Properties

Label 336.4.bl.c
Level 336336
Weight 44
Character orbit 336.bl
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bl (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ6+3)q3+(2ζ64)q5+(7ζ614)q79ζ6q9+(38ζ6+38)q11+(42ζ6+21)q13+(12ζ66)q15+(36ζ636)q17++(684ζ6+342)q99+O(q100) q + ( - 3 \zeta_{6} + 3) q^{3} + (2 \zeta_{6} - 4) q^{5} + ( - 7 \zeta_{6} - 14) q^{7} - 9 \zeta_{6} q^{9} + (38 \zeta_{6} + 38) q^{11} + ( - 42 \zeta_{6} + 21) q^{13} + (12 \zeta_{6} - 6) q^{15} + ( - 36 \zeta_{6} - 36) q^{17} + \cdots + ( - 684 \zeta_{6} + 342) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q36q535q79q9+114q11108q17115q1984q21336q23113q2554q27192q29209q31+342q33+126q35265q37189q39++690q95+O(q100) 2 q + 3 q^{3} - 6 q^{5} - 35 q^{7} - 9 q^{9} + 114 q^{11} - 108 q^{17} - 115 q^{19} - 84 q^{21} - 336 q^{23} - 113 q^{25} - 54 q^{27} - 192 q^{29} - 209 q^{31} + 342 q^{33} + 126 q^{35} - 265 q^{37} - 189 q^{39}+ \cdots + 690 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 2.59808i 0 −3.00000 + 1.73205i 0 −17.5000 6.06218i 0 −4.50000 7.79423i 0
271.1 0 1.50000 + 2.59808i 0 −3.00000 1.73205i 0 −17.5000 + 6.06218i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bl.c yes 2
4.b odd 2 1 336.4.bl.a 2
7.d odd 6 1 336.4.bl.a 2
28.f even 6 1 inner 336.4.bl.c yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.bl.a 2 4.b odd 2 1
336.4.bl.a 2 7.d odd 6 1
336.4.bl.c yes 2 1.a even 1 1 trivial
336.4.bl.c yes 2 28.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T52+6T5+12 T_{5}^{2} + 6T_{5} + 12 Copy content Toggle raw display
T112114T11+4332 T_{11}^{2} - 114T_{11} + 4332 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
55 T2+6T+12 T^{2} + 6T + 12 Copy content Toggle raw display
77 T2+35T+343 T^{2} + 35T + 343 Copy content Toggle raw display
1111 T2114T+4332 T^{2} - 114T + 4332 Copy content Toggle raw display
1313 T2+1323 T^{2} + 1323 Copy content Toggle raw display
1717 T2+108T+3888 T^{2} + 108T + 3888 Copy content Toggle raw display
1919 T2+115T+13225 T^{2} + 115T + 13225 Copy content Toggle raw display
2323 T2+336T+37632 T^{2} + 336T + 37632 Copy content Toggle raw display
2929 (T+96)2 (T + 96)^{2} Copy content Toggle raw display
3131 T2+209T+43681 T^{2} + 209T + 43681 Copy content Toggle raw display
3737 T2+265T+70225 T^{2} + 265T + 70225 Copy content Toggle raw display
4141 T2+122412 T^{2} + 122412 Copy content Toggle raw display
4343 T2+301467 T^{2} + 301467 Copy content Toggle raw display
4747 T2+66T+4356 T^{2} + 66T + 4356 Copy content Toggle raw display
5353 T2288T+82944 T^{2} - 288T + 82944 Copy content Toggle raw display
5959 T2+720T+518400 T^{2} + 720T + 518400 Copy content Toggle raw display
6161 T2+840T+235200 T^{2} + 840T + 235200 Copy content Toggle raw display
6767 T2+1017T+344763 T^{2} + 1017 T + 344763 Copy content Toggle raw display
7171 T2+295788 T^{2} + 295788 Copy content Toggle raw display
7373 T2111T+4107 T^{2} - 111T + 4107 Copy content Toggle raw display
7979 T2297T+29403 T^{2} - 297T + 29403 Copy content Toggle raw display
8383 (T66)2 (T - 66)^{2} Copy content Toggle raw display
8989 T21356T+612912 T^{2} - 1356 T + 612912 Copy content Toggle raw display
9797 T2+3072432 T^{2} + 3072432 Copy content Toggle raw display
show more
show less