Defining parameters
| Level: | \( N \) | \(=\) | \( 12 = 2^{2} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 12.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(8\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(12, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 8 | 8 | 0 |
| Cusp forms | 4 | 4 | 0 |
| Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(12, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 12.4.b.a | $4$ | $0.708$ | \(\Q(\sqrt{3}, \sqrt{-5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(-2+\beta _{2}+\cdots)q^{4}+\cdots\) |