Properties

Label 336.4.k.a
Level 336336
Weight 44
Character orbit 336.k
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(209,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.k (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 23 2\cdot 3
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=33\beta = 3\sqrt{-3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq3+(3β+10)q727q9+12βq13+30βq19+(10β+81)q21125q2527βq27+30βq31110q37324q39520q43++264βq97+O(q100) q + \beta q^{3} + ( - 3 \beta + 10) q^{7} - 27 q^{9} + 12 \beta q^{13} + 30 \beta q^{19} + (10 \beta + 81) q^{21} - 125 q^{25} - 27 \beta q^{27} + 30 \beta q^{31} - 110 q^{37} - 324 q^{39} - 520 q^{43} + \cdots + 264 \beta q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+20q754q9+162q21250q25220q37648q391040q43286q491620q57540q63+1760q671768q79+1458q81+1944q911620q93+O(q100) 2 q + 20 q^{7} - 54 q^{9} + 162 q^{21} - 250 q^{25} - 220 q^{37} - 648 q^{39} - 1040 q^{43} - 286 q^{49} - 1620 q^{57} - 540 q^{63} + 1760 q^{67} - 1768 q^{79} + 1458 q^{81} + 1944 q^{91} - 1620 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
209.1
0.500000 0.866025i
0.500000 + 0.866025i
0 5.19615i 0 0 0 10.0000 + 15.5885i 0 −27.0000 0
209.2 0 5.19615i 0 0 0 10.0000 15.5885i 0 −27.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.k.a 2
3.b odd 2 1 CM 336.4.k.a 2
4.b odd 2 1 21.4.c.a 2
7.b odd 2 1 inner 336.4.k.a 2
12.b even 2 1 21.4.c.a 2
21.c even 2 1 inner 336.4.k.a 2
28.d even 2 1 21.4.c.a 2
28.f even 6 1 147.4.g.a 2
28.f even 6 1 147.4.g.b 2
28.g odd 6 1 147.4.g.a 2
28.g odd 6 1 147.4.g.b 2
84.h odd 2 1 21.4.c.a 2
84.j odd 6 1 147.4.g.a 2
84.j odd 6 1 147.4.g.b 2
84.n even 6 1 147.4.g.a 2
84.n even 6 1 147.4.g.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.c.a 2 4.b odd 2 1
21.4.c.a 2 12.b even 2 1
21.4.c.a 2 28.d even 2 1
21.4.c.a 2 84.h odd 2 1
147.4.g.a 2 28.f even 6 1
147.4.g.a 2 28.g odd 6 1
147.4.g.a 2 84.j odd 6 1
147.4.g.a 2 84.n even 6 1
147.4.g.b 2 28.f even 6 1
147.4.g.b 2 28.g odd 6 1
147.4.g.b 2 84.j odd 6 1
147.4.g.b 2 84.n even 6 1
336.4.k.a 2 1.a even 1 1 trivial
336.4.k.a 2 3.b odd 2 1 CM
336.4.k.a 2 7.b odd 2 1 inner
336.4.k.a 2 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5 T_{5} acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+27 T^{2} + 27 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T220T+343 T^{2} - 20T + 343 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+3888 T^{2} + 3888 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+24300 T^{2} + 24300 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+24300 T^{2} + 24300 Copy content Toggle raw display
3737 (T+110)2 (T + 110)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T+520)2 (T + 520)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+874800 T^{2} + 874800 Copy content Toggle raw display
6767 (T880)2 (T - 880)^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+139968 T^{2} + 139968 Copy content Toggle raw display
7979 (T+884)2 (T + 884)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+1881792 T^{2} + 1881792 Copy content Toggle raw display
show more
show less