Properties

Label 336.4.bl.f.31.1
Level $336$
Weight $4$
Character 336.31
Analytic conductor $19.825$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-9,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.633537072.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 13x^{4} - 16x^{3} + 158x^{2} - 168x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Root \(0.594460 - 1.02964i\) of defining polynomial
Character \(\chi\) \(=\) 336.31
Dual form 336.4.bl.f.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{3} +(-8.37970 + 4.83802i) q^{5} +(-15.8619 - 9.56041i) q^{7} +(-4.50000 - 7.79423i) q^{9} +(10.0800 + 5.81968i) q^{11} +17.6819i q^{13} -29.0281i q^{15} +(-34.7594 - 20.0684i) q^{17} +(-19.0102 - 32.9266i) q^{19} +(48.6315 - 26.8697i) q^{21} +(157.957 - 91.1965i) q^{23} +(-15.6871 + 27.1708i) q^{25} +27.0000 q^{27} +114.011 q^{29} +(111.695 - 193.461i) q^{31} +(-30.2400 + 17.4590i) q^{33} +(179.171 + 3.37338i) q^{35} +(174.270 + 301.844i) q^{37} +(-45.9388 - 26.5228i) q^{39} +134.358i q^{41} -56.1966i q^{43} +(75.4173 + 43.5422i) q^{45} +(-110.328 - 191.094i) q^{47} +(160.197 + 303.292i) q^{49} +(104.278 - 60.2051i) q^{51} +(272.718 - 472.361i) q^{53} -112.623 q^{55} +114.061 q^{57} +(268.762 - 465.509i) q^{59} +(342.122 - 197.524i) q^{61} +(-3.13769 + 166.653i) q^{63} +(-85.5453 - 148.169i) q^{65} +(376.317 + 217.267i) q^{67} +547.179i q^{69} -349.854i q^{71} +(-430.764 - 248.702i) q^{73} +(-47.0612 - 81.5123i) q^{75} +(-104.249 - 188.680i) q^{77} +(361.339 - 208.619i) q^{79} +(-40.5000 + 70.1481i) q^{81} +41.2728 q^{83} +388.365 q^{85} +(-171.017 + 296.210i) q^{87} +(-72.2561 + 41.7171i) q^{89} +(169.046 - 280.467i) q^{91} +(335.084 + 580.382i) q^{93} +(318.600 + 183.944i) q^{95} +1095.15i q^{97} -104.754i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} + 12 q^{5} - 7 q^{7} - 27 q^{9} - 48 q^{11} - 84 q^{17} - 77 q^{19} + 42 q^{21} + 108 q^{23} - 141 q^{25} + 162 q^{27} + 372 q^{29} + 11 q^{31} + 144 q^{33} + 546 q^{35} + 159 q^{37} - 135 q^{39}+ \cdots - 258 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 2.59808i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −8.37970 + 4.83802i −0.749503 + 0.432726i −0.825514 0.564381i \(-0.809115\pi\)
0.0760111 + 0.997107i \(0.475782\pi\)
\(6\) 0 0
\(7\) −15.8619 9.56041i −0.856460 0.516214i
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) 0 0
\(11\) 10.0800 + 5.81968i 0.276294 + 0.159518i 0.631744 0.775177i \(-0.282339\pi\)
−0.355451 + 0.934695i \(0.615673\pi\)
\(12\) 0 0
\(13\) 17.6819i 0.377236i 0.982051 + 0.188618i \(0.0604008\pi\)
−0.982051 + 0.188618i \(0.939599\pi\)
\(14\) 0 0
\(15\) 29.0281i 0.499669i
\(16\) 0 0
\(17\) −34.7594 20.0684i −0.495906 0.286311i 0.231116 0.972926i \(-0.425762\pi\)
−0.727021 + 0.686615i \(0.759096\pi\)
\(18\) 0 0
\(19\) −19.0102 32.9266i −0.229539 0.397573i 0.728133 0.685436i \(-0.240388\pi\)
−0.957672 + 0.287863i \(0.907055\pi\)
\(20\) 0 0
\(21\) 48.6315 26.8697i 0.505346 0.279212i
\(22\) 0 0
\(23\) 157.957 91.1965i 1.43201 0.826773i 0.434739 0.900556i \(-0.356841\pi\)
0.997274 + 0.0737830i \(0.0235072\pi\)
\(24\) 0 0
\(25\) −15.6871 + 27.1708i −0.125496 + 0.217366i
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 114.011 0.730046 0.365023 0.930998i \(-0.381061\pi\)
0.365023 + 0.930998i \(0.381061\pi\)
\(30\) 0 0
\(31\) 111.695 193.461i 0.647127 1.12086i −0.336679 0.941620i \(-0.609304\pi\)
0.983806 0.179237i \(-0.0573630\pi\)
\(32\) 0 0
\(33\) −30.2400 + 17.4590i −0.159518 + 0.0920979i
\(34\) 0 0
\(35\) 179.171 + 3.37338i 0.865299 + 0.0162916i
\(36\) 0 0
\(37\) 174.270 + 301.844i 0.774319 + 1.34116i 0.935176 + 0.354182i \(0.115241\pi\)
−0.160858 + 0.986978i \(0.551426\pi\)
\(38\) 0 0
\(39\) −45.9388 26.5228i −0.188618 0.108899i
\(40\) 0 0
\(41\) 134.358i 0.511786i 0.966705 + 0.255893i \(0.0823694\pi\)
−0.966705 + 0.255893i \(0.917631\pi\)
\(42\) 0 0
\(43\) 56.1966i 0.199300i −0.995023 0.0996500i \(-0.968228\pi\)
0.995023 0.0996500i \(-0.0317723\pi\)
\(44\) 0 0
\(45\) 75.4173 + 43.5422i 0.249834 + 0.144242i
\(46\) 0 0
\(47\) −110.328 191.094i −0.342405 0.593063i 0.642474 0.766308i \(-0.277908\pi\)
−0.984879 + 0.173245i \(0.944575\pi\)
\(48\) 0 0
\(49\) 160.197 + 303.292i 0.467047 + 0.884233i
\(50\) 0 0
\(51\) 104.278 60.2051i 0.286311 0.165302i
\(52\) 0 0
\(53\) 272.718 472.361i 0.706805 1.22422i −0.259231 0.965815i \(-0.583469\pi\)
0.966036 0.258407i \(-0.0831976\pi\)
\(54\) 0 0
\(55\) −112.623 −0.276111
\(56\) 0 0
\(57\) 114.061 0.265049
\(58\) 0 0
\(59\) 268.762 465.509i 0.593047 1.02719i −0.400772 0.916178i \(-0.631258\pi\)
0.993819 0.111010i \(-0.0354087\pi\)
\(60\) 0 0
\(61\) 342.122 197.524i 0.718103 0.414597i −0.0959510 0.995386i \(-0.530589\pi\)
0.814054 + 0.580789i \(0.197256\pi\)
\(62\) 0 0
\(63\) −3.13769 + 166.653i −0.00627479 + 0.333274i
\(64\) 0 0
\(65\) −85.5453 148.169i −0.163240 0.282740i
\(66\) 0 0
\(67\) 376.317 + 217.267i 0.686186 + 0.396170i 0.802182 0.597080i \(-0.203672\pi\)
−0.115995 + 0.993250i \(0.537006\pi\)
\(68\) 0 0
\(69\) 547.179i 0.954676i
\(70\) 0 0
\(71\) 349.854i 0.584789i −0.956298 0.292394i \(-0.905548\pi\)
0.956298 0.292394i \(-0.0944520\pi\)
\(72\) 0 0
\(73\) −430.764 248.702i −0.690645 0.398744i 0.113209 0.993571i \(-0.463887\pi\)
−0.803854 + 0.594827i \(0.797221\pi\)
\(74\) 0 0
\(75\) −47.0612 81.5123i −0.0724554 0.125496i
\(76\) 0 0
\(77\) −104.249 188.680i −0.154289 0.279248i
\(78\) 0 0
\(79\) 361.339 208.619i 0.514606 0.297108i −0.220119 0.975473i \(-0.570645\pi\)
0.734725 + 0.678365i \(0.237311\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 41.2728 0.0545817 0.0272909 0.999628i \(-0.491312\pi\)
0.0272909 + 0.999628i \(0.491312\pi\)
\(84\) 0 0
\(85\) 388.365 0.495577
\(86\) 0 0
\(87\) −171.017 + 296.210i −0.210746 + 0.365023i
\(88\) 0 0
\(89\) −72.2561 + 41.7171i −0.0860576 + 0.0496854i −0.542411 0.840113i \(-0.682489\pi\)
0.456354 + 0.889798i \(0.349155\pi\)
\(90\) 0 0
\(91\) 169.046 280.467i 0.194734 0.323087i
\(92\) 0 0
\(93\) 335.084 + 580.382i 0.373619 + 0.647127i
\(94\) 0 0
\(95\) 318.600 + 183.944i 0.344080 + 0.198655i
\(96\) 0 0
\(97\) 1095.15i 1.14634i 0.819436 + 0.573171i \(0.194287\pi\)
−0.819436 + 0.573171i \(0.805713\pi\)
\(98\) 0 0
\(99\) 104.754i 0.106345i
\(100\) 0 0
\(101\) −1022.84 590.537i −1.00769 0.581788i −0.0971729 0.995268i \(-0.530980\pi\)
−0.910513 + 0.413480i \(0.864313\pi\)
\(102\) 0 0
\(103\) −729.351 1263.27i −0.697719 1.20848i −0.969255 0.246057i \(-0.920865\pi\)
0.271537 0.962428i \(-0.412468\pi\)
\(104\) 0 0
\(105\) −277.521 + 460.440i −0.257936 + 0.427946i
\(106\) 0 0
\(107\) 799.428 461.550i 0.722277 0.417007i −0.0933134 0.995637i \(-0.529746\pi\)
0.815590 + 0.578630i \(0.196413\pi\)
\(108\) 0 0
\(109\) 206.498 357.665i 0.181458 0.314294i −0.760919 0.648846i \(-0.775252\pi\)
0.942377 + 0.334552i \(0.108585\pi\)
\(110\) 0 0
\(111\) −1045.62 −0.894107
\(112\) 0 0
\(113\) −1058.21 −0.880953 −0.440477 0.897764i \(-0.645191\pi\)
−0.440477 + 0.897764i \(0.645191\pi\)
\(114\) 0 0
\(115\) −882.422 + 1528.40i −0.715533 + 1.23934i
\(116\) 0 0
\(117\) 137.816 79.5684i 0.108899 0.0628726i
\(118\) 0 0
\(119\) 359.487 + 650.636i 0.276925 + 0.501207i
\(120\) 0 0
\(121\) −597.763 1035.36i −0.449108 0.777878i
\(122\) 0 0
\(123\) −349.073 201.537i −0.255893 0.147740i
\(124\) 0 0
\(125\) 1513.08i 1.08267i
\(126\) 0 0
\(127\) 2586.01i 1.80686i 0.428734 + 0.903431i \(0.358960\pi\)
−0.428734 + 0.903431i \(0.641040\pi\)
\(128\) 0 0
\(129\) 146.003 + 84.2949i 0.0996500 + 0.0575329i
\(130\) 0 0
\(131\) 393.132 + 680.925i 0.262199 + 0.454143i 0.966826 0.255436i \(-0.0822189\pi\)
−0.704627 + 0.709578i \(0.748886\pi\)
\(132\) 0 0
\(133\) −13.2551 + 704.023i −0.00864185 + 0.458997i
\(134\) 0 0
\(135\) −226.252 + 130.627i −0.144242 + 0.0832782i
\(136\) 0 0
\(137\) 734.739 1272.61i 0.458197 0.793620i −0.540669 0.841236i \(-0.681829\pi\)
0.998866 + 0.0476151i \(0.0151621\pi\)
\(138\) 0 0
\(139\) −1587.08 −0.968451 −0.484225 0.874943i \(-0.660899\pi\)
−0.484225 + 0.874943i \(0.660899\pi\)
\(140\) 0 0
\(141\) 661.970 0.395375
\(142\) 0 0
\(143\) −102.903 + 178.233i −0.0601760 + 0.104228i
\(144\) 0 0
\(145\) −955.380 + 551.589i −0.547172 + 0.315910i
\(146\) 0 0
\(147\) −1028.27 38.7337i −0.576941 0.0217326i
\(148\) 0 0
\(149\) −1464.84 2537.17i −0.805397 1.39499i −0.916023 0.401126i \(-0.868619\pi\)
0.110626 0.993862i \(-0.464714\pi\)
\(150\) 0 0
\(151\) −438.340 253.075i −0.236236 0.136391i 0.377210 0.926128i \(-0.376884\pi\)
−0.613445 + 0.789737i \(0.710217\pi\)
\(152\) 0 0
\(153\) 361.230i 0.190874i
\(154\) 0 0
\(155\) 2161.52i 1.12011i
\(156\) 0 0
\(157\) 1037.80 + 599.173i 0.527550 + 0.304581i 0.740018 0.672587i \(-0.234817\pi\)
−0.212468 + 0.977168i \(0.568150\pi\)
\(158\) 0 0
\(159\) 818.154 + 1417.08i 0.408074 + 0.706805i
\(160\) 0 0
\(161\) −3377.37 63.5881i −1.65325 0.0311270i
\(162\) 0 0
\(163\) −2394.00 + 1382.18i −1.15038 + 0.664174i −0.948981 0.315335i \(-0.897883\pi\)
−0.201402 + 0.979509i \(0.564550\pi\)
\(164\) 0 0
\(165\) 168.935 292.603i 0.0797063 0.138055i
\(166\) 0 0
\(167\) −1807.47 −0.837522 −0.418761 0.908097i \(-0.637535\pi\)
−0.418761 + 0.908097i \(0.637535\pi\)
\(168\) 0 0
\(169\) 1884.35 0.857693
\(170\) 0 0
\(171\) −171.092 + 296.340i −0.0765130 + 0.132524i
\(172\) 0 0
\(173\) 2493.46 1439.60i 1.09580 0.632663i 0.160689 0.987005i \(-0.448628\pi\)
0.935116 + 0.354342i \(0.115295\pi\)
\(174\) 0 0
\(175\) 508.590 281.004i 0.219690 0.121382i
\(176\) 0 0
\(177\) 806.285 + 1396.53i 0.342396 + 0.593047i
\(178\) 0 0
\(179\) 478.529 + 276.279i 0.199815 + 0.115363i 0.596569 0.802562i \(-0.296530\pi\)
−0.396754 + 0.917925i \(0.629863\pi\)
\(180\) 0 0
\(181\) 2276.63i 0.934921i 0.884014 + 0.467460i \(0.154831\pi\)
−0.884014 + 0.467460i \(0.845169\pi\)
\(182\) 0 0
\(183\) 1185.15i 0.478735i
\(184\) 0 0
\(185\) −2920.66 1686.24i −1.16071 0.670136i
\(186\) 0 0
\(187\) −233.583 404.577i −0.0913437 0.158212i
\(188\) 0 0
\(189\) −428.270 258.131i −0.164826 0.0993454i
\(190\) 0 0
\(191\) 4096.66 2365.21i 1.55196 0.896024i 0.553977 0.832532i \(-0.313109\pi\)
0.997982 0.0634923i \(-0.0202238\pi\)
\(192\) 0 0
\(193\) −1771.75 + 3068.76i −0.660795 + 1.14453i 0.319612 + 0.947548i \(0.396447\pi\)
−0.980407 + 0.196982i \(0.936886\pi\)
\(194\) 0 0
\(195\) 513.272 0.188493
\(196\) 0 0
\(197\) 3478.40 1.25800 0.628999 0.777406i \(-0.283465\pi\)
0.628999 + 0.777406i \(0.283465\pi\)
\(198\) 0 0
\(199\) −1036.76 + 1795.72i −0.369316 + 0.639674i −0.989459 0.144815i \(-0.953741\pi\)
0.620143 + 0.784489i \(0.287075\pi\)
\(200\) 0 0
\(201\) −1128.95 + 651.801i −0.396170 + 0.228729i
\(202\) 0 0
\(203\) −1808.43 1089.99i −0.625255 0.376860i
\(204\) 0 0
\(205\) −650.028 1125.88i −0.221463 0.383585i
\(206\) 0 0
\(207\) −1421.61 820.769i −0.477338 0.275591i
\(208\) 0 0
\(209\) 442.533i 0.146463i
\(210\) 0 0
\(211\) 239.803i 0.0782404i −0.999235 0.0391202i \(-0.987544\pi\)
0.999235 0.0391202i \(-0.0124555\pi\)
\(212\) 0 0
\(213\) 908.947 + 524.781i 0.292394 + 0.168814i
\(214\) 0 0
\(215\) 271.880 + 470.911i 0.0862423 + 0.149376i
\(216\) 0 0
\(217\) −3621.25 + 2000.80i −1.13284 + 0.625913i
\(218\) 0 0
\(219\) 1292.29 746.105i 0.398744 0.230215i
\(220\) 0 0
\(221\) 354.846 614.611i 0.108007 0.187073i
\(222\) 0 0
\(223\) 974.175 0.292536 0.146268 0.989245i \(-0.453274\pi\)
0.146268 + 0.989245i \(0.453274\pi\)
\(224\) 0 0
\(225\) 282.367 0.0836643
\(226\) 0 0
\(227\) 823.400 1426.17i 0.240753 0.416997i −0.720176 0.693792i \(-0.755939\pi\)
0.960929 + 0.276795i \(0.0892722\pi\)
\(228\) 0 0
\(229\) 5149.33 2972.97i 1.48593 0.857900i 0.486055 0.873928i \(-0.338435\pi\)
0.999872 + 0.0160278i \(0.00510203\pi\)
\(230\) 0 0
\(231\) 646.578 + 12.1736i 0.184163 + 0.00346737i
\(232\) 0 0
\(233\) −2179.86 3775.63i −0.612907 1.06159i −0.990748 0.135715i \(-0.956667\pi\)
0.377841 0.925870i \(-0.376667\pi\)
\(234\) 0 0
\(235\) 1849.04 + 1067.54i 0.513267 + 0.296335i
\(236\) 0 0
\(237\) 1251.72i 0.343070i
\(238\) 0 0
\(239\) 2369.30i 0.641245i −0.947207 0.320623i \(-0.896108\pi\)
0.947207 0.320623i \(-0.103892\pi\)
\(240\) 0 0
\(241\) −1558.34 899.707i −0.416520 0.240478i 0.277067 0.960851i \(-0.410638\pi\)
−0.693587 + 0.720372i \(0.743971\pi\)
\(242\) 0 0
\(243\) −121.500 210.444i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −2809.74 1766.46i −0.732683 0.460632i
\(246\) 0 0
\(247\) 582.204 336.136i 0.149979 0.0865903i
\(248\) 0 0
\(249\) −61.9092 + 107.230i −0.0157564 + 0.0272909i
\(250\) 0 0
\(251\) −498.383 −0.125329 −0.0626646 0.998035i \(-0.519960\pi\)
−0.0626646 + 0.998035i \(0.519960\pi\)
\(252\) 0 0
\(253\) 2122.94 0.527542
\(254\) 0 0
\(255\) −582.547 + 1009.00i −0.143061 + 0.247789i
\(256\) 0 0
\(257\) −3817.20 + 2203.86i −0.926501 + 0.534915i −0.885703 0.464252i \(-0.846323\pi\)
−0.0407975 + 0.999167i \(0.512990\pi\)
\(258\) 0 0
\(259\) 121.512 6453.91i 0.0291521 1.54836i
\(260\) 0 0
\(261\) −513.050 888.629i −0.121674 0.210746i
\(262\) 0 0
\(263\) 675.576 + 390.044i 0.158395 + 0.0914493i 0.577102 0.816672i \(-0.304183\pi\)
−0.418707 + 0.908121i \(0.637517\pi\)
\(264\) 0 0
\(265\) 5277.66i 1.22341i
\(266\) 0 0
\(267\) 250.302i 0.0573718i
\(268\) 0 0
\(269\) 5380.70 + 3106.55i 1.21958 + 0.704125i 0.964828 0.262881i \(-0.0846727\pi\)
0.254752 + 0.967006i \(0.418006\pi\)
\(270\) 0 0
\(271\) −224.863 389.475i −0.0504040 0.0873022i 0.839723 0.543016i \(-0.182718\pi\)
−0.890127 + 0.455713i \(0.849384\pi\)
\(272\) 0 0
\(273\) 475.106 + 859.895i 0.105329 + 0.190634i
\(274\) 0 0
\(275\) −316.251 + 182.587i −0.0693478 + 0.0400379i
\(276\) 0 0
\(277\) 2917.57 5053.39i 0.632852 1.09613i −0.354114 0.935202i \(-0.615217\pi\)
0.986966 0.160930i \(-0.0514492\pi\)
\(278\) 0 0
\(279\) −2010.50 −0.431418
\(280\) 0 0
\(281\) 6938.33 1.47298 0.736488 0.676451i \(-0.236483\pi\)
0.736488 + 0.676451i \(0.236483\pi\)
\(282\) 0 0
\(283\) 3741.01 6479.62i 0.785795 1.36104i −0.142728 0.989762i \(-0.545587\pi\)
0.928523 0.371275i \(-0.121079\pi\)
\(284\) 0 0
\(285\) −955.799 + 551.831i −0.198655 + 0.114693i
\(286\) 0 0
\(287\) 1284.52 2131.17i 0.264191 0.438324i
\(288\) 0 0
\(289\) −1651.02 2859.65i −0.336052 0.582059i
\(290\) 0 0
\(291\) −2845.27 1642.72i −0.573171 0.330921i
\(292\) 0 0
\(293\) 9235.64i 1.84147i 0.390183 + 0.920737i \(0.372412\pi\)
−0.390183 + 0.920737i \(0.627588\pi\)
\(294\) 0 0
\(295\) 5201.10i 1.02651i
\(296\) 0 0
\(297\) 272.160 + 157.131i 0.0531727 + 0.0306993i
\(298\) 0 0
\(299\) 1612.52 + 2792.97i 0.311889 + 0.540207i
\(300\) 0 0
\(301\) −537.263 + 891.382i −0.102881 + 0.170692i
\(302\) 0 0
\(303\) 3068.52 1771.61i 0.581788 0.335895i
\(304\) 0 0
\(305\) −1911.26 + 3310.39i −0.358814 + 0.621484i
\(306\) 0 0
\(307\) 1275.94 0.237204 0.118602 0.992942i \(-0.462159\pi\)
0.118602 + 0.992942i \(0.462159\pi\)
\(308\) 0 0
\(309\) 4376.10 0.805656
\(310\) 0 0
\(311\) 4768.42 8259.14i 0.869428 1.50589i 0.00684646 0.999977i \(-0.497821\pi\)
0.862582 0.505917i \(-0.168846\pi\)
\(312\) 0 0
\(313\) 2908.28 1679.09i 0.525193 0.303220i −0.213864 0.976864i \(-0.568605\pi\)
0.739057 + 0.673643i \(0.235272\pi\)
\(314\) 0 0
\(315\) −779.977 1411.68i −0.139513 0.252505i
\(316\) 0 0
\(317\) 307.211 + 532.105i 0.0544312 + 0.0942775i 0.891957 0.452120i \(-0.149332\pi\)
−0.837526 + 0.546398i \(0.815999\pi\)
\(318\) 0 0
\(319\) 1149.23 + 663.509i 0.201707 + 0.116456i
\(320\) 0 0
\(321\) 2769.30i 0.481518i
\(322\) 0 0
\(323\) 1526.01i 0.262878i
\(324\) 0 0
\(325\) −480.430 277.376i −0.0819983 0.0473418i
\(326\) 0 0
\(327\) 619.493 + 1072.99i 0.104765 + 0.181458i
\(328\) 0 0
\(329\) −76.9279 + 4085.89i −0.0128911 + 0.684689i
\(330\) 0 0
\(331\) 4203.73 2427.02i 0.698060 0.403025i −0.108564 0.994089i \(-0.534625\pi\)
0.806624 + 0.591064i \(0.201292\pi\)
\(332\) 0 0
\(333\) 1568.43 2716.60i 0.258106 0.447053i
\(334\) 0 0
\(335\) −4204.57 −0.685732
\(336\) 0 0
\(337\) 5807.46 0.938732 0.469366 0.883004i \(-0.344482\pi\)
0.469366 + 0.883004i \(0.344482\pi\)
\(338\) 0 0
\(339\) 1587.31 2749.30i 0.254309 0.440477i
\(340\) 0 0
\(341\) 2251.76 1300.05i 0.357594 0.206457i
\(342\) 0 0
\(343\) 358.573 6342.32i 0.0564464 0.998406i
\(344\) 0 0
\(345\) −2647.27 4585.20i −0.413113 0.715533i
\(346\) 0 0
\(347\) 9692.95 + 5596.23i 1.49955 + 0.865767i 1.00000 0.000516671i \(-0.000164462\pi\)
0.499552 + 0.866284i \(0.333498\pi\)
\(348\) 0 0
\(349\) 5155.92i 0.790802i 0.918509 + 0.395401i \(0.129394\pi\)
−0.918509 + 0.395401i \(0.870606\pi\)
\(350\) 0 0
\(351\) 477.410i 0.0725991i
\(352\) 0 0
\(353\) 2631.52 + 1519.31i 0.396776 + 0.229079i 0.685092 0.728457i \(-0.259762\pi\)
−0.288316 + 0.957535i \(0.593095\pi\)
\(354\) 0 0
\(355\) 1692.60 + 2931.67i 0.253053 + 0.438301i
\(356\) 0 0
\(357\) −2229.63 41.9788i −0.330545 0.00622340i
\(358\) 0 0
\(359\) −538.963 + 311.170i −0.0792350 + 0.0457463i −0.539094 0.842246i \(-0.681233\pi\)
0.459859 + 0.887992i \(0.347900\pi\)
\(360\) 0 0
\(361\) 2706.72 4688.18i 0.394624 0.683508i
\(362\) 0 0
\(363\) 3586.58 0.518585
\(364\) 0 0
\(365\) 4812.90 0.690188
\(366\) 0 0
\(367\) −1037.16 + 1796.41i −0.147518 + 0.255509i −0.930310 0.366775i \(-0.880462\pi\)
0.782791 + 0.622284i \(0.213795\pi\)
\(368\) 0 0
\(369\) 1047.22 604.612i 0.147740 0.0852976i
\(370\) 0 0
\(371\) −8841.78 + 4885.23i −1.23731 + 0.683635i
\(372\) 0 0
\(373\) −3695.78 6401.28i −0.513030 0.888594i −0.999886 0.0151118i \(-0.995190\pi\)
0.486856 0.873482i \(-0.338144\pi\)
\(374\) 0 0
\(375\) 3931.11 + 2269.62i 0.541337 + 0.312541i
\(376\) 0 0
\(377\) 2015.93i 0.275400i
\(378\) 0 0
\(379\) 3265.03i 0.442515i −0.975215 0.221258i \(-0.928984\pi\)
0.975215 0.221258i \(-0.0710162\pi\)
\(380\) 0 0
\(381\) −6718.66 3879.02i −0.903431 0.521596i
\(382\) 0 0
\(383\) −5541.74 9598.58i −0.739347 1.28059i −0.952790 0.303630i \(-0.901801\pi\)
0.213443 0.976955i \(-0.431532\pi\)
\(384\) 0 0
\(385\) 1786.41 + 1076.72i 0.236478 + 0.142532i
\(386\) 0 0
\(387\) −438.009 + 252.885i −0.0575329 + 0.0332167i
\(388\) 0 0
\(389\) 2739.46 4744.89i 0.357060 0.618445i −0.630409 0.776263i \(-0.717113\pi\)
0.987468 + 0.157818i \(0.0504460\pi\)
\(390\) 0 0
\(391\) −7320.65 −0.946858
\(392\) 0 0
\(393\) −2358.79 −0.302762
\(394\) 0 0
\(395\) −2018.61 + 3496.33i −0.257132 + 0.445366i
\(396\) 0 0
\(397\) −10548.3 + 6090.06i −1.33351 + 0.769903i −0.985836 0.167712i \(-0.946362\pi\)
−0.347675 + 0.937615i \(0.613029\pi\)
\(398\) 0 0
\(399\) −1809.22 1090.47i −0.227004 0.136822i
\(400\) 0 0
\(401\) 1770.00 + 3065.73i 0.220423 + 0.381783i 0.954936 0.296811i \(-0.0959230\pi\)
−0.734514 + 0.678594i \(0.762590\pi\)
\(402\) 0 0
\(403\) 3420.74 + 1974.97i 0.422827 + 0.244120i
\(404\) 0 0
\(405\) 783.760i 0.0961613i
\(406\) 0 0
\(407\) 4056.78i 0.494072i
\(408\) 0 0
\(409\) −8286.58 4784.26i −1.00182 0.578402i −0.0930351 0.995663i \(-0.529657\pi\)
−0.908787 + 0.417261i \(0.862990\pi\)
\(410\) 0 0
\(411\) 2204.22 + 3817.82i 0.264540 + 0.458197i
\(412\) 0 0
\(413\) −8713.52 + 4814.36i −1.03817 + 0.573606i
\(414\) 0 0
\(415\) −345.854 + 199.679i −0.0409092 + 0.0236189i
\(416\) 0 0
\(417\) 2380.63 4123.36i 0.279568 0.484225i
\(418\) 0 0
\(419\) −14604.7 −1.70284 −0.851418 0.524488i \(-0.824257\pi\)
−0.851418 + 0.524488i \(0.824257\pi\)
\(420\) 0 0
\(421\) −1561.17 −0.180729 −0.0903645 0.995909i \(-0.528803\pi\)
−0.0903645 + 0.995909i \(0.528803\pi\)
\(422\) 0 0
\(423\) −992.954 + 1719.85i −0.114135 + 0.197688i
\(424\) 0 0
\(425\) 1090.55 629.627i 0.124469 0.0718621i
\(426\) 0 0
\(427\) −7315.11 137.727i −0.829047 0.0156090i
\(428\) 0 0
\(429\) −308.708 534.699i −0.0347426 0.0601760i
\(430\) 0 0
\(431\) −5340.58 3083.39i −0.596861 0.344598i 0.170945 0.985281i \(-0.445318\pi\)
−0.767806 + 0.640683i \(0.778651\pi\)
\(432\) 0 0
\(433\) 10063.2i 1.11688i 0.829545 + 0.558439i \(0.188600\pi\)
−0.829545 + 0.558439i \(0.811400\pi\)
\(434\) 0 0
\(435\) 3309.53i 0.364781i
\(436\) 0 0
\(437\) −6005.59 3467.33i −0.657406 0.379553i
\(438\) 0 0
\(439\) 4671.71 + 8091.64i 0.507901 + 0.879710i 0.999958 + 0.00914752i \(0.00291179\pi\)
−0.492057 + 0.870563i \(0.663755\pi\)
\(440\) 0 0
\(441\) 1643.04 2613.43i 0.177415 0.282197i
\(442\) 0 0
\(443\) −11420.3 + 6593.53i −1.22482 + 0.707152i −0.965942 0.258758i \(-0.916687\pi\)
−0.258881 + 0.965909i \(0.583354\pi\)
\(444\) 0 0
\(445\) 403.656 699.153i 0.0430003 0.0744788i
\(446\) 0 0
\(447\) 8789.02 0.929992
\(448\) 0 0
\(449\) 9537.25 1.00243 0.501215 0.865323i \(-0.332887\pi\)
0.501215 + 0.865323i \(0.332887\pi\)
\(450\) 0 0
\(451\) −781.922 + 1354.33i −0.0816392 + 0.141403i
\(452\) 0 0
\(453\) 1315.02 759.226i 0.136391 0.0787452i
\(454\) 0 0
\(455\) −59.6476 + 3168.08i −0.00614577 + 0.326422i
\(456\) 0 0
\(457\) −7608.39 13178.1i −0.778787 1.34890i −0.932641 0.360804i \(-0.882502\pi\)
0.153855 0.988093i \(-0.450831\pi\)
\(458\) 0 0
\(459\) −938.504 541.845i −0.0954371 0.0551006i
\(460\) 0 0
\(461\) 18561.3i 1.87524i 0.347666 + 0.937618i \(0.386974\pi\)
−0.347666 + 0.937618i \(0.613026\pi\)
\(462\) 0 0
\(463\) 11389.0i 1.14318i 0.820540 + 0.571589i \(0.193673\pi\)
−0.820540 + 0.571589i \(0.806327\pi\)
\(464\) 0 0
\(465\) −5615.80 3242.29i −0.560057 0.323349i
\(466\) 0 0
\(467\) 6437.45 + 11150.0i 0.637880 + 1.10484i 0.985897 + 0.167352i \(0.0535217\pi\)
−0.348017 + 0.937488i \(0.613145\pi\)
\(468\) 0 0
\(469\) −3891.93 7044.01i −0.383183 0.693523i
\(470\) 0 0
\(471\) −3113.39 + 1797.52i −0.304581 + 0.175850i
\(472\) 0 0
\(473\) 327.046 566.461i 0.0317920 0.0550653i
\(474\) 0 0
\(475\) 1192.86 0.115225
\(476\) 0 0
\(477\) −4908.92 −0.471204
\(478\) 0 0
\(479\) 7612.67 13185.5i 0.726163 1.25775i −0.232331 0.972637i \(-0.574635\pi\)
0.958494 0.285114i \(-0.0920315\pi\)
\(480\) 0 0
\(481\) −5337.17 + 3081.42i −0.505934 + 0.292101i
\(482\) 0 0
\(483\) 5231.26 8679.28i 0.492817 0.817641i
\(484\) 0 0
\(485\) −5298.34 9177.00i −0.496052 0.859187i
\(486\) 0 0
\(487\) −7146.25 4125.89i −0.664943 0.383905i 0.129215 0.991617i \(-0.458754\pi\)
−0.794158 + 0.607711i \(0.792088\pi\)
\(488\) 0 0
\(489\) 8293.05i 0.766922i
\(490\) 0 0
\(491\) 11192.2i 1.02871i 0.857576 + 0.514357i \(0.171969\pi\)
−0.857576 + 0.514357i \(0.828031\pi\)
\(492\) 0 0
\(493\) −3962.96 2288.02i −0.362034 0.209020i
\(494\) 0 0
\(495\) 506.804 + 877.810i 0.0460184 + 0.0797063i
\(496\) 0 0
\(497\) −3344.75 + 5549.33i −0.301876 + 0.500848i
\(498\) 0 0
\(499\) 8448.83 4877.93i 0.757959 0.437608i −0.0706035 0.997504i \(-0.522493\pi\)
0.828562 + 0.559897i \(0.189159\pi\)
\(500\) 0 0
\(501\) 2711.20 4695.94i 0.241772 0.418761i
\(502\) 0 0
\(503\) −16561.4 −1.46806 −0.734031 0.679116i \(-0.762363\pi\)
−0.734031 + 0.679116i \(0.762363\pi\)
\(504\) 0 0
\(505\) 11428.1 1.00702
\(506\) 0 0
\(507\) −2826.53 + 4895.69i −0.247595 + 0.428847i
\(508\) 0 0
\(509\) 2806.22 1620.17i 0.244368 0.141086i −0.372815 0.927906i \(-0.621607\pi\)
0.617183 + 0.786820i \(0.288274\pi\)
\(510\) 0 0
\(511\) 4455.02 + 8063.15i 0.385673 + 0.698029i
\(512\) 0 0
\(513\) −513.276 889.019i −0.0441748 0.0765130i
\(514\) 0 0
\(515\) 12223.5 + 7057.23i 1.04589 + 0.603842i
\(516\) 0 0
\(517\) 2568.30i 0.218479i
\(518\) 0 0
\(519\) 8637.60i 0.730537i
\(520\) 0 0
\(521\) 13536.7 + 7815.42i 1.13830 + 0.657197i 0.946009 0.324141i \(-0.105075\pi\)
0.192290 + 0.981338i \(0.438409\pi\)
\(522\) 0 0
\(523\) −4745.38 8219.24i −0.396751 0.687194i 0.596572 0.802560i \(-0.296529\pi\)
−0.993323 + 0.115366i \(0.963196\pi\)
\(524\) 0 0
\(525\) −32.8141 + 1742.86i −0.00272785 + 0.144885i
\(526\) 0 0
\(527\) −7764.87 + 4483.05i −0.641828 + 0.370559i
\(528\) 0 0
\(529\) 10550.1 18273.3i 0.867108 1.50188i
\(530\) 0 0
\(531\) −4837.71 −0.395365
\(532\) 0 0
\(533\) −2375.70 −0.193064
\(534\) 0 0
\(535\) −4465.98 + 7735.30i −0.360899 + 0.625096i
\(536\) 0 0
\(537\) −1435.59 + 828.837i −0.115363 + 0.0666051i
\(538\) 0 0
\(539\) −150.278 + 3989.47i −0.0120092 + 0.318810i
\(540\) 0 0
\(541\) 3936.37 + 6818.00i 0.312824 + 0.541827i 0.978973 0.203992i \(-0.0653916\pi\)
−0.666148 + 0.745819i \(0.732058\pi\)
\(542\) 0 0
\(543\) −5914.86 3414.95i −0.467460 0.269888i
\(544\) 0 0
\(545\) 3996.16i 0.314086i
\(546\) 0 0
\(547\) 208.051i 0.0162626i −0.999967 0.00813129i \(-0.997412\pi\)
0.999967 0.00813129i \(-0.00258830\pi\)
\(548\) 0 0
\(549\) −3079.10 1777.72i −0.239368 0.138199i
\(550\) 0 0
\(551\) −2167.38 3754.00i −0.167574 0.290247i
\(552\) 0 0
\(553\) −7726.00 145.463i −0.594110 0.0111857i
\(554\) 0 0
\(555\) 8761.98 5058.73i 0.670136 0.386903i
\(556\) 0 0
\(557\) −12417.6 + 21508.0i −0.944618 + 1.63613i −0.188104 + 0.982149i \(0.560234\pi\)
−0.756514 + 0.653977i \(0.773099\pi\)
\(558\) 0 0
\(559\) 993.660 0.0751831
\(560\) 0 0
\(561\) 1401.50 0.105475
\(562\) 0 0
\(563\) −7475.61 + 12948.1i −0.559608 + 0.969269i 0.437921 + 0.899013i \(0.355715\pi\)
−0.997529 + 0.0702559i \(0.977618\pi\)
\(564\) 0 0
\(565\) 8867.46 5119.63i 0.660278 0.381211i
\(566\) 0 0
\(567\) 1313.05 725.482i 0.0972538 0.0537343i
\(568\) 0 0
\(569\) 1192.58 + 2065.60i 0.0878655 + 0.152187i 0.906609 0.421972i \(-0.138662\pi\)
−0.818743 + 0.574160i \(0.805329\pi\)
\(570\) 0 0
\(571\) −8201.71 4735.26i −0.601105 0.347048i 0.168371 0.985724i \(-0.446149\pi\)
−0.769476 + 0.638676i \(0.779483\pi\)
\(572\) 0 0
\(573\) 14191.3i 1.03464i
\(574\) 0 0
\(575\) 5722.42i 0.415029i
\(576\) 0 0
\(577\) −6291.15 3632.20i −0.453907 0.262063i 0.255572 0.966790i \(-0.417736\pi\)
−0.709479 + 0.704727i \(0.751070\pi\)
\(578\) 0 0
\(579\) −5315.25 9206.29i −0.381510 0.660795i
\(580\) 0 0
\(581\) −654.664 394.585i −0.0467470 0.0281758i
\(582\) 0 0
\(583\) 5497.98 3174.26i 0.390572 0.225497i
\(584\) 0 0
\(585\) −769.907 + 1333.52i −0.0544132 + 0.0942465i
\(586\) 0 0
\(587\) −9116.08 −0.640990 −0.320495 0.947250i \(-0.603849\pi\)
−0.320495 + 0.947250i \(0.603849\pi\)
\(588\) 0 0
\(589\) −8493.35 −0.594163
\(590\) 0 0
\(591\) −5217.59 + 9037.14i −0.363153 + 0.628999i
\(592\) 0 0
\(593\) 8328.11 4808.23i 0.576719 0.332969i −0.183109 0.983093i \(-0.558616\pi\)
0.759828 + 0.650124i \(0.225283\pi\)
\(594\) 0 0
\(595\) −6160.18 3712.93i −0.424442 0.255824i
\(596\) 0 0
\(597\) −3110.28 5387.15i −0.213225 0.369316i
\(598\) 0 0
\(599\) 11917.3 + 6880.48i 0.812904 + 0.469330i 0.847963 0.530055i \(-0.177829\pi\)
−0.0350594 + 0.999385i \(0.511162\pi\)
\(600\) 0 0
\(601\) 21447.9i 1.45570i −0.685735 0.727851i \(-0.740519\pi\)
0.685735 0.727851i \(-0.259481\pi\)
\(602\) 0 0
\(603\) 3910.81i 0.264113i
\(604\) 0 0
\(605\) 10018.1 + 5783.98i 0.673216 + 0.388681i
\(606\) 0 0
\(607\) 9809.66 + 16990.8i 0.655950 + 1.13614i 0.981655 + 0.190668i \(0.0610652\pi\)
−0.325704 + 0.945472i \(0.605601\pi\)
\(608\) 0 0
\(609\) 5544.53 3063.45i 0.368926 0.203838i
\(610\) 0 0
\(611\) 3378.90 1950.81i 0.223725 0.129167i
\(612\) 0 0
\(613\) −4758.18 + 8241.41i −0.313509 + 0.543013i −0.979119 0.203286i \(-0.934838\pi\)
0.665610 + 0.746299i \(0.268171\pi\)
\(614\) 0 0
\(615\) 3900.17 0.255723
\(616\) 0 0
\(617\) 5047.07 0.329315 0.164658 0.986351i \(-0.447348\pi\)
0.164658 + 0.986351i \(0.447348\pi\)
\(618\) 0 0
\(619\) −1926.89 + 3337.47i −0.125118 + 0.216711i −0.921779 0.387715i \(-0.873264\pi\)
0.796661 + 0.604426i \(0.206598\pi\)
\(620\) 0 0
\(621\) 4264.84 2462.31i 0.275591 0.159113i
\(622\) 0 0
\(623\) 1544.95 + 29.0878i 0.0993532 + 0.00187059i
\(624\) 0 0
\(625\) 5359.45 + 9282.84i 0.343005 + 0.594102i
\(626\) 0 0
\(627\) 1149.74 + 663.800i 0.0732313 + 0.0422801i
\(628\) 0 0
\(629\) 13989.2i 0.886785i
\(630\) 0 0
\(631\) 13161.7i 0.830365i −0.909738 0.415182i \(-0.863718\pi\)
0.909738 0.415182i \(-0.136282\pi\)
\(632\) 0 0
\(633\) 623.027 + 359.705i 0.0391202 + 0.0225861i
\(634\) 0 0
\(635\) −12511.2 21670.0i −0.781876 1.35425i
\(636\) 0 0
\(637\) −5362.76 + 2832.58i −0.333564 + 0.176187i
\(638\) 0 0
\(639\) −2726.84 + 1574.34i −0.168814 + 0.0974648i
\(640\) 0 0
\(641\) −7786.29 + 13486.2i −0.479781 + 0.831006i −0.999731 0.0231911i \(-0.992617\pi\)
0.519950 + 0.854197i \(0.325951\pi\)
\(642\) 0 0
\(643\) 16136.6 0.989681 0.494840 0.868984i \(-0.335227\pi\)
0.494840 + 0.868984i \(0.335227\pi\)
\(644\) 0 0
\(645\) −1631.28 −0.0995840
\(646\) 0 0
\(647\) 15768.6 27311.9i 0.958155 1.65957i 0.231177 0.972912i \(-0.425742\pi\)
0.726978 0.686661i \(-0.240924\pi\)
\(648\) 0 0
\(649\) 5418.23 3128.22i 0.327710 0.189204i
\(650\) 0 0
\(651\) 233.642 12409.5i 0.0140663 0.747105i
\(652\) 0 0
\(653\) −762.710 1321.05i −0.0457077 0.0791681i 0.842266 0.539061i \(-0.181221\pi\)
−0.887974 + 0.459893i \(0.847888\pi\)
\(654\) 0 0
\(655\) −6588.66 3803.96i −0.393039 0.226921i
\(656\) 0 0
\(657\) 4476.63i 0.265829i
\(658\) 0 0
\(659\) 18237.7i 1.07806i −0.842288 0.539028i \(-0.818792\pi\)
0.842288 0.539028i \(-0.181208\pi\)
\(660\) 0 0
\(661\) −8986.00 5188.07i −0.528767 0.305284i 0.211747 0.977324i \(-0.432085\pi\)
−0.740514 + 0.672041i \(0.765418\pi\)
\(662\) 0 0
\(663\) 1064.54 + 1843.83i 0.0623578 + 0.108007i
\(664\) 0 0
\(665\) −3295.01 5963.63i −0.192143 0.347759i
\(666\) 0 0
\(667\) 18008.9 10397.4i 1.04544 0.603583i
\(668\) 0 0
\(669\) −1461.26 + 2530.98i −0.0844480 + 0.146268i
\(670\) 0 0
\(671\) 4598.12 0.264543
\(672\) 0 0
\(673\) 25836.8 1.47984 0.739922 0.672692i \(-0.234862\pi\)
0.739922 + 0.672692i \(0.234862\pi\)
\(674\) 0 0
\(675\) −423.551 + 733.611i −0.0241518 + 0.0418322i
\(676\) 0 0
\(677\) −1617.08 + 933.621i −0.0918012 + 0.0530014i −0.545198 0.838307i \(-0.683545\pi\)
0.453397 + 0.891309i \(0.350212\pi\)
\(678\) 0 0
\(679\) 10470.0 17371.0i 0.591758 0.981796i
\(680\) 0 0
\(681\) 2470.20 + 4278.51i 0.138999 + 0.240753i
\(682\) 0 0
\(683\) 8719.37 + 5034.13i 0.488488 + 0.282029i 0.723947 0.689856i \(-0.242326\pi\)
−0.235459 + 0.971884i \(0.575659\pi\)
\(684\) 0 0
\(685\) 14218.7i 0.793095i
\(686\) 0 0
\(687\) 17837.8i 0.990618i
\(688\) 0 0
\(689\) 8352.23 + 4822.16i 0.461821 + 0.266632i
\(690\) 0 0
\(691\) 3390.20 + 5872.00i 0.186642 + 0.323273i 0.944128 0.329578i \(-0.106906\pi\)
−0.757487 + 0.652850i \(0.773573\pi\)
\(692\) 0 0
\(693\) −1001.49 + 1661.60i −0.0548970 + 0.0910806i
\(694\) 0 0
\(695\) 13299.3 7678.35i 0.725857 0.419074i
\(696\) 0 0
\(697\) 2696.35 4670.21i 0.146530 0.253797i
\(698\) 0 0
\(699\) 13079.2 0.707724
\(700\) 0 0
\(701\) −7053.80 −0.380054 −0.190027 0.981779i \(-0.560858\pi\)
−0.190027 + 0.981779i \(0.560858\pi\)
\(702\) 0 0
\(703\) 6625.81 11476.2i 0.355473 0.615697i
\(704\) 0 0
\(705\) −5547.11 + 3202.62i −0.296335 + 0.171089i
\(706\) 0 0
\(707\) 10578.4 + 19145.8i 0.562716 + 1.01846i
\(708\) 0 0
\(709\) 10813.0 + 18728.6i 0.572763 + 0.992055i 0.996281 + 0.0861673i \(0.0274620\pi\)
−0.423517 + 0.905888i \(0.639205\pi\)
\(710\) 0 0
\(711\) −3252.05 1877.57i −0.171535 0.0990359i
\(712\) 0 0
\(713\) 40744.6i 2.14011i
\(714\) 0 0
\(715\) 1991.39i 0.104159i
\(716\) 0 0
\(717\) 6155.63 + 3553.96i 0.320623 + 0.185112i
\(718\) 0 0
\(719\) −15990.5 27696.4i −0.829410 1.43658i −0.898502 0.438970i \(-0.855343\pi\)
0.0690914 0.997610i \(-0.477990\pi\)
\(720\) 0 0
\(721\) −508.550 + 27010.7i −0.0262682 + 1.39519i
\(722\) 0 0
\(723\) 4675.02 2699.12i 0.240478 0.138840i
\(724\) 0 0
\(725\) −1788.50 + 3097.77i −0.0916182 + 0.158687i
\(726\) 0 0
\(727\) 14884.7 0.759342 0.379671 0.925122i \(-0.376037\pi\)
0.379671 + 0.925122i \(0.376037\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −1127.77 + 1953.36i −0.0570618 + 0.0988340i
\(732\) 0 0
\(733\) −11723.4 + 6768.50i −0.590741 + 0.341064i −0.765390 0.643566i \(-0.777454\pi\)
0.174650 + 0.984631i \(0.444121\pi\)
\(734\) 0 0
\(735\) 8804.00 4650.22i 0.441824 0.233369i
\(736\) 0 0
\(737\) 2528.85 + 4380.10i 0.126393 + 0.218918i
\(738\) 0 0
\(739\) −28810.2 16633.6i −1.43410 0.827979i −0.436671 0.899621i \(-0.643842\pi\)
−0.997430 + 0.0716429i \(0.977176\pi\)
\(740\) 0 0
\(741\) 2016.81i 0.0999859i
\(742\) 0 0
\(743\) 22712.5i 1.12145i −0.828001 0.560726i \(-0.810522\pi\)
0.828001 0.560726i \(-0.189478\pi\)
\(744\) 0 0
\(745\) 24549.8 + 14173.8i 1.20729 + 0.697032i
\(746\) 0 0
\(747\) −185.728 321.690i −0.00909695 0.0157564i
\(748\) 0 0
\(749\) −17093.0 321.822i −0.833865 0.0156998i
\(750\) 0 0
\(751\) 753.214 434.868i 0.0365981 0.0211299i −0.481589 0.876397i \(-0.659940\pi\)
0.518187 + 0.855267i \(0.326607\pi\)
\(752\) 0 0
\(753\) 747.574 1294.84i 0.0361794 0.0626646i
\(754\) 0 0
\(755\) 4897.54 0.236079
\(756\) 0 0
\(757\) −31483.2 −1.51159 −0.755797 0.654806i \(-0.772750\pi\)
−0.755797 + 0.654806i \(0.772750\pi\)
\(758\) 0 0
\(759\) −3184.41 + 5515.56i −0.152288 + 0.263771i
\(760\) 0 0
\(761\) 29232.2 16877.2i 1.39247 0.803940i 0.398878 0.917004i \(-0.369400\pi\)
0.993588 + 0.113064i \(0.0360664\pi\)
\(762\) 0 0
\(763\) −6694.86 + 3699.02i −0.317654 + 0.175509i
\(764\) 0 0
\(765\) −1747.64 3027.00i −0.0825962 0.143061i
\(766\) 0 0
\(767\) 8231.06 + 4752.21i 0.387492 + 0.223719i
\(768\) 0 0
\(769\) 23724.6i 1.11252i 0.831007 + 0.556262i \(0.187765\pi\)
−0.831007 + 0.556262i \(0.812235\pi\)
\(770\) 0 0
\(771\) 13223.2i 0.617667i
\(772\) 0 0
\(773\) 11462.1 + 6617.65i 0.533329 + 0.307917i 0.742371 0.669989i \(-0.233701\pi\)
−0.209042 + 0.977907i \(0.567035\pi\)
\(774\) 0 0
\(775\) 3504.32 + 6069.66i 0.162424 + 0.281327i
\(776\) 0 0
\(777\) 16585.5 + 9996.56i 0.765766 + 0.461550i
\(778\) 0 0
\(779\) 4423.96 2554.18i 0.203472 0.117475i
\(780\) 0 0
\(781\) 2036.04 3526.52i 0.0932845 0.161573i
\(782\) 0 0
\(783\) 3078.30 0.140497
\(784\) 0 0
\(785\) −11595.3 −0.527200
\(786\) 0 0
\(787\) −20103.4 + 34820.2i −0.910559 + 1.57713i −0.0972819 + 0.995257i \(0.531015\pi\)
−0.813277 + 0.581877i \(0.802319\pi\)
\(788\) 0 0
\(789\) −2026.73 + 1170.13i −0.0914493 + 0.0527983i
\(790\) 0 0
\(791\) 16785.1 + 10116.9i 0.754501 + 0.454760i
\(792\) 0 0
\(793\) 3492.60 + 6049.36i 0.156401 + 0.270894i
\(794\) 0 0
\(795\) −13711.8 7916.49i −0.611706 0.353169i
\(796\) 0 0
\(797\) 19842.4i 0.881874i −0.897538 0.440937i \(-0.854646\pi\)
0.897538 0.440937i \(-0.145354\pi\)
\(798\) 0 0
\(799\) 8856.43i 0.392137i
\(800\) 0 0
\(801\) 650.305 + 375.454i 0.0286859 + 0.0165618i
\(802\) 0 0
\(803\) −2894.73 5013.82i −0.127214 0.220341i
\(804\) 0 0
\(805\) 28609.0 15806.9i 1.25259 0.692076i
\(806\) 0 0
\(807\) −16142.1 + 9319.65i −0.704125 + 0.406527i
\(808\) 0 0
\(809\) 5697.97 9869.17i 0.247626 0.428902i −0.715240 0.698879i \(-0.753683\pi\)
0.962867 + 0.269977i \(0.0870161\pi\)
\(810\) 0 0
\(811\) −8614.59 −0.372995 −0.186498 0.982455i \(-0.559714\pi\)
−0.186498 + 0.982455i \(0.559714\pi\)
\(812\) 0 0
\(813\) 1349.18 0.0582015
\(814\) 0 0
\(815\) 13374.0 23164.4i 0.574811 0.995601i
\(816\) 0 0
\(817\) −1850.36 + 1068.31i −0.0792363 + 0.0457471i
\(818\) 0 0
\(819\) −2946.73 55.4802i −0.125723 0.00236707i
\(820\) 0 0
\(821\) −5237.17 9071.05i −0.222629 0.385605i 0.732976 0.680254i \(-0.238131\pi\)
−0.955606 + 0.294649i \(0.904797\pi\)
\(822\) 0 0
\(823\) −33091.3 19105.3i −1.40157 0.809195i −0.407013 0.913422i \(-0.633430\pi\)
−0.994554 + 0.104227i \(0.966763\pi\)
\(824\) 0 0
\(825\) 1095.52i 0.0462318i
\(826\) 0 0
\(827\) 11066.3i 0.465311i 0.972559 + 0.232656i \(0.0747415\pi\)
−0.972559 + 0.232656i \(0.925259\pi\)
\(828\) 0 0
\(829\) 10825.0 + 6249.82i 0.453520 + 0.261840i 0.709316 0.704891i \(-0.249004\pi\)
−0.255796 + 0.966731i \(0.582337\pi\)
\(830\) 0 0
\(831\) 8752.72 + 15160.2i 0.365377 + 0.632852i
\(832\) 0 0
\(833\) 518.214 13757.1i 0.0215547 0.572217i
\(834\) 0 0
\(835\) 15146.1 8744.58i 0.627725 0.362417i
\(836\) 0 0
\(837\) 3015.75 5223.44i 0.124540 0.215709i
\(838\) 0 0
\(839\) −6337.87 −0.260796 −0.130398 0.991462i \(-0.541625\pi\)
−0.130398 + 0.991462i \(0.541625\pi\)
\(840\) 0 0
\(841\) −11390.5 −0.467032
\(842\) 0 0
\(843\) −10407.5 + 18026.3i −0.425211 + 0.736488i
\(844\) 0 0
\(845\) −15790.3 + 9116.54i −0.642844 + 0.371146i
\(846\) 0 0
\(847\) −416.798 + 22137.5i −0.0169083 + 0.898057i
\(848\) 0 0
\(849\) 11223.0 + 19438.9i 0.453679 + 0.785795i
\(850\) 0 0
\(851\) 55054.3 + 31785.6i 2.21767 + 1.28037i
\(852\) 0 0
\(853\) 39868.4i 1.60032i −0.599789 0.800158i \(-0.704749\pi\)
0.599789 0.800158i \(-0.295251\pi\)
\(854\) 0 0
\(855\) 3310.99i 0.132437i
\(856\) 0 0
\(857\) −30182.6 17425.9i −1.20305 0.694584i −0.241821 0.970321i \(-0.577745\pi\)
−0.961233 + 0.275737i \(0.911078\pi\)
\(858\) 0 0
\(859\) −13997.5 24244.3i −0.555981 0.962987i −0.997826 0.0658962i \(-0.979009\pi\)
0.441845 0.897091i \(-0.354324\pi\)
\(860\) 0 0
\(861\) 3610.16 + 6534.03i 0.142897 + 0.258629i
\(862\) 0 0
\(863\) −19275.3 + 11128.6i −0.760300 + 0.438960i −0.829404 0.558650i \(-0.811320\pi\)
0.0691032 + 0.997610i \(0.477986\pi\)
\(864\) 0 0
\(865\) −13929.6 + 24126.8i −0.547540 + 0.948366i
\(866\) 0 0
\(867\) 9906.14 0.388039
\(868\) 0 0
\(869\) 4856.39 0.189576
\(870\) 0 0
\(871\) −3841.68 + 6653.99i −0.149450 + 0.258854i
\(872\) 0 0
\(873\) 8535.82 4928.16i 0.330921 0.191057i
\(874\) 0 0
\(875\) −14465.7 + 24000.3i −0.558891 + 0.927267i
\(876\) 0 0
\(877\) 19876.7 + 34427.5i 0.765325 + 1.32558i 0.940075 + 0.340969i \(0.110755\pi\)
−0.174749 + 0.984613i \(0.555912\pi\)
\(878\) 0 0
\(879\) −23994.9 13853.5i −0.920737 0.531588i
\(880\) 0 0
\(881\) 16721.9i 0.639473i −0.947506 0.319737i \(-0.896406\pi\)
0.947506 0.319737i \(-0.103594\pi\)
\(882\) 0 0
\(883\) 30714.2i 1.17057i −0.810826 0.585287i \(-0.800982\pi\)
0.810826 0.585287i \(-0.199018\pi\)
\(884\) 0 0
\(885\) −13512.9 7801.65i −0.513254 0.296327i
\(886\) 0 0
\(887\) 14302.2 + 24772.1i 0.541398 + 0.937729i 0.998824 + 0.0484811i \(0.0154381\pi\)
−0.457426 + 0.889248i \(0.651229\pi\)
\(888\) 0 0
\(889\) 24723.3 41019.0i 0.932727 1.54750i
\(890\) 0 0
\(891\) −816.479 + 471.394i −0.0306993 + 0.0177242i
\(892\) 0 0
\(893\) −4194.73 + 7265.48i −0.157191 + 0.272262i
\(894\) 0 0
\(895\) −5346.57 −0.199683
\(896\) 0 0
\(897\) −9675.14 −0.360138
\(898\) 0 0
\(899\) 12734.4 22056.7i 0.472433 0.818277i
\(900\) 0 0
\(901\) −18959.0 + 10946.0i −0.701017 + 0.404733i
\(902\) 0 0
\(903\) −1509.98 2732.92i −0.0556469 0.100715i
\(904\) 0 0
\(905\) −11014.4 19077.5i −0.404564 0.700726i
\(906\) 0 0
\(907\) 44227.6 + 25534.8i 1.61913 + 0.934807i 0.987145 + 0.159828i \(0.0510940\pi\)
0.631988 + 0.774979i \(0.282239\pi\)
\(908\) 0 0
\(909\) 10629.7i 0.387859i
\(910\) 0 0
\(911\) 20799.6i 0.756444i −0.925715 0.378222i \(-0.876536\pi\)
0.925715 0.378222i \(-0.123464\pi\)
\(912\) 0 0
\(913\) 416.030 + 240.195i 0.0150806 + 0.00870678i
\(914\) 0 0
\(915\) −5733.77 9931.18i −0.207161 0.358814i
\(916\) 0 0
\(917\) 274.117 14559.2i 0.00987147 0.524306i
\(918\) 0 0
\(919\) −37548.2 + 21678.5i −1.34777 + 0.778136i −0.987933 0.154879i \(-0.950501\pi\)
−0.359838 + 0.933015i \(0.617168\pi\)
\(920\) 0 0
\(921\) −1913.91 + 3314.98i −0.0684749 + 0.118602i
\(922\) 0 0
\(923\) 6186.07 0.220603
\(924\) 0 0
\(925\) −10935.1 −0.388697
\(926\) 0 0
\(927\) −6564.16 + 11369.5i −0.232573 + 0.402828i
\(928\) 0 0
\(929\) −6972.50 + 4025.58i −0.246244 + 0.142169i −0.618043 0.786144i \(-0.712074\pi\)
0.371799 + 0.928313i \(0.378741\pi\)
\(930\) 0 0
\(931\) 6941.00 11040.4i 0.244342 0.388651i
\(932\) 0 0
\(933\) 14305.3 + 24777.4i 0.501965 + 0.869428i
\(934\) 0 0
\(935\) 3914.71 + 2260.16i 0.136925 + 0.0790536i
\(936\) 0 0
\(937\) 23098.3i 0.805325i 0.915349 + 0.402663i \(0.131915\pi\)
−0.915349 + 0.402663i \(0.868085\pi\)
\(938\) 0 0
\(939\) 10074.6i 0.350129i
\(940\) 0 0
\(941\) 5766.38 + 3329.22i 0.199765 + 0.115334i 0.596546 0.802579i \(-0.296539\pi\)
−0.396781 + 0.917913i \(0.629873\pi\)
\(942\) 0 0
\(943\) 12253.0 + 21222.8i 0.423131 + 0.732884i
\(944\) 0 0
\(945\) 4837.62 + 91.0813i 0.166527 + 0.00313532i
\(946\) 0 0
\(947\) −20067.6 + 11586.0i −0.688604 + 0.397566i −0.803089 0.595859i \(-0.796812\pi\)
0.114485 + 0.993425i \(0.463478\pi\)
\(948\) 0 0
\(949\) 4397.51 7616.71i 0.150421 0.260536i
\(950\) 0 0
\(951\) −1843.26 −0.0628517
\(952\) 0 0
\(953\) −53982.2 −1.83490 −0.917448 0.397855i \(-0.869755\pi\)
−0.917448 + 0.397855i \(0.869755\pi\)
\(954\) 0 0
\(955\) −22885.9 + 39639.5i −0.775466 + 1.34315i
\(956\) 0 0
\(957\) −3447.69 + 1990.53i −0.116456 + 0.0672357i
\(958\) 0 0
\(959\) −23821.0 + 13161.5i −0.802105 + 0.443176i
\(960\) 0 0
\(961\) −10055.9 17417.3i −0.337547 0.584648i
\(962\) 0 0
\(963\) −7194.85 4153.95i −0.240759 0.139002i
\(964\) 0 0
\(965\) 34287.1i 1.14377i
\(966\) 0 0
\(967\) 38714.9i 1.28748i 0.765246 + 0.643738i \(0.222617\pi\)
−0.765246 + 0.643738i \(0.777383\pi\)
\(968\) 0 0
\(969\) −3964.70 2289.02i −0.131439 0.0758864i
\(970\) 0 0
\(971\) −8881.95 15384.0i −0.293548 0.508440i 0.681098 0.732192i \(-0.261503\pi\)
−0.974646 + 0.223752i \(0.928169\pi\)
\(972\) 0 0
\(973\) 25174.1 + 15173.2i 0.829439 + 0.499928i
\(974\) 0 0
\(975\) 1441.29 832.129i 0.0473418 0.0273328i
\(976\) 0 0
\(977\) −20708.6 + 35868.3i −0.678123 + 1.17454i 0.297422 + 0.954746i \(0.403873\pi\)
−0.975545 + 0.219798i \(0.929460\pi\)
\(978\) 0 0
\(979\) −971.121 −0.0317029
\(980\) 0 0
\(981\) −3716.96 −0.120972
\(982\) 0 0
\(983\) 21845.1 37836.8i 0.708800 1.22768i −0.256502 0.966544i \(-0.582570\pi\)
0.965302 0.261135i \(-0.0840967\pi\)
\(984\) 0 0
\(985\) −29147.9 + 16828.6i −0.942873 + 0.544368i
\(986\) 0 0
\(987\) −10500.1 6328.70i −0.338623 0.204098i
\(988\) 0 0
\(989\) −5124.93 8876.64i −0.164776 0.285400i
\(990\) 0 0
\(991\) −30670.9 17707.8i −0.983141 0.567617i −0.0799239 0.996801i \(-0.525468\pi\)
−0.903217 + 0.429184i \(0.858801\pi\)
\(992\) 0 0
\(993\) 14562.1i 0.465373i
\(994\) 0 0
\(995\) 20063.4i 0.639250i
\(996\) 0 0
\(997\) −22448.8 12960.8i −0.713100 0.411708i 0.0991081 0.995077i \(-0.468401\pi\)
−0.812208 + 0.583368i \(0.801734\pi\)
\(998\) 0 0
\(999\) 4705.29 + 8149.80i 0.149018 + 0.258106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bl.f.31.1 6
4.3 odd 2 336.4.bl.h.31.1 yes 6
7.5 odd 6 336.4.bl.h.271.1 yes 6
28.19 even 6 inner 336.4.bl.f.271.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bl.f.31.1 6 1.1 even 1 trivial
336.4.bl.f.271.1 yes 6 28.19 even 6 inner
336.4.bl.h.31.1 yes 6 4.3 odd 2
336.4.bl.h.271.1 yes 6 7.5 odd 6