Properties

Label 12.4.b
Level $12$
Weight $4$
Character orbit 12.b
Rep. character $\chi_{12}(11,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 12.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(12, [\chi])\).

Total New Old
Modular forms 8 8 0
Cusp forms 4 4 0
Eisenstein series 4 4 0

Trace form

\( 4 q - 8 q^{4} - 24 q^{6} - 12 q^{9} + 80 q^{10} + 120 q^{12} - 40 q^{13} - 224 q^{16} - 240 q^{18} + 120 q^{21} + 240 q^{22} + 288 q^{24} + 180 q^{25} - 240 q^{28} - 240 q^{30} - 480 q^{33} + 320 q^{34}+ \cdots + 3080 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(12, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
12.4.b.a 12.b 12.b $4$ $0.708$ \(\Q(\sqrt{3}, \sqrt{-5})\) None 12.4.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(-2+\beta _{2}+\cdots)q^{4}+\cdots\)