 514089 T 2 − 7 1 7 T + 5 1 4 0 8 9
T^2 - 717*T + 514089
59 59 5 9
T 2 + 217 T + 47089 T^{2} + 217T + 47089 T 2 + 2 1 7 T + 4 7 0 8 9
T^2 + 217*T + 47089
61 61 6 1
T 2 + 386 T + 148996 T^{2} + 386T + 148996 T 2 + 3 8 6 T + 1 4 8 9 9 6
T^2 + 386*T + 148996
67 67 6 7
T 2 − 906 T + 820836 T^{2} - 906T + 820836 T 2 − 9 0 6 T + 8 2 0 8 3 6
T^2 - 906*T + 820836
71 71 7 1
( T − 34 ) 2 (T - 34)^{2} ( T − 3 4 ) 2
(T - 34)^2
73 73 7 3
T 2 − 838 T + 702244 T^{2} - 838T + 702244 T 2 − 8 3 8 T + 7 0 2 2 4 4
T^2 - 838*T + 702244
79 79 7 9
T 2 − 1325 T + 1755625 T^{2} - 1325 T + 1755625 T 2 − 1 3 2 5 T + 1 7 5 5 6 2 5
T^2 - 1325*T + 1755625
83 83 8 3
( T + 1163 ) 2 (T + 1163)^{2} ( T + 1 1 6 3 ) 2
(T + 1163)^2
89 89 8 9
T 2 − 54 T + 2916 T^{2} - 54T + 2916 T 2 − 5 4 T + 2 9 1 6
T^2 - 54*T + 2916
97 97 9 7
( T − 7 ) 2 (T - 7)^{2} ( T − 7 ) 2
(T - 7)^2
show more
show less