Properties

Label 336.4.h.a
Level 336336
Weight 44
Character orbit 336.h
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(239,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.239"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.h (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+152x10+8222x8+194132x6+1882697x4+5152508x2+4008004 x^{12} + 152x^{10} + 8222x^{8} + 194132x^{6} + 1882697x^{4} + 5152508x^{2} + 4008004 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 273274 2^{7}\cdot 3^{2}\cdot 7^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ5q3+β8q5β1q7+(β2+6)q9+(β9+β6+3β5+β1)q11+(β3β28)q13+(β9+3β7+2β1)q15++(15β9+15β6+111β1)q99+O(q100) q - \beta_{5} q^{3} + \beta_{8} q^{5} - \beta_1 q^{7} + ( - \beta_{2} + 6) q^{9} + (\beta_{9} + \beta_{6} + 3 \beta_{5} + \beta_1) q^{11} + ( - \beta_{3} - \beta_{2} - 8) q^{13} + (\beta_{9} + 3 \beta_{7} + \cdots - 2 \beta_1) q^{15}+ \cdots + (15 \beta_{9} + 15 \beta_{6} + \cdots - 111 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+76q996q13+112q211068q25832q33720q37+392q45588q492336q57+432q61424q69+1656q73868q811464q85+696q936264q97+O(q100) 12 q + 76 q^{9} - 96 q^{13} + 112 q^{21} - 1068 q^{25} - 832 q^{33} - 720 q^{37} + 392 q^{45} - 588 q^{49} - 2336 q^{57} + 432 q^{61} - 424 q^{69} + 1656 q^{73} - 868 q^{81} - 1464 q^{85} + 696 q^{93} - 6264 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+152x10+8222x8+194132x6+1882697x4+5152508x2+4008004 x^{12} + 152x^{10} + 8222x^{8} + 194132x^{6} + 1882697x^{4} + 5152508x^{2} + 4008004 : Copy content Toggle raw display

β1\beta_{1}== (25835ν11663660ν9+233331932ν7+14784806206ν5++1258402345082ν)/152656104744 ( - 25835 \nu^{11} - 663660 \nu^{9} + 233331932 \nu^{7} + 14784806206 \nu^{5} + \cdots + 1258402345082 \nu ) / 152656104744 Copy content Toggle raw display
β2\beta_{2}== (11075ν1181642ν10+1831163ν915354372ν8+110542037ν7+333587622676)/4566635612 ( 11075 \nu^{11} - 81642 \nu^{10} + 1831163 \nu^{9} - 15354372 \nu^{8} + 110542037 \nu^{7} + \cdots - 333587622676 ) / 4566635612 Copy content Toggle raw display
β3\beta_{3}== (33225ν11+427768ν105493489ν9+47224804ν8331626111ν7++420228241972)/13699906836 ( - 33225 \nu^{11} + 427768 \nu^{10} - 5493489 \nu^{9} + 47224804 \nu^{8} - 331626111 \nu^{7} + \cdots + 420228241972 ) / 13699906836 Copy content Toggle raw display
β4\beta_{4}== (1960682ν11+82836182ν10356890329ν9+11268239697ν8++79758915468232)/534296366604 ( - 1960682 \nu^{11} + 82836182 \nu^{10} - 356890329 \nu^{9} + 11268239697 \nu^{8} + \cdots + 79758915468232 ) / 534296366604 Copy content Toggle raw display
β5\beta_{5}== (465665ν11247214ν10+70293516ν945174954ν8+3735683236ν7+1423599464980)/82199441016 ( 465665 \nu^{11} - 247214 \nu^{10} + 70293516 \nu^{9} - 45174954 \nu^{8} + 3735683236 \nu^{7} + \cdots - 1423599464980 ) / 82199441016 Copy content Toggle raw display
β6\beta_{6}== (465665ν11+5913864ν10+70293516ν9+828220206ν8++11961336451680)/82199441016 ( 465665 \nu^{11} + 5913864 \nu^{10} + 70293516 \nu^{9} + 828220206 \nu^{8} + \cdots + 11961336451680 ) / 82199441016 Copy content Toggle raw display
β7\beta_{7}== (10318207ν11+3213782ν10+1313885808ν9+587274402ν8++18506793044740)/1068592733208 ( 10318207 \nu^{11} + 3213782 \nu^{10} + 1313885808 \nu^{9} + 587274402 \nu^{8} + \cdots + 18506793044740 ) / 1068592733208 Copy content Toggle raw display
β8\beta_{8}== (253923ν11+36440350ν9+1823770458ν7+39066975904ν5++412302833662ν)/16190798988 ( 253923 \nu^{11} + 36440350 \nu^{9} + 1823770458 \nu^{7} + 39066975904 \nu^{5} + \cdots + 412302833662 \nu ) / 16190798988 Copy content Toggle raw display
β9\beta_{9}== (2184885ν11584324ν10331874292ν9106777164ν8+3364871462680)/97144793928 ( - 2184885 \nu^{11} - 584324 \nu^{10} - 331874292 \nu^{9} - 106777164 \nu^{8} + \cdots - 3364871462680 ) / 97144793928 Copy content Toggle raw display
β10\beta_{10}== (9393673ν11+10740587ν101394772549ν9+1804012496ν8++35078177994860)/178098788868 ( - 9393673 \nu^{11} + 10740587 \nu^{10} - 1394772549 \nu^{9} + 1804012496 \nu^{8} + \cdots + 35078177994860 ) / 178098788868 Copy content Toggle raw display
β11\beta_{11}== (9825598ν11+7556549ν10+1466187906ν9+1205191988ν8++22068260710496)/178098788868 ( 9825598 \nu^{11} + 7556549 \nu^{10} + 1466187906 \nu^{9} + 1205191988 \nu^{8} + \cdots + 22068260710496 ) / 178098788868 Copy content Toggle raw display
ν\nu== (4β112β10+7β96β814β5β3+β2+β1+2)/42 ( 4\beta_{11} - 2\beta_{10} + 7\beta_{9} - 6\beta_{8} - 14\beta_{5} - \beta_{3} + \beta_{2} + \beta _1 + 2 ) / 42 Copy content Toggle raw display
ν2\nu^{2}== (4β114β103β9+3β7+18β639β56β4+1064)/42 ( - 4 \beta_{11} - 4 \beta_{10} - 3 \beta_{9} + 3 \beta_{7} + 18 \beta_{6} - 39 \beta_{5} - 6 \beta_{4} + \cdots - 1064 ) / 42 Copy content Toggle raw display
ν3\nu^{3}== (194β11+76β10343β9+144β8+84β7+770β5+118)/42 ( - 194 \beta_{11} + 76 \beta_{10} - 343 \beta_{9} + 144 \beta_{8} + 84 \beta_{7} + 770 \beta_{5} + \cdots - 118 ) / 42 Copy content Toggle raw display
ν4\nu^{4}== (153β11+153β10+172β932β7360β6+1144β5++15540)/14 ( 153 \beta_{11} + 153 \beta_{10} + 172 \beta_{9} - 32 \beta_{7} - 360 \beta_{6} + 1144 \beta_{5} + \cdots + 15540 ) / 14 Copy content Toggle raw display
ν5\nu^{5}== (11134β113152β10+18949β95340β85964β743862β5++7982)/42 ( 11134 \beta_{11} - 3152 \beta_{10} + 18949 \beta_{9} - 5340 \beta_{8} - 5964 \beta_{7} - 43862 \beta_{5} + \cdots + 7982 ) / 42 Copy content Toggle raw display
ν6\nu^{6}== (35698β1135698β1048717β9+2853β7+63990β6+2414804)/42 ( - 35698 \beta_{11} - 35698 \beta_{10} - 48717 \beta_{9} + 2853 \beta_{7} + 63990 \beta_{6} + \cdots - 2414804 ) / 42 Copy content Toggle raw display
ν7\nu^{7}== (676904β11+149410β101114855β9+266244β8+383670β7+527494)/42 ( - 676904 \beta_{11} + 149410 \beta_{10} - 1114855 \beta_{9} + 266244 \beta_{8} + 383670 \beta_{7} + \cdots - 527494 ) / 42 Copy content Toggle raw display
ν8\nu^{8}== (831543β11+831543β10+1242088β924928β71299696β6++45860500)/14 ( 831543 \beta_{11} + 831543 \beta_{10} + 1242088 \beta_{9} - 24928 \beta_{7} - 1299696 \beta_{6} + \cdots + 45860500 ) / 14 Copy content Toggle raw display
ν9\nu^{9}== (42318904β117917818β10+68114557β915612804β824483522β7++34401086)/42 ( 42318904 \beta_{11} - 7917818 \beta_{10} + 68114557 \beta_{9} - 15612804 \beta_{8} - 24483522 \beta_{7} + \cdots + 34401086 ) / 42 Copy content Toggle raw display
ν10\nu^{10}== (167007082β11167007082β10260652747β9+1081491β7+8285451524)/42 ( - 167007082 \beta_{11} - 167007082 \beta_{10} - 260652747 \beta_{9} + 1081491 \beta_{7} + \cdots - 8285451524 ) / 42 Copy content Toggle raw display
ν11\nu^{11}== (2682632054β11+454103344β104255592215β9+978049092β8+2228528710)/42 ( - 2682632054 \beta_{11} + 454103344 \beta_{10} - 4255592215 \beta_{9} + 978049092 \beta_{8} + \cdots - 2228528710 ) / 42 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
239.1
4.19902i
4.19902i
8.01905i
8.01905i
1.52642i
1.52642i
5.90052i
5.90052i
1.17553i
1.17553i
5.61561i
5.61561i
0 −4.90731 1.70829i 0 20.5781i 0 7.00000i 0 21.1635 + 16.7663i 0
239.2 0 −4.90731 + 1.70829i 0 20.5781i 0 7.00000i 0 21.1635 16.7663i 0
239.3 0 −4.59729 2.42176i 0 2.41112i 0 7.00000i 0 15.2701 + 22.2671i 0
239.4 0 −4.59729 + 2.42176i 0 2.41112i 0 7.00000i 0 15.2701 22.2671i 0
239.5 0 −2.18705 4.71347i 0 14.5852i 0 7.00000i 0 −17.4336 + 20.6172i 0
239.6 0 −2.18705 + 4.71347i 0 14.5852i 0 7.00000i 0 −17.4336 20.6172i 0
239.7 0 2.18705 4.71347i 0 14.5852i 0 7.00000i 0 −17.4336 20.6172i 0
239.8 0 2.18705 + 4.71347i 0 14.5852i 0 7.00000i 0 −17.4336 + 20.6172i 0
239.9 0 4.59729 2.42176i 0 2.41112i 0 7.00000i 0 15.2701 22.2671i 0
239.10 0 4.59729 + 2.42176i 0 2.41112i 0 7.00000i 0 15.2701 + 22.2671i 0
239.11 0 4.90731 1.70829i 0 20.5781i 0 7.00000i 0 21.1635 16.7663i 0
239.12 0 4.90731 + 1.70829i 0 20.5781i 0 7.00000i 0 21.1635 + 16.7663i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.h.a 12
3.b odd 2 1 inner 336.4.h.a 12
4.b odd 2 1 inner 336.4.h.a 12
12.b even 2 1 inner 336.4.h.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.h.a 12 1.a even 1 1 trivial
336.4.h.a 12 3.b odd 2 1 inner
336.4.h.a 12 4.b odd 2 1 inner
336.4.h.a 12 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T56+642T54+93780T52+523688 T_{5}^{6} + 642T_{5}^{4} + 93780T_{5}^{2} + 523688 acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12++387420489 T^{12} + \cdots + 387420489 Copy content Toggle raw display
55 (T6+642T4++523688)2 (T^{6} + 642 T^{4} + \cdots + 523688)^{2} Copy content Toggle raw display
77 (T2+49)6 (T^{2} + 49)^{6} Copy content Toggle raw display
1111 (T66474T4+5604950432)2 (T^{6} - 6474 T^{4} + \cdots - 5604950432)^{2} Copy content Toggle raw display
1313 (T3+24T2+78284)4 (T^{3} + 24 T^{2} + \cdots - 78284)^{4} Copy content Toggle raw display
1717 (T6+14634T4++24639286688)2 (T^{6} + 14634 T^{4} + \cdots + 24639286688)^{2} Copy content Toggle raw display
1919 (T6+14568T4++22072450624)2 (T^{6} + 14568 T^{4} + \cdots + 22072450624)^{2} Copy content Toggle raw display
2323 (T628386T4+344672294528)2 (T^{6} - 28386 T^{4} + \cdots - 344672294528)^{2} Copy content Toggle raw display
2929 (T6+38064T4++301614442112)2 (T^{6} + 38064 T^{4} + \cdots + 301614442112)^{2} Copy content Toggle raw display
3131 (T6+20100T4++15017031936)2 (T^{6} + 20100 T^{4} + \cdots + 15017031936)^{2} Copy content Toggle raw display
3737 (T3+180T2+2562416)4 (T^{3} + 180 T^{2} + \cdots - 2562416)^{4} Copy content Toggle raw display
4141 (T6++185103027240608)2 (T^{6} + \cdots + 185103027240608)^{2} Copy content Toggle raw display
4343 (T6++585026061785344)2 (T^{6} + \cdots + 585026061785344)^{2} Copy content Toggle raw display
4747 (T6+513493070118912)2 (T^{6} + \cdots - 513493070118912)^{2} Copy content Toggle raw display
5353 (T6++18 ⁣ ⁣68)2 (T^{6} + \cdots + 18\!\cdots\!68)^{2} Copy content Toggle raw display
5959 (T6472464T4+99385006592)2 (T^{6} - 472464 T^{4} + \cdots - 99385006592)^{2} Copy content Toggle raw display
6161 (T3108T2++9896868)4 (T^{3} - 108 T^{2} + \cdots + 9896868)^{4} Copy content Toggle raw display
6767 (T6++34 ⁣ ⁣84)2 (T^{6} + \cdots + 34\!\cdots\!84)^{2} Copy content Toggle raw display
7171 (T6+206806281826208)2 (T^{6} + \cdots - 206806281826208)^{2} Copy content Toggle raw display
7373 (T3414T2++277691624)4 (T^{3} - 414 T^{2} + \cdots + 277691624)^{4} Copy content Toggle raw display
7979 (T6++98 ⁣ ⁣56)2 (T^{6} + \cdots + 98\!\cdots\!56)^{2} Copy content Toggle raw display
8383 (T6+12 ⁣ ⁣68)2 (T^{6} + \cdots - 12\!\cdots\!68)^{2} Copy content Toggle raw display
8989 (T6+622794T4++141902464928)2 (T^{6} + 622794 T^{4} + \cdots + 141902464928)^{2} Copy content Toggle raw display
9797 (T3+1566T2++117443368)4 (T^{3} + 1566 T^{2} + \cdots + 117443368)^{4} Copy content Toggle raw display
show more
show less