gp: [N,k,chi] = [336,4,Mod(239,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.239");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 + 152 x 10 + 8222 x 8 + 194132 x 6 + 1882697 x 4 + 5152508 x 2 + 4008004 x^{12} + 152x^{10} + 8222x^{8} + 194132x^{6} + 1882697x^{4} + 5152508x^{2} + 4008004 x 1 2 + 1 5 2 x 1 0 + 8 2 2 2 x 8 + 1 9 4 1 3 2 x 6 + 1 8 8 2 6 9 7 x 4 + 5 1 5 2 5 0 8 x 2 + 4 0 0 8 0 0 4
x^12 + 152*x^10 + 8222*x^8 + 194132*x^6 + 1882697*x^4 + 5152508*x^2 + 4008004
:
β 1 \beta_{1} β 1 = = =
( − 25835 ν 11 − 663660 ν 9 + 233331932 ν 7 + 14784806206 ν 5 + ⋯ + 1258402345082 ν ) / 152656104744 ( - 25835 \nu^{11} - 663660 \nu^{9} + 233331932 \nu^{7} + 14784806206 \nu^{5} + \cdots + 1258402345082 \nu ) / 152656104744 ( − 2 5 8 3 5 ν 1 1 − 6 6 3 6 6 0 ν 9 + 2 3 3 3 3 1 9 3 2 ν 7 + 1 4 7 8 4 8 0 6 2 0 6 ν 5 + ⋯ + 1 2 5 8 4 0 2 3 4 5 0 8 2 ν ) / 1 5 2 6 5 6 1 0 4 7 4 4
(-25835*v^11 - 663660*v^9 + 233331932*v^7 + 14784806206*v^5 + 272808035391*v^3 + 1258402345082*v) / 152656104744
β 2 \beta_{2} β 2 = = =
( 11075 ν 11 − 81642 ν 10 + 1831163 ν 9 − 15354372 ν 8 + 110542037 ν 7 + ⋯ − 333587622676 ) / 4566635612 ( 11075 \nu^{11} - 81642 \nu^{10} + 1831163 \nu^{9} - 15354372 \nu^{8} + 110542037 \nu^{7} + \cdots - 333587622676 ) / 4566635612 ( 1 1 0 7 5 ν 1 1 − 8 1 6 4 2 ν 1 0 + 1 8 3 1 1 6 3 ν 9 − 1 5 3 5 4 3 7 2 ν 8 + 1 1 0 5 4 2 0 3 7 ν 7 + ⋯ − 3 3 3 5 8 7 6 2 2 6 7 6 ) / 4 5 6 6 6 3 5 6 1 2
(11075*v^11 - 81642*v^10 + 1831163*v^9 - 15354372*v^8 + 110542037*v^7 - 1002264802*v^6 + 3016463563*v^5 - 26413350216*v^4 + 36258659442*v^3 - 245395469352*v^2 + 131131719184*v - 333587622676) / 4566635612
β 3 \beta_{3} β 3 = = =
( − 33225 ν 11 + 427768 ν 10 − 5493489 ν 9 + 47224804 ν 8 − 331626111 ν 7 + ⋯ + 420228241972 ) / 13699906836 ( - 33225 \nu^{11} + 427768 \nu^{10} - 5493489 \nu^{9} + 47224804 \nu^{8} - 331626111 \nu^{7} + \cdots + 420228241972 ) / 13699906836 ( − 3 3 2 2 5 ν 1 1 + 4 2 7 7 6 8 ν 1 0 − 5 4 9 3 4 8 9 ν 9 + 4 7 2 2 4 8 0 4 ν 8 − 3 3 1 6 2 6 1 1 1 ν 7 + ⋯ + 4 2 0 2 2 8 2 4 1 9 7 2 ) / 1 3 6 9 9 9 0 6 8 3 6
(-33225*v^11 + 427768*v^10 - 5493489*v^9 + 47224804*v^8 - 331626111*v^7 + 1461277048*v^6 - 9049390689*v^5 + 13371095848*v^4 - 108775978326*v^3 + 61211427904*v^2 - 393395157552*v + 420228241972) / 13699906836
β 4 \beta_{4} β 4 = = =
( − 1960682 ν 11 + 82836182 ν 10 − 356890329 ν 9 + 11268239697 ν 8 + ⋯ + 79758915468232 ) / 534296366604 ( - 1960682 \nu^{11} + 82836182 \nu^{10} - 356890329 \nu^{9} + 11268239697 \nu^{8} + \cdots + 79758915468232 ) / 534296366604 ( − 1 9 6 0 6 8 2 ν 1 1 + 8 2 8 3 6 1 8 2 ν 1 0 − 3 5 6 8 9 0 3 2 9 ν 9 + 1 1 2 6 8 2 3 9 6 9 7 ν 8 + ⋯ + 7 9 7 5 8 9 1 5 4 6 8 2 3 2 ) / 5 3 4 2 9 6 3 6 6 6 0 4
(-1960682*v^11 + 82836182*v^10 - 356890329*v^9 + 11268239697*v^8 - 22932451609*v^7 + 519686539372*v^6 - 608627339477*v^5 + 9934149962165*v^4 - 5757508799817*v^3 + 70963309344642*v^2 - 5037235696882*v + 79758915468232) / 534296366604
β 5 \beta_{5} β 5 = = =
( 465665 ν 11 − 247214 ν 10 + 70293516 ν 9 − 45174954 ν 8 + 3735683236 ν 7 + ⋯ − 1423599464980 ) / 82199441016 ( 465665 \nu^{11} - 247214 \nu^{10} + 70293516 \nu^{9} - 45174954 \nu^{8} + 3735683236 \nu^{7} + \cdots - 1423599464980 ) / 82199441016 ( 4 6 5 6 6 5 ν 1 1 − 2 4 7 2 1 4 ν 1 0 + 7 0 2 9 3 5 1 6 ν 9 − 4 5 1 7 4 9 5 4 ν 8 + 3 7 3 5 6 8 3 2 3 6 ν 7 + ⋯ − 1 4 2 3 5 9 9 4 6 4 9 8 0 ) / 8 2 1 9 9 4 4 1 0 1 6
(465665*v^11 - 247214*v^10 + 70293516*v^9 - 45174954*v^8 + 3735683236*v^7 - 2969047312*v^6 + 84349141874*v^5 - 82883803046*v^4 + 721869749607*v^3 - 865719051714*v^2 + 1015402744858*v - 1423599464980) / 82199441016
β 6 \beta_{6} β 6 = = =
( 465665 ν 11 + 5913864 ν 10 + 70293516 ν 9 + 828220206 ν 8 + ⋯ + 11961336451680 ) / 82199441016 ( 465665 \nu^{11} + 5913864 \nu^{10} + 70293516 \nu^{9} + 828220206 \nu^{8} + \cdots + 11961336451680 ) / 82199441016 ( 4 6 5 6 6 5 ν 1 1 + 5 9 1 3 8 6 4 ν 1 0 + 7 0 2 9 3 5 1 6 ν 9 + 8 2 8 2 2 0 2 0 6 ν 8 + ⋯ + 1 1 9 6 1 3 3 6 4 5 1 6 8 0 ) / 8 2 1 9 9 4 4 1 0 1 6
(465665*v^11 + 5913864*v^10 + 70293516*v^9 + 828220206*v^8 + 3735683236*v^7 + 39696452796*v^6 + 84349141874*v^5 + 790602608598*v^4 + 721869749607*v^3 + 6061899930900*v^2 + 1015402744858*v + 11961336451680) / 82199441016
β 7 \beta_{7} β 7 = = =
( 10318207 ν 11 + 3213782 ν 10 + 1313885808 ν 9 + 587274402 ν 8 + ⋯ + 18506793044740 ) / 1068592733208 ( 10318207 \nu^{11} + 3213782 \nu^{10} + 1313885808 \nu^{9} + 587274402 \nu^{8} + \cdots + 18506793044740 ) / 1068592733208 ( 1 0 3 1 8 2 0 7 ν 1 1 + 3 2 1 3 7 8 2 ν 1 0 + 1 3 1 3 8 8 5 8 0 8 ν 9 + 5 8 7 2 7 4 4 0 2 ν 8 + ⋯ + 1 8 5 0 6 7 9 3 0 4 4 7 4 0 ) / 1 0 6 8 5 9 2 7 3 3 2 0 8
(10318207*v^11 + 3213782*v^10 + 1313885808*v^9 + 587274402*v^8 + 53961839768*v^7 + 38597615056*v^6 + 855107175178*v^5 + 1077489439598*v^4 + 5122885035405*v^3 + 11254347672282*v^2 + 19451764261934*v + 18506793044740) / 1068592733208
β 8 \beta_{8} β 8 = = =
( 253923 ν 11 + 36440350 ν 9 + 1823770458 ν 7 + 39066975904 ν 5 + ⋯ + 412302833662 ν ) / 16190798988 ( 253923 \nu^{11} + 36440350 \nu^{9} + 1823770458 \nu^{7} + 39066975904 \nu^{5} + \cdots + 412302833662 \nu ) / 16190798988 ( 2 5 3 9 2 3 ν 1 1 + 3 6 4 4 0 3 5 0 ν 9 + 1 8 2 3 7 7 0 4 5 8 ν 7 + 3 9 0 6 6 9 7 5 9 0 4 ν 5 + ⋯ + 4 1 2 3 0 2 8 3 3 6 6 2 ν ) / 1 6 1 9 0 7 9 8 9 8 8
(253923*v^11 + 36440350*v^9 + 1823770458*v^7 + 39066975904*v^5 + 324933491115*v^3 + 412302833662*v) / 16190798988
β 9 \beta_{9} β 9 = = =
( − 2184885 ν 11 − 584324 ν 10 − 331874292 ν 9 − 106777164 ν 8 + ⋯ − 3364871462680 ) / 97144793928 ( - 2184885 \nu^{11} - 584324 \nu^{10} - 331874292 \nu^{9} - 106777164 \nu^{8} + \cdots - 3364871462680 ) / 97144793928 ( − 2 1 8 4 8 8 5 ν 1 1 − 5 8 4 3 2 4 ν 1 0 − 3 3 1 8 7 4 2 9 2 ν 9 − 1 0 6 7 7 7 1 6 4 ν 8 + ⋯ − 3 3 6 4 8 7 1 4 6 2 6 8 0 ) / 9 7 1 4 4 7 9 3 9 2 8
(-2184885*v^11 - 584324*v^10 - 331874292*v^9 - 106777164*v^8 - 17808077436*v^7 - 7017748192*v^6 - 408149910990*v^5 - 195907170836*v^4 - 3586080293391*v^3 - 2046245031324*v^2 - 5600887195290*v - 3364871462680) / 97144793928
β 10 \beta_{10} β 1 0 = = =
( − 9393673 ν 11 + 10740587 ν 10 − 1394772549 ν 9 + 1804012496 ν 8 + ⋯ + 35078177994860 ) / 178098788868 ( - 9393673 \nu^{11} + 10740587 \nu^{10} - 1394772549 \nu^{9} + 1804012496 \nu^{8} + \cdots + 35078177994860 ) / 178098788868 ( − 9 3 9 3 6 7 3 ν 1 1 + 1 0 7 4 0 5 8 7 ν 1 0 − 1 3 9 4 7 7 2 5 4 9 ν 9 + 1 8 0 4 0 1 2 4 9 6 ν 8 + ⋯ + 3 5 0 7 8 1 7 7 9 9 4 8 6 0 ) / 1 7 8 0 9 8 7 8 8 8 6 8
(-9393673*v^11 + 10740587*v^10 - 1394772549*v^9 + 1804012496*v^8 - 72680418595*v^7 + 107219119007*v^6 - 1608638914983*v^5 + 2662213769072*v^4 - 13426814594356*v^3 + 24323932543196*v^2 - 17536296677124*v + 35078177994860) / 178098788868
β 11 \beta_{11} β 1 1 = = =
( 9825598 ν 11 + 7556549 ν 10 + 1466187906 ν 9 + 1205191988 ν 8 + ⋯ + 22068260710496 ) / 178098788868 ( 9825598 \nu^{11} + 7556549 \nu^{10} + 1466187906 \nu^{9} + 1205191988 \nu^{8} + \cdots + 22068260710496 ) / 178098788868 ( 9 8 2 5 5 9 8 ν 1 1 + 7 5 5 6 5 4 9 ν 1 0 + 1 4 6 6 1 8 7 9 0 6 ν 9 + 1 2 0 5 1 9 1 9 8 8 ν 8 + ⋯ + 2 2 0 6 8 2 6 0 7 1 0 4 9 6 ) / 1 7 8 0 9 8 7 8 8 8 6 8
(9825598*v^11 + 7556549*v^10 + 1466187906*v^9 + 1205191988*v^8 + 76991558038*v^7 + 68130791729*v^6 + 1726280993940*v^5 + 1632093110648*v^4 + 14840902312594*v^3 + 14753509238468*v^2 + 22650433725300*v + 22068260710496) / 178098788868
ν \nu ν = = =
( 4 β 11 − 2 β 10 + 7 β 9 − 6 β 8 − 14 β 5 − β 3 + β 2 + β 1 + 2 ) / 42 ( 4\beta_{11} - 2\beta_{10} + 7\beta_{9} - 6\beta_{8} - 14\beta_{5} - \beta_{3} + \beta_{2} + \beta _1 + 2 ) / 42 ( 4 β 1 1 − 2 β 1 0 + 7 β 9 − 6 β 8 − 1 4 β 5 − β 3 + β 2 + β 1 + 2 ) / 4 2
(4*b11 - 2*b10 + 7*b9 - 6*b8 - 14*b5 - b3 + b2 + b1 + 2) / 42
ν 2 \nu^{2} ν 2 = = =
( − 4 β 11 − 4 β 10 − 3 β 9 + 3 β 7 + 18 β 6 − 39 β 5 − 6 β 4 + ⋯ − 1064 ) / 42 ( - 4 \beta_{11} - 4 \beta_{10} - 3 \beta_{9} + 3 \beta_{7} + 18 \beta_{6} - 39 \beta_{5} - 6 \beta_{4} + \cdots - 1064 ) / 42 ( − 4 β 1 1 − 4 β 1 0 − 3 β 9 + 3 β 7 + 1 8 β 6 − 3 9 β 5 − 6 β 4 + ⋯ − 1 0 6 4 ) / 4 2
(-4*b11 - 4*b10 - 3*b9 + 3*b7 + 18*b6 - 39*b5 - 6*b4 - 2*b3 + 2*b2 - 3*b1 - 1064) / 42
ν 3 \nu^{3} ν 3 = = =
( − 194 β 11 + 76 β 10 − 343 β 9 + 144 β 8 + 84 β 7 + 770 β 5 + ⋯ − 118 ) / 42 ( - 194 \beta_{11} + 76 \beta_{10} - 343 \beta_{9} + 144 \beta_{8} + 84 \beta_{7} + 770 \beta_{5} + \cdots - 118 ) / 42 ( − 1 9 4 β 1 1 + 7 6 β 1 0 − 3 4 3 β 9 + 1 4 4 β 8 + 8 4 β 7 + 7 7 0 β 5 + ⋯ − 1 1 8 ) / 4 2
(-194*b11 + 76*b10 - 343*b9 + 144*b8 + 84*b7 + 770*b5 + 59*b3 - 101*b2 + 275*b1 - 118) / 42
ν 4 \nu^{4} ν 4 = = =
( 153 β 11 + 153 β 10 + 172 β 9 − 32 β 7 − 360 β 6 + 1144 β 5 + ⋯ + 15540 ) / 14 ( 153 \beta_{11} + 153 \beta_{10} + 172 \beta_{9} - 32 \beta_{7} - 360 \beta_{6} + 1144 \beta_{5} + \cdots + 15540 ) / 14 ( 1 5 3 β 1 1 + 1 5 3 β 1 0 + 1 7 2 β 9 − 3 2 β 7 − 3 6 0 β 6 + 1 1 4 4 β 5 + ⋯ + 1 5 5 4 0 ) / 1 4
(153*b11 + 153*b10 + 172*b9 - 32*b7 - 360*b6 + 1144*b5 + 64*b4 + 157*b3 + 4*b2 + 172*b1 + 15540) / 14
ν 5 \nu^{5} ν 5 = = =
( 11134 β 11 − 3152 β 10 + 18949 β 9 − 5340 β 8 − 5964 β 7 − 43862 β 5 + ⋯ + 7982 ) / 42 ( 11134 \beta_{11} - 3152 \beta_{10} + 18949 \beta_{9} - 5340 \beta_{8} - 5964 \beta_{7} - 43862 \beta_{5} + \cdots + 7982 ) / 42 ( 1 1 1 3 4 β 1 1 − 3 1 5 2 β 1 0 + 1 8 9 4 9 β 9 − 5 3 4 0 β 8 − 5 9 6 4 β 7 − 4 3 8 6 2 β 5 + ⋯ + 7 9 8 2 ) / 4 2
(11134*b11 - 3152*b10 + 18949*b9 - 5340*b8 - 5964*b7 - 43862*b5 - 3991*b3 + 8821*b2 - 26129*b1 + 7982) / 42
ν 6 \nu^{6} ν 6 = = =
( − 35698 β 11 − 35698 β 10 − 48717 β 9 + 2853 β 7 + 63990 β 6 + ⋯ − 2414804 ) / 42 ( - 35698 \beta_{11} - 35698 \beta_{10} - 48717 \beta_{9} + 2853 \beta_{7} + 63990 \beta_{6} + \cdots - 2414804 ) / 42 ( − 3 5 6 9 8 β 1 1 − 3 5 6 9 8 β 1 0 − 4 8 7 1 7 β 9 + 2 8 5 3 β 7 + 6 3 9 9 0 β 6 + ⋯ − 2 4 1 4 8 0 4 ) / 4 2
(-35698*b11 - 35698*b10 - 48717*b9 + 2853*b7 + 63990*b6 - 267417*b5 - 5706*b4 - 38912*b3 - 3214*b2 - 48717*b1 - 2414804) / 42
ν 7 \nu^{7} ν 7 = = =
( − 676904 β 11 + 149410 β 10 − 1114855 β 9 + 266244 β 8 + 383670 β 7 + ⋯ − 527494 ) / 42 ( - 676904 \beta_{11} + 149410 \beta_{10} - 1114855 \beta_{9} + 266244 \beta_{8} + 383670 \beta_{7} + \cdots - 527494 ) / 42 ( − 6 7 6 9 0 4 β 1 1 + 1 4 9 4 1 0 β 1 0 − 1 1 1 4 8 5 5 β 9 + 2 6 6 2 4 4 β 8 + 3 8 3 6 7 0 β 7 + ⋯ − 5 2 7 4 9 4 ) / 4 2
(-676904*b11 + 149410*b10 - 1114855*b9 + 266244*b8 + 383670*b7 + 2613380*b5 + 263747*b3 - 641831*b2 + 1999115*b1 - 527494) / 42
ν 8 \nu^{8} ν 8 = = =
( 831543 β 11 + 831543 β 10 + 1242088 β 9 − 24928 β 7 − 1299696 β 6 + ⋯ + 45860500 ) / 14 ( 831543 \beta_{11} + 831543 \beta_{10} + 1242088 \beta_{9} - 24928 \beta_{7} - 1299696 \beta_{6} + \cdots + 45860500 ) / 14 ( 8 3 1 5 4 3 β 1 1 + 8 3 1 5 4 3 β 1 0 + 1 2 4 2 0 8 8 β 9 − 2 4 9 2 8 β 7 − 1 2 9 9 6 9 6 β 6 + ⋯ + 4 5 8 6 0 5 0 0 ) / 1 4
(831543*b11 + 831543*b10 + 1242088*b9 - 24928*b7 - 1299696*b6 + 6342832*b5 + 49856*b4 + 906923*b3 + 75380*b2 + 1242088*b1 + 45860500) / 14
ν 9 \nu^{9} ν 9 = = =
( 42318904 β 11 − 7917818 β 10 + 68114557 β 9 − 15612804 β 8 − 24483522 β 7 + ⋯ + 34401086 ) / 42 ( 42318904 \beta_{11} - 7917818 \beta_{10} + 68114557 \beta_{9} - 15612804 \beta_{8} - 24483522 \beta_{7} + \cdots + 34401086 ) / 42 ( 4 2 3 1 8 9 0 4 β 1 1 − 7 9 1 7 8 1 8 β 1 0 + 6 8 1 1 4 5 5 7 β 9 − 1 5 6 1 2 8 0 4 β 8 − 2 4 4 8 3 5 2 2 β 7 + ⋯ + 3 4 4 0 1 0 8 6 ) / 4 2
(42318904*b11 - 7917818*b10 + 68114557*b9 - 15612804*b8 - 24483522*b7 - 160712636*b5 - 17200543*b3 + 43683811*b2 - 140030249*b1 + 34401086) / 42
ν 10 \nu^{10} ν 1 0 = = =
( − 167007082 β 11 − 167007082 β 10 − 260652747 β 9 + 1081491 β 7 + ⋯ − 8285451524 ) / 42 ( - 167007082 \beta_{11} - 167007082 \beta_{10} - 260652747 \beta_{9} + 1081491 \beta_{7} + \cdots - 8285451524 ) / 42 ( − 1 6 7 0 0 7 0 8 2 β 1 1 − 1 6 7 0 0 7 0 8 2 β 1 0 − 2 6 0 6 5 2 7 4 7 β 9 + 1 0 8 1 4 9 1 β 7 + ⋯ − 8 2 8 5 4 5 1 5 2 4 ) / 4 2
(-167007082*b11 - 167007082*b10 - 260652747*b9 + 1081491*b7 + 243041850*b6 - 1288897311*b5 - 2162982*b4 - 180757880*b3 - 13750798*b2 - 260652747*b1 - 8285451524) / 42
ν 11 \nu^{11} ν 1 1 = = =
( − 2682632054 β 11 + 454103344 β 10 − 4255592215 β 9 + 978049092 β 8 + ⋯ − 2228528710 ) / 42 ( - 2682632054 \beta_{11} + 454103344 \beta_{10} - 4255592215 \beta_{9} + 978049092 \beta_{8} + \cdots - 2228528710 ) / 42 ( − 2 6 8 2 6 3 2 0 5 4 β 1 1 + 4 5 4 1 0 3 3 4 4 β 1 0 − 4 2 5 5 5 9 2 2 1 5 β 9 + 9 7 8 0 4 9 0 9 2 β 8 + ⋯ − 2 2 2 8 5 2 8 7 1 0 ) / 4 2
(-2682632054*b11 + 454103344*b10 - 4255592215*b9 + 978049092*b8 + 1568046732*b7 + 10079231162*b5 + 1114264355*b3 - 2888689721*b2 + 9403781483*b1 - 2228528710) / 42
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 6 + 642 T 5 4 + 93780 T 5 2 + 523688 T_{5}^{6} + 642T_{5}^{4} + 93780T_{5}^{2} + 523688 T 5 6 + 6 4 2 T 5 4 + 9 3 7 8 0 T 5 2 + 5 2 3 6 8 8
T5^6 + 642*T5^4 + 93780*T5^2 + 523688
acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 + ⋯ + 387420489 T^{12} + \cdots + 387420489 T 1 2 + ⋯ + 3 8 7 4 2 0 4 8 9
T^12 - 38*T^10 + 939*T^8 - 10332*T^6 + 684531*T^4 - 20194758*T^2 + 387420489
5 5 5
( T 6 + 642 T 4 + ⋯ + 523688 ) 2 (T^{6} + 642 T^{4} + \cdots + 523688)^{2} ( T 6 + 6 4 2 T 4 + ⋯ + 5 2 3 6 8 8 ) 2
(T^6 + 642*T^4 + 93780*T^2 + 523688)^2
7 7 7
( T 2 + 49 ) 6 (T^{2} + 49)^{6} ( T 2 + 4 9 ) 6
(T^2 + 49)^6
11 11 1 1
( T 6 − 6474 T 4 + ⋯ − 5604950432 ) 2 (T^{6} - 6474 T^{4} + \cdots - 5604950432)^{2} ( T 6 − 6 4 7 4 T 4 + ⋯ − 5 6 0 4 9 5 0 4 3 2 ) 2
(T^6 - 6474*T^4 + 11128224*T^2 - 5604950432)^2
13 13 1 3
( T 3 + 24 T 2 + ⋯ − 78284 ) 4 (T^{3} + 24 T^{2} + \cdots - 78284)^{4} ( T 3 + 2 4 T 2 + ⋯ − 7 8 2 8 4 ) 4
(T^3 + 24*T^2 - 3174*T - 78284)^4
17 17 1 7
( T 6 + 14634 T 4 + ⋯ + 24639286688 ) 2 (T^{6} + 14634 T^{4} + \cdots + 24639286688)^{2} ( T 6 + 1 4 6 3 4 T 4 + ⋯ + 2 4 6 3 9 2 8 6 6 8 8 ) 2
(T^6 + 14634*T^4 + 56812320*T^2 + 24639286688)^2
19 19 1 9
( T 6 + 14568 T 4 + ⋯ + 22072450624 ) 2 (T^{6} + 14568 T^{4} + \cdots + 22072450624)^{2} ( T 6 + 1 4 5 6 8 T 4 + ⋯ + 2 2 0 7 2 4 5 0 6 2 4 ) 2
(T^6 + 14568*T^4 + 51011940*T^2 + 22072450624)^2
23 23 2 3
( T 6 − 28386 T 4 + ⋯ − 344672294528 ) 2 (T^{6} - 28386 T^{4} + \cdots - 344672294528)^{2} ( T 6 − 2 8 3 8 6 T 4 + ⋯ − 3 4 4 6 7 2 2 9 4 5 2 8 ) 2
(T^6 - 28386*T^4 + 226562496*T^2 - 344672294528)^2
29 29 2 9
( T 6 + 38064 T 4 + ⋯ + 301614442112 ) 2 (T^{6} + 38064 T^{4} + \cdots + 301614442112)^{2} ( T 6 + 3 8 0 6 4 T 4 + ⋯ + 3 0 1 6 1 4 4 4 2 1 1 2 ) 2
(T^6 + 38064*T^4 + 210928656*T^2 + 301614442112)^2
31 31 3 1
( T 6 + 20100 T 4 + ⋯ + 15017031936 ) 2 (T^{6} + 20100 T^{4} + \cdots + 15017031936)^{2} ( T 6 + 2 0 1 0 0 T 4 + ⋯ + 1 5 0 1 7 0 3 1 9 3 6 ) 2
(T^6 + 20100*T^4 + 98119872*T^2 + 15017031936)^2
37 37 3 7
( T 3 + 180 T 2 + ⋯ − 2562416 ) 4 (T^{3} + 180 T^{2} + \cdots - 2562416)^{4} ( T 3 + 1 8 0 T 2 + ⋯ − 2 5 6 2 4 1 6 ) 4
(T^3 + 180*T^2 - 43308*T - 2562416)^4
41 41 4 1
( T 6 + ⋯ + 185103027240608 ) 2 (T^{6} + \cdots + 185103027240608)^{2} ( T 6 + ⋯ + 1 8 5 1 0 3 0 2 7 2 4 0 6 0 8 ) 2
(T^6 + 220170*T^4 + 12026771328*T^2 + 185103027240608)^2
43 43 4 3
( T 6 + ⋯ + 585026061785344 ) 2 (T^{6} + \cdots + 585026061785344)^{2} ( T 6 + ⋯ + 5 8 5 0 2 6 0 6 1 7 8 5 3 4 4 ) 2
(T^6 + 319896*T^4 + 29340122256*T^2 + 585026061785344)^2
47 47 4 7
( T 6 + ⋯ − 513493070118912 ) 2 (T^{6} + \cdots - 513493070118912)^{2} ( T 6 + ⋯ − 5 1 3 4 9 3 0 7 0 1 1 8 9 1 2 ) 2
(T^6 - 313224*T^4 + 26731118592*T^2 - 513493070118912)^2
53 53 5 3
( T 6 + ⋯ + 18 ⋯ 68 ) 2 (T^{6} + \cdots + 18\!\cdots\!68)^{2} ( T 6 + ⋯ + 1 8 ⋯ 6 8 ) 2
(T^6 + 427608*T^4 + 54397638864*T^2 + 1844458262816768)^2
59 59 5 9
( T 6 − 472464 T 4 + ⋯ − 99385006592 ) 2 (T^{6} - 472464 T^{4} + \cdots - 99385006592)^{2} ( T 6 − 4 7 2 4 6 4 T 4 + ⋯ − 9 9 3 8 5 0 0 6 5 9 2 ) 2
(T^6 - 472464*T^4 + 633318324*T^2 - 99385006592)^2
61 61 6 1
( T 3 − 108 T 2 + ⋯ + 9896868 ) 4 (T^{3} - 108 T^{2} + \cdots + 9896868)^{4} ( T 3 − 1 0 8 T 2 + ⋯ + 9 8 9 6 8 6 8 ) 4
(T^3 - 108*T^2 - 386430*T + 9896868)^4
67 67 6 7
( T 6 + ⋯ + 34 ⋯ 84 ) 2 (T^{6} + \cdots + 34\!\cdots\!84)^{2} ( T 6 + ⋯ + 3 4 ⋯ 8 4 ) 2
(T^6 + 1062120*T^4 + 258013233936*T^2 + 3411526238025984)^2
71 71 7 1
( T 6 + ⋯ − 206806281826208 ) 2 (T^{6} + \cdots - 206806281826208)^{2} ( T 6 + ⋯ − 2 0 6 8 0 6 2 8 1 8 2 6 2 0 8 ) 2
(T^6 - 629562*T^4 + 25193854080*T^2 - 206806281826208)^2
73 73 7 3
( T 3 − 414 T 2 + ⋯ + 277691624 ) 4 (T^{3} - 414 T^{2} + \cdots + 277691624)^{4} ( T 3 − 4 1 4 T 2 + ⋯ + 2 7 7 6 9 1 6 2 4 ) 4
(T^3 - 414*T^2 - 886284*T + 277691624)^4
79 79 7 9
( T 6 + ⋯ + 98 ⋯ 56 ) 2 (T^{6} + \cdots + 98\!\cdots\!56)^{2} ( T 6 + ⋯ + 9 8 ⋯ 5 6 ) 2
(T^6 + 1733808*T^4 + 785982640896*T^2 + 98061409365037056)^2
83 83 8 3
( T 6 + ⋯ − 12 ⋯ 68 ) 2 (T^{6} + \cdots - 12\!\cdots\!68)^{2} ( T 6 + ⋯ − 1 2 ⋯ 6 8 ) 2
(T^6 - 2901912*T^4 + 2162701351092*T^2 - 124813819450782368)^2
89 89 8 9
( T 6 + 622794 T 4 + ⋯ + 141902464928 ) 2 (T^{6} + 622794 T^{4} + \cdots + 141902464928)^{2} ( T 6 + 6 2 2 7 9 4 T 4 + ⋯ + 1 4 1 9 0 2 4 6 4 9 2 8 ) 2
(T^6 + 622794*T^4 + 8756533440*T^2 + 141902464928)^2
97 97 9 7
( T 3 + 1566 T 2 + ⋯ + 117443368 ) 4 (T^{3} + 1566 T^{2} + \cdots + 117443368)^{4} ( T 3 + 1 5 6 6 T 2 + ⋯ + 1 1 7 4 4 3 3 6 8 ) 4
(T^3 + 1566*T^2 + 763596*T + 117443368)^4
show more
show less