Properties

Label 336.4.bl.h
Level 336336
Weight 44
Character orbit 336.bl
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bl (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,9,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 6.0.633537072.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+13x416x3+158x2168x+196 x^{6} - x^{5} + 13x^{4} - 16x^{3} + 158x^{2} - 168x + 196 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3β2q3+(β4+β3β2+1)q5+(2β5β3+2β2+3)q7+(9β29)q9+(4β5+3β4++8)q11++(9β5+9β4+36β3+36)q99+O(q100) q - 3 \beta_{2} q^{3} + (\beta_{4} + \beta_{3} - \beta_{2} + 1) q^{5} + (2 \beta_{5} - \beta_{3} + 2 \beta_{2} + 3) q^{7} + ( - 9 \beta_{2} - 9) q^{9} + ( - 4 \beta_{5} + 3 \beta_{4} + \cdots + 8) q^{11}+ \cdots + (9 \beta_{5} + 9 \beta_{4} + 36 \beta_{3} + \cdots - 36) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+9q3+12q5+7q727q9+48q1184q17+77q19+42q21108q23141q25162q27+372q2911q31+144q33546q35+159q37+135q39++258q95+O(q100) 6 q + 9 q^{3} + 12 q^{5} + 7 q^{7} - 27 q^{9} + 48 q^{11} - 84 q^{17} + 77 q^{19} + 42 q^{21} - 108 q^{23} - 141 q^{25} - 162 q^{27} + 372 q^{29} - 11 q^{31} + 144 q^{33} - 546 q^{35} + 159 q^{37} + 135 q^{39}+ \cdots + 258 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+13x416x3+158x2168x+196 x^{6} - x^{5} + 13x^{4} - 16x^{3} + 158x^{2} - 168x + 196 : Copy content Toggle raw display

β1\beta_{1}== (6ν5+1021ν471ν3+13207ν229298ν+105518)/13202 ( -6\nu^{5} + 1021\nu^{4} - 71\nu^{3} + 13207\nu^{2} - 29298\nu + 105518 ) / 13202 Copy content Toggle raw display
β2\beta_{2}== (78ν5+71ν4923ν3+65ν211218ν1274)/13202 ( -78\nu^{5} + 71\nu^{4} - 923\nu^{3} + 65\nu^{2} - 11218\nu - 1274 ) / 13202 Copy content Toggle raw display
β3\beta_{3}== (148ν5981ν4449ν311125ν23426ν85596)/13202 ( 148\nu^{5} - 981\nu^{4} - 449\nu^{3} - 11125\nu^{2} - 3426\nu - 85596 ) / 13202 Copy content Toggle raw display
β4\beta_{4}== (604ν5635ν44947ν31697ν258094ν27468)/13202 ( -604\nu^{5} - 635\nu^{4} - 4947\nu^{3} - 1697\nu^{2} - 58094\nu - 27468 ) / 13202 Copy content Toggle raw display
β5\beta_{5}== (702ν5+639ν48307ν3+13787ν274558ν+94150)/13202 ( -702\nu^{5} + 639\nu^{4} - 8307\nu^{3} + 13787\nu^{2} - 74558\nu + 94150 ) / 13202 Copy content Toggle raw display
ν\nu== (β5β4β33β22β1)/6 ( \beta_{5} - \beta_{4} - \beta_{3} - 3\beta_{2} - 2\beta_1 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (2β5+β4+β324β2+2β124)/3 ( 2\beta_{5} + \beta_{4} + \beta_{3} - 24\beta_{2} + 2\beta _1 - 24 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (11β5+11β47β3+7β1)/3 ( -11\beta_{5} + 11\beta_{4} - 7\beta_{3} + 7\beta_1 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== 4β59β49β3+89β25β1 -4\beta_{5} - 9\beta_{4} - 9\beta_{3} + 89\beta_{2} - 5\beta_1 Copy content Toggle raw display
ν5\nu^{5}== (49β582β4+131β369β2+49β169)/3 ( 49\beta_{5} - 82\beta_{4} + 131\beta_{3} - 69\beta_{2} + 49\beta _1 - 69 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 1+β21 + \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
0.594460 1.02964i
1.66918 2.89111i
−1.76364 + 3.05472i
0.594460 + 1.02964i
1.66918 + 2.89111i
−1.76364 3.05472i
0 1.50000 2.59808i 0 −8.37970 + 4.83802i 0 15.8619 + 9.56041i 0 −4.50000 7.79423i 0
31.2 0 1.50000 2.59808i 0 6.21705 3.58942i 0 −1.45104 18.4633i 0 −4.50000 7.79423i 0
31.3 0 1.50000 2.59808i 0 8.16265 4.71271i 0 −10.9108 + 14.9651i 0 −4.50000 7.79423i 0
271.1 0 1.50000 + 2.59808i 0 −8.37970 4.83802i 0 15.8619 9.56041i 0 −4.50000 + 7.79423i 0
271.2 0 1.50000 + 2.59808i 0 6.21705 + 3.58942i 0 −1.45104 + 18.4633i 0 −4.50000 + 7.79423i 0
271.3 0 1.50000 + 2.59808i 0 8.16265 + 4.71271i 0 −10.9108 14.9651i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bl.h yes 6
4.b odd 2 1 336.4.bl.f 6
7.d odd 6 1 336.4.bl.f 6
28.f even 6 1 inner 336.4.bl.h yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.bl.f 6 4.b odd 2 1
336.4.bl.f 6 7.d odd 6 1
336.4.bl.h yes 6 1.a even 1 1 trivial
336.4.bl.h yes 6 28.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T5612T5545T54+1116T53+4113T52105462T5+428652 T_{5}^{6} - 12T_{5}^{5} - 45T_{5}^{4} + 1116T_{5}^{3} + 4113T_{5}^{2} - 105462T_{5} + 428652 Copy content Toggle raw display
T11648T115657T114+68400T113+2342529T112+27778950T11+126672012 T_{11}^{6} - 48T_{11}^{5} - 657T_{11}^{4} + 68400T_{11}^{3} + 2342529T_{11}^{2} + 27778950T_{11} + 126672012 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T23T+9)3 (T^{2} - 3 T + 9)^{3} Copy content Toggle raw display
55 T612T5++428652 T^{6} - 12 T^{5} + \cdots + 428652 Copy content Toggle raw display
77 T67T5++40353607 T^{6} - 7 T^{5} + \cdots + 40353607 Copy content Toggle raw display
1111 T648T5++126672012 T^{6} - 48 T^{5} + \cdots + 126672012 Copy content Toggle raw display
1313 T6+579T4++3048192 T^{6} + 579 T^{4} + \cdots + 3048192 Copy content Toggle raw display
1717 T6+84T5++248832 T^{6} + 84 T^{5} + \cdots + 248832 Copy content Toggle raw display
1919 T6++71197181584 T^{6} + \cdots + 71197181584 Copy content Toggle raw display
2323 T6++429632335872 T^{6} + \cdots + 429632335872 Copy content Toggle raw display
2929 (T3186T2+5184)2 (T^{3} - 186 T^{2} + \cdots - 5184)^{2} Copy content Toggle raw display
3131 T6++6131274251881 T^{6} + \cdots + 6131274251881 Copy content Toggle raw display
3737 T6++6785587367056 T^{6} + \cdots + 6785587367056 Copy content Toggle raw display
4141 T6++702930633408 T^{6} + \cdots + 702930633408 Copy content Toggle raw display
4343 T6++4094157830832 T^{6} + \cdots + 4094157830832 Copy content Toggle raw display
4747 T6++16 ⁣ ⁣84 T^{6} + \cdots + 16\!\cdots\!84 Copy content Toggle raw display
5353 T6++525419367632784 T^{6} + \cdots + 525419367632784 Copy content Toggle raw display
5959 T6++35939689280784 T^{6} + \cdots + 35939689280784 Copy content Toggle raw display
6161 T6++12 ⁣ ⁣12 T^{6} + \cdots + 12\!\cdots\!12 Copy content Toggle raw display
6767 T6++145376921152512 T^{6} + \cdots + 145376921152512 Copy content Toggle raw display
7171 T6++831854523313152 T^{6} + \cdots + 831854523313152 Copy content Toggle raw display
7373 T6++29 ⁣ ⁣48 T^{6} + \cdots + 29\!\cdots\!48 Copy content Toggle raw display
7979 T6++64 ⁣ ⁣43 T^{6} + \cdots + 64\!\cdots\!43 Copy content Toggle raw display
8383 (T3732T2++5856786)2 (T^{3} - 732 T^{2} + \cdots + 5856786)^{2} Copy content Toggle raw display
8989 T6++14 ⁣ ⁣72 T^{6} + \cdots + 14\!\cdots\!72 Copy content Toggle raw display
9797 T6++19 ⁣ ⁣32 T^{6} + \cdots + 19\!\cdots\!32 Copy content Toggle raw display
show more
show less