gp: [N,k,chi] = [336,4,Mod(31,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,9,0,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − x 5 + 13 x 4 − 16 x 3 + 158 x 2 − 168 x + 196 x^{6} - x^{5} + 13x^{4} - 16x^{3} + 158x^{2} - 168x + 196 x 6 − x 5 + 1 3 x 4 − 1 6 x 3 + 1 5 8 x 2 − 1 6 8 x + 1 9 6
x^6 - x^5 + 13*x^4 - 16*x^3 + 158*x^2 - 168*x + 196
:
β 1 \beta_{1} β 1 = = =
( − 6 ν 5 + 1021 ν 4 − 71 ν 3 + 13207 ν 2 − 29298 ν + 105518 ) / 13202 ( -6\nu^{5} + 1021\nu^{4} - 71\nu^{3} + 13207\nu^{2} - 29298\nu + 105518 ) / 13202 ( − 6 ν 5 + 1 0 2 1 ν 4 − 7 1 ν 3 + 1 3 2 0 7 ν 2 − 2 9 2 9 8 ν + 1 0 5 5 1 8 ) / 1 3 2 0 2
(-6*v^5 + 1021*v^4 - 71*v^3 + 13207*v^2 - 29298*v + 105518) / 13202
β 2 \beta_{2} β 2 = = =
( − 78 ν 5 + 71 ν 4 − 923 ν 3 + 65 ν 2 − 11218 ν − 1274 ) / 13202 ( -78\nu^{5} + 71\nu^{4} - 923\nu^{3} + 65\nu^{2} - 11218\nu - 1274 ) / 13202 ( − 7 8 ν 5 + 7 1 ν 4 − 9 2 3 ν 3 + 6 5 ν 2 − 1 1 2 1 8 ν − 1 2 7 4 ) / 1 3 2 0 2
(-78*v^5 + 71*v^4 - 923*v^3 + 65*v^2 - 11218*v - 1274) / 13202
β 3 \beta_{3} β 3 = = =
( 148 ν 5 − 981 ν 4 − 449 ν 3 − 11125 ν 2 − 3426 ν − 85596 ) / 13202 ( 148\nu^{5} - 981\nu^{4} - 449\nu^{3} - 11125\nu^{2} - 3426\nu - 85596 ) / 13202 ( 1 4 8 ν 5 − 9 8 1 ν 4 − 4 4 9 ν 3 − 1 1 1 2 5 ν 2 − 3 4 2 6 ν − 8 5 5 9 6 ) / 1 3 2 0 2
(148*v^5 - 981*v^4 - 449*v^3 - 11125*v^2 - 3426*v - 85596) / 13202
β 4 \beta_{4} β 4 = = =
( − 604 ν 5 − 635 ν 4 − 4947 ν 3 − 1697 ν 2 − 58094 ν − 27468 ) / 13202 ( -604\nu^{5} - 635\nu^{4} - 4947\nu^{3} - 1697\nu^{2} - 58094\nu - 27468 ) / 13202 ( − 6 0 4 ν 5 − 6 3 5 ν 4 − 4 9 4 7 ν 3 − 1 6 9 7 ν 2 − 5 8 0 9 4 ν − 2 7 4 6 8 ) / 1 3 2 0 2
(-604*v^5 - 635*v^4 - 4947*v^3 - 1697*v^2 - 58094*v - 27468) / 13202
β 5 \beta_{5} β 5 = = =
( − 702 ν 5 + 639 ν 4 − 8307 ν 3 + 13787 ν 2 − 74558 ν + 94150 ) / 13202 ( -702\nu^{5} + 639\nu^{4} - 8307\nu^{3} + 13787\nu^{2} - 74558\nu + 94150 ) / 13202 ( − 7 0 2 ν 5 + 6 3 9 ν 4 − 8 3 0 7 ν 3 + 1 3 7 8 7 ν 2 − 7 4 5 5 8 ν + 9 4 1 5 0 ) / 1 3 2 0 2
(-702*v^5 + 639*v^4 - 8307*v^3 + 13787*v^2 - 74558*v + 94150) / 13202
ν \nu ν = = =
( β 5 − β 4 − β 3 − 3 β 2 − 2 β 1 ) / 6 ( \beta_{5} - \beta_{4} - \beta_{3} - 3\beta_{2} - 2\beta_1 ) / 6 ( β 5 − β 4 − β 3 − 3 β 2 − 2 β 1 ) / 6
(b5 - b4 - b3 - 3*b2 - 2*b1) / 6
ν 2 \nu^{2} ν 2 = = =
( 2 β 5 + β 4 + β 3 − 24 β 2 + 2 β 1 − 24 ) / 3 ( 2\beta_{5} + \beta_{4} + \beta_{3} - 24\beta_{2} + 2\beta _1 - 24 ) / 3 ( 2 β 5 + β 4 + β 3 − 2 4 β 2 + 2 β 1 − 2 4 ) / 3
(2*b5 + b4 + b3 - 24*b2 + 2*b1 - 24) / 3
ν 3 \nu^{3} ν 3 = = =
( − 11 β 5 + 11 β 4 − 7 β 3 + 7 β 1 ) / 3 ( -11\beta_{5} + 11\beta_{4} - 7\beta_{3} + 7\beta_1 ) / 3 ( − 1 1 β 5 + 1 1 β 4 − 7 β 3 + 7 β 1 ) / 3
(-11*b5 + 11*b4 - 7*b3 + 7*b1) / 3
ν 4 \nu^{4} ν 4 = = =
− 4 β 5 − 9 β 4 − 9 β 3 + 89 β 2 − 5 β 1 -4\beta_{5} - 9\beta_{4} - 9\beta_{3} + 89\beta_{2} - 5\beta_1 − 4 β 5 − 9 β 4 − 9 β 3 + 8 9 β 2 − 5 β 1
-4*b5 - 9*b4 - 9*b3 + 89*b2 - 5*b1
ν 5 \nu^{5} ν 5 = = =
( 49 β 5 − 82 β 4 + 131 β 3 − 69 β 2 + 49 β 1 − 69 ) / 3 ( 49\beta_{5} - 82\beta_{4} + 131\beta_{3} - 69\beta_{2} + 49\beta _1 - 69 ) / 3 ( 4 9 β 5 − 8 2 β 4 + 1 3 1 β 3 − 6 9 β 2 + 4 9 β 1 − 6 9 ) / 3
(49*b5 - 82*b4 + 131*b3 - 69*b2 + 49*b1 - 69) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
1 + β 2 1 + \beta_{2} 1 + β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 6 − 12 T 5 5 − 45 T 5 4 + 1116 T 5 3 + 4113 T 5 2 − 105462 T 5 + 428652 T_{5}^{6} - 12T_{5}^{5} - 45T_{5}^{4} + 1116T_{5}^{3} + 4113T_{5}^{2} - 105462T_{5} + 428652 T 5 6 − 1 2 T 5 5 − 4 5 T 5 4 + 1 1 1 6 T 5 3 + 4 1 1 3 T 5 2 − 1 0 5 4 6 2 T 5 + 4 2 8 6 5 2
T5^6 - 12*T5^5 - 45*T5^4 + 1116*T5^3 + 4113*T5^2 - 105462*T5 + 428652
T 11 6 − 48 T 11 5 − 657 T 11 4 + 68400 T 11 3 + 2342529 T 11 2 + 27778950 T 11 + 126672012 T_{11}^{6} - 48T_{11}^{5} - 657T_{11}^{4} + 68400T_{11}^{3} + 2342529T_{11}^{2} + 27778950T_{11} + 126672012 T 1 1 6 − 4 8 T 1 1 5 − 6 5 7 T 1 1 4 + 6 8 4 0 0 T 1 1 3 + 2 3 4 2 5 2 9 T 1 1 2 + 2 7 7 7 8 9 5 0 T 1 1 + 1 2 6 6 7 2 0 1 2
T11^6 - 48*T11^5 - 657*T11^4 + 68400*T11^3 + 2342529*T11^2 + 27778950*T11 + 126672012
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
( T 2 − 3 T + 9 ) 3 (T^{2} - 3 T + 9)^{3} ( T 2 − 3 T + 9 ) 3
(T^2 - 3*T + 9)^3
5 5 5
T 6 − 12 T 5 + ⋯ + 428652 T^{6} - 12 T^{5} + \cdots + 428652 T 6 − 1 2 T 5 + ⋯ + 4 2 8 6 5 2
T^6 - 12*T^5 - 45*T^4 + 1116*T^3 + 4113*T^2 - 105462*T + 428652
7 7 7
T 6 − 7 T 5 + ⋯ + 40353607 T^{6} - 7 T^{5} + \cdots + 40353607 T 6 − 7 T 5 + ⋯ + 4 0 3 5 3 6 0 7
T^6 - 7*T^5 + 308*T^4 - 6811*T^3 + 105644*T^2 - 823543*T + 40353607
11 11 1 1
T 6 − 48 T 5 + ⋯ + 126672012 T^{6} - 48 T^{5} + \cdots + 126672012 T 6 − 4 8 T 5 + ⋯ + 1 2 6 6 7 2 0 1 2
T^6 - 48*T^5 - 657*T^4 + 68400*T^3 + 2342529*T^2 + 27778950*T + 126672012
13 13 1 3
T 6 + 579 T 4 + ⋯ + 3048192 T^{6} + 579 T^{4} + \cdots + 3048192 T 6 + 5 7 9 T 4 + ⋯ + 3 0 4 8 1 9 2
T^6 + 579*T^4 + 93024*T^2 + 3048192
17 17 1 7
T 6 + 84 T 5 + ⋯ + 248832 T^{6} + 84 T^{5} + \cdots + 248832 T 6 + 8 4 T 5 + ⋯ + 2 4 8 8 3 2
T^6 + 84*T^5 + 2700*T^4 + 29232*T^3 + 145296*T^2 + 300672*T + 248832
19 19 1 9
T 6 + ⋯ + 71197181584 T^{6} + \cdots + 71197181584 T 6 + ⋯ + 7 1 1 9 7 1 8 1 5 8 4
T^6 - 77*T^5 + 11465*T^4 - 107384*T^3 + 51193052*T^2 - 1477159808*T + 71197181584
23 23 2 3
T 6 + ⋯ + 429632335872 T^{6} + \cdots + 429632335872 T 6 + ⋯ + 4 2 9 6 3 2 3 3 5 8 7 2
T^6 + 108*T^5 - 21600*T^4 - 2752704*T^3 + 608767488*T^2 + 28936424448*T + 429632335872
29 29 2 9
( T 3 − 186 T 2 + ⋯ − 5184 ) 2 (T^{3} - 186 T^{2} + \cdots - 5184)^{2} ( T 3 − 1 8 6 T 2 + ⋯ − 5 1 8 4 ) 2
(T^3 - 186*T^2 + 8253*T - 5184)^2
31 31 3 1
T 6 + ⋯ + 6131274251881 T^{6} + \cdots + 6131274251881 T 6 + ⋯ + 6 1 3 1 2 7 4 2 5 1 8 8 1
T^6 + 11*T^5 + 36482*T^4 - 5352253*T^3 + 1294884770*T^2 - 90034962901*T + 6131274251881
37 37 3 7
T 6 + ⋯ + 6785587367056 T^{6} + \cdots + 6785587367056 T 6 + ⋯ + 6 7 8 5 5 8 7 3 6 7 0 5 6
T^6 - 159*T^5 + 98817*T^4 + 6482392*T^3 + 5821724940*T^2 - 191555102976*T + 6785587367056
41 41 4 1
T 6 + ⋯ + 702930633408 T^{6} + \cdots + 702930633408 T 6 + ⋯ + 7 0 2 9 3 0 6 3 3 4 0 8
T^6 + 103140*T^4 + 1574954928*T^2 + 702930633408
43 43 4 3
T 6 + ⋯ + 4094157830832 T^{6} + \cdots + 4094157830832 T 6 + ⋯ + 4 0 9 4 1 5 7 8 3 0 8 3 2
T^6 + 109803*T^4 + 1633207896*T^2 + 4094157830832
47 47 4 7
T 6 + ⋯ + 16 ⋯ 84 T^{6} + \cdots + 16\!\cdots\!84 T 6 + ⋯ + 1 6 ⋯ 8 4
T^6 - 378*T^5 + 290052*T^4 - 24639552*T^3 + 36829271808*T^2 - 5906518216704*T + 1610780337782784
53 53 5 3
T 6 + ⋯ + 525419367632784 T^{6} + \cdots + 525419367632784 T 6 + ⋯ + 5 2 5 4 1 9 3 6 7 6 3 2 7 8 4
T^6 - 78*T^5 + 219015*T^4 + 62452674*T^3 + 43551692577*T^2 + 4880810344068*T + 525419367632784
59 59 5 9
T 6 + ⋯ + 35939689280784 T^{6} + \cdots + 35939689280784 T 6 + ⋯ + 3 5 9 3 9 6 8 9 2 8 0 7 8 4
T^6 - 150*T^5 + 380907*T^4 + 41771106*T^3 + 129354823449*T^2 - 2148639929604*T + 35939689280784
61 61 6 1
T 6 + ⋯ + 12 ⋯ 12 T^{6} + \cdots + 12\!\cdots\!12 T 6 + ⋯ + 1 2 ⋯ 1 2
T^6 - 1608*T^5 + 788592*T^4 + 117859968*T^3 - 98781638400*T^2 - 14242662936576*T + 12586372750835712
67 67 6 7
T 6 + ⋯ + 145376921152512 T^{6} + \cdots + 145376921152512 T 6 + ⋯ + 1 4 5 3 7 6 9 2 1 1 5 2 5 1 2
T^6 - 339*T^5 - 207813*T^4 + 83434680*T^3 + 58215191328*T^2 - 5139907073280*T + 145376921152512
71 71 7 1
T 6 + ⋯ + 831854523313152 T^{6} + \cdots + 831854523313152 T 6 + ⋯ + 8 3 1 8 5 4 5 2 3 3 1 3 1 5 2
T^6 + 648684*T^4 + 71212551552*T^2 + 831854523313152
73 73 7 3
T 6 + ⋯ + 29 ⋯ 48 T^{6} + \cdots + 29\!\cdots\!48 T 6 + ⋯ + 2 9 ⋯ 4 8
T^6 + 273*T^5 - 488349*T^4 - 140101416*T^3 + 236382573456*T^2 + 152172455469696*T + 29308330948578048
79 79 7 9
T 6 + ⋯ + 64 ⋯ 43 T^{6} + \cdots + 64\!\cdots\!43 T 6 + ⋯ + 6 4 ⋯ 4 3
T^6 + 3429*T^5 + 5180448*T^4 + 4324315329*T^3 + 2093561220240*T^2 + 555177359712573*T + 64601484730248843
83 83 8 3
( T 3 − 732 T 2 + ⋯ + 5856786 ) 2 (T^{3} - 732 T^{2} + \cdots + 5856786)^{2} ( T 3 − 7 3 2 T 2 + ⋯ + 5 8 5 6 7 8 6 ) 2
(T^3 - 732*T^2 + 109989*T + 5856786)^2
89 89 8 9
T 6 + ⋯ + 14 ⋯ 72 T^{6} + \cdots + 14\!\cdots\!72 T 6 + ⋯ + 1 4 ⋯ 7 2
T^6 - 768*T^5 - 1297332*T^4 + 1147345920*T^3 + 2285499041424*T^2 + 313040641757760*T + 14635713000137472
97 97 9 7
T 6 + ⋯ + 19 ⋯ 32 T^{6} + \cdots + 19\!\cdots\!32 T 6 + ⋯ + 1 9 ⋯ 3 2
T^6 + 2015814*T^4 + 1141167085209*T^2 + 194220343794182832
show more
show less