Properties

Label 336.4.h
Level 336336
Weight 44
Character orbit 336.h
Rep. character χ336(239,)\chi_{336}(239,\cdot)
Character field Q\Q
Dimension 3636
Newform subspaces 22
Sturm bound 256256
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.h (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 12 12
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 256256
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 204 36 168
Cusp forms 180 36 144
Eisenstein series 24 0 24

Trace form

36q60q9900q251152q331584q37+984q451764q493456q571872q61+744q69+4968q731836q817272q85+2472q93+216q97+O(q100) 36 q - 60 q^{9} - 900 q^{25} - 1152 q^{33} - 1584 q^{37} + 984 q^{45} - 1764 q^{49} - 3456 q^{57} - 1872 q^{61} + 744 q^{69} + 4968 q^{73} - 1836 q^{81} - 7272 q^{85} + 2472 q^{93} + 216 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
336.4.h.a 336.h 12.b 1212 19.82519.825 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 336.4.h.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ5q3+β8q5β1q7+(6β2+)q9+q-\beta _{5}q^{3}+\beta _{8}q^{5}-\beta _{1}q^{7}+(6-\beta _{2}+\cdots)q^{9}+\cdots
336.4.h.b 336.h 12.b 2424 19.82519.825 None 336.4.h.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(12,[χ])S_{4}^{\mathrm{new}}(12, [\chi])6^{\oplus 6}\oplusS4new(48,[χ])S_{4}^{\mathrm{new}}(48, [\chi])2^{\oplus 2}\oplusS4new(84,[χ])S_{4}^{\mathrm{new}}(84, [\chi])3^{\oplus 3}