Properties

Label 336.4.q.a
Level 336336
Weight 44
Character orbit 336.q
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(193,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.193"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.q (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-3,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ63)q37ζ6q5+(7ζ6+21)q79ζ6q9+(7ζ6+7)q1152q13+21q15+(72ζ672)q17+20ζ6q19+63q99+O(q100) q + (3 \zeta_{6} - 3) q^{3} - 7 \zeta_{6} q^{5} + ( - 7 \zeta_{6} + 21) q^{7} - 9 \zeta_{6} q^{9} + ( - 7 \zeta_{6} + 7) q^{11} - 52 q^{13} + 21 q^{15} + (72 \zeta_{6} - 72) q^{17} + 20 \zeta_{6} q^{19} + \cdots - 63 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q37q5+35q79q9+7q11104q13+42q1572q17+20q1921q2148q23+76q25+54q27486q29+95q31+21q33196q35+126q99+O(q100) 2 q - 3 q^{3} - 7 q^{5} + 35 q^{7} - 9 q^{9} + 7 q^{11} - 104 q^{13} + 42 q^{15} - 72 q^{17} + 20 q^{19} - 21 q^{21} - 48 q^{23} + 76 q^{25} + 54 q^{27} - 486 q^{29} + 95 q^{31} + 21 q^{33} - 196 q^{35}+ \cdots - 126 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 + 2.59808i 0 −3.50000 6.06218i 0 17.5000 6.06218i 0 −4.50000 7.79423i 0
289.1 0 −1.50000 2.59808i 0 −3.50000 + 6.06218i 0 17.5000 + 6.06218i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.q.a 2
4.b odd 2 1 168.4.q.a 2
7.c even 3 1 inner 336.4.q.a 2
7.c even 3 1 2352.4.a.bg 1
7.d odd 6 1 2352.4.a.c 1
12.b even 2 1 504.4.s.e 2
28.f even 6 1 1176.4.a.i 1
28.g odd 6 1 168.4.q.a 2
28.g odd 6 1 1176.4.a.f 1
84.n even 6 1 504.4.s.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.q.a 2 4.b odd 2 1
168.4.q.a 2 28.g odd 6 1
336.4.q.a 2 1.a even 1 1 trivial
336.4.q.a 2 7.c even 3 1 inner
504.4.s.e 2 12.b even 2 1
504.4.s.e 2 84.n even 6 1
1176.4.a.f 1 28.g odd 6 1
1176.4.a.i 1 28.f even 6 1
2352.4.a.c 1 7.d odd 6 1
2352.4.a.bg 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+7T5+49 T_{5}^{2} + 7T_{5} + 49 acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
55 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
77 T235T+343 T^{2} - 35T + 343 Copy content Toggle raw display
1111 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
1313 (T+52)2 (T + 52)^{2} Copy content Toggle raw display
1717 T2+72T+5184 T^{2} + 72T + 5184 Copy content Toggle raw display
1919 T220T+400 T^{2} - 20T + 400 Copy content Toggle raw display
2323 T2+48T+2304 T^{2} + 48T + 2304 Copy content Toggle raw display
2929 (T+243)2 (T + 243)^{2} Copy content Toggle raw display
3131 T295T+9025 T^{2} - 95T + 9025 Copy content Toggle raw display
3737 T2+352T+123904 T^{2} + 352T + 123904 Copy content Toggle raw display
4141 (T+296)2 (T + 296)^{2} Copy content Toggle raw display
4343 (T+158)2 (T + 158)^{2} Copy content Toggle raw display
4747 T2+142T+20164 T^{2} + 142T + 20164 Copy content Toggle raw display
5353 T2375T+140625 T^{2} - 375T + 140625 Copy content Toggle raw display
5959 T2279T+77841 T^{2} - 279T + 77841 Copy content Toggle raw display
6161 T2+246T+60516 T^{2} + 246T + 60516 Copy content Toggle raw display
6767 T2+730T+532900 T^{2} + 730T + 532900 Copy content Toggle raw display
7171 (T+338)2 (T + 338)^{2} Copy content Toggle raw display
7373 T2542T+293764 T^{2} - 542T + 293764 Copy content Toggle raw display
7979 T2+305T+93025 T^{2} + 305T + 93025 Copy content Toggle raw display
8383 (T+1123)2 (T + 1123)^{2} Copy content Toggle raw display
8989 T2426T+181476 T^{2} - 426T + 181476 Copy content Toggle raw display
9797 (T+369)2 (T + 369)^{2} Copy content Toggle raw display
show more
show less