gp: [N,k,chi] = [336,4,Mod(193,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.193");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-3,0,-7]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 2 + 7 T 5 + 49 T_{5}^{2} + 7T_{5} + 49 T 5 2 + 7 T 5 + 4 9
T5^2 + 7*T5 + 49
acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 3 T + 9 T^{2} + 3T + 9 T 2 + 3 T + 9
T^2 + 3*T + 9
5 5 5
T 2 + 7 T + 49 T^{2} + 7T + 49 T 2 + 7 T + 4 9
T^2 + 7*T + 49
7 7 7
T 2 − 35 T + 343 T^{2} - 35T + 343 T 2 − 3 5 T + 3 4 3
T^2 - 35*T + 343
11 11 1 1
T 2 − 7 T + 49 T^{2} - 7T + 49 T 2 − 7 T + 4 9
T^2 - 7*T + 49
13 13 1 3
( T + 52 ) 2 (T + 52)^{2} ( T + 5 2 ) 2
(T + 52)^2
17 17 1 7
T 2 + 72 T + 5184 T^{2} + 72T + 5184 T 2 + 7 2 T + 5 1 8 4
T^2 + 72*T + 5184
19 19 1 9
T 2 − 20 T + 400 T^{2} - 20T + 400 T 2 − 2 0 T + 4 0 0
T^2 - 20*T + 400
23 23 2 3
T 2 + 48 T + 2304 T^{2} + 48T + 2304 T 2 + 4 8 T + 2 3 0 4
T^2 + 48*T + 2304
29 29 2 9
( T + 243 ) 2 (T + 243)^{2} ( T + 2 4 3 ) 2
(T + 243)^2
31 31 3 1
T 2 − 95 T + 9025 T^{2} - 95T + 9025 T 2 − 9 5 T + 9 0 2 5
T^2 - 95*T + 9025
37 37 3 7
T 2 + 352 T + 123904 T^{2} + 352T + 123904 T 2 + 3 5 2 T + 1 2 3 9 0 4
T^2 + 352*T + 123904
41 41 4 1
( T + 296 ) 2 (T + 296)^{2} ( T + 2 9 6 ) 2
(T + 296)^2
43 43 4 3
( T + 158 ) 2 (T + 158)^{2} ( T + 1 5 8 ) 2
(T + 158)^2
47 47 4 7
T 2 + 142 T + 20164 T^{2} + 142T + 20164 T 2 + 1 4 2 T + 2 0 1 6 4
T^2 + 142*T + 20164
53 53 5 3
T 2 − 375 T + 140625 T^{2} - 375T + 140625 T 2 − 3 7 5 T + 1 4 0 6 2 5
T^2 - 375*T + 140625
59 59 5 9
T 2 − 279 T + 77841 T^{2} - 279T + 77841 T 2 − 2 7 9 T + 7 7 8 4 1
T^2 - 279*T + 77841
61 61 6 1
T 2 + 246 T + 60516 T^{2} + 246T + 60516 T 2 + 2 4 6 T + 6 0 5 1 6
T^2 + 246*T + 60516
67 67 6 7
T 2 + 730 T + 532900 T^{2} + 730T + 532900 T 2 + 7 3 0 T + 5 3 2 9 0 0
T^2 + 730*T + 532900
71 71 7 1
( T + 338 ) 2 (T + 338)^{2} ( T + 3 3 8 ) 2
(T + 338)^2
73 73 7 3
T 2 − 542 T + 293764 T^{2} - 542T + 293764 T 2 − 5 4 2 T + 2 9 3 7 6 4
T^2 - 542*T + 293764
79 79 7 9
T 2 + 305 T + 93025 T^{2} + 305T + 93025 T 2 + 3 0 5 T + 9 3 0 2 5
T^2 + 305*T + 93025
83 83 8 3
( T + 1123 ) 2 (T + 1123)^{2} ( T + 1 1 2 3 ) 2
(T + 1123)^2
89 89 8 9
T 2 − 426 T + 181476 T^{2} - 426T + 181476 T 2 − 4 2 6 T + 1 8 1 4 7 6
T^2 - 426*T + 181476
97 97 9 7
( T + 369 ) 2 (T + 369)^{2} ( T + 3 6 9 ) 2
(T + 369)^2
show more
show less