gp: [N,k,chi] = [336,4,Mod(31,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,3,0,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
ζ 6 \zeta_{6} ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 2 + 6 T 5 + 12 T_{5}^{2} + 6T_{5} + 12 T 5 2 + 6 T 5 + 1 2
T5^2 + 6*T5 + 12
T 11 2 − 114 T 11 + 4332 T_{11}^{2} - 114T_{11} + 4332 T 1 1 2 − 1 1 4 T 1 1 + 4 3 3 2
T11^2 - 114*T11 + 4332
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
5 5 5
T 2 + 6 T + 12 T^{2} + 6T + 12 T 2 + 6 T + 1 2
T^2 + 6*T + 12
7 7 7
T 2 + 35 T + 343 T^{2} + 35T + 343 T 2 + 3 5 T + 3 4 3
T^2 + 35*T + 343
11 11 1 1
T 2 − 114 T + 4332 T^{2} - 114T + 4332 T 2 − 1 1 4 T + 4 3 3 2
T^2 - 114*T + 4332
13 13 1 3
T 2 + 1323 T^{2} + 1323 T 2 + 1 3 2 3
T^2 + 1323
17 17 1 7
T 2 + 108 T + 3888 T^{2} + 108T + 3888 T 2 + 1 0 8 T + 3 8 8 8
T^2 + 108*T + 3888
19 19 1 9
T 2 + 115 T + 13225 T^{2} + 115T + 13225 T 2 + 1 1 5 T + 1 3 2 2 5
T^2 + 115*T + 13225
23 23 2 3
T 2 + 336 T + 37632 T^{2} + 336T + 37632 T 2 + 3 3 6 T + 3 7 6 3 2
T^2 + 336*T + 37632
29 29 2 9
( T + 96 ) 2 (T + 96)^{2} ( T + 9 6 ) 2
(T + 96)^2
31 31 3 1
T 2 + 209 T + 43681 T^{2} + 209T + 43681 T 2 + 2 0 9 T + 4 3 6 8 1
T^2 + 209*T + 43681
37 37 3 7
T 2 + 265 T + 70225 T^{2} + 265T + 70225 T 2 + 2 6 5 T + 7 0 2 2 5
T^2 + 265*T + 70225
41 41 4 1
T 2 + 122412 T^{2} + 122412 T 2 + 1 2 2 4 1 2
T^2 + 122412
43 43 4 3
T 2 + 301467 T^{2} + 301467 T 2 + 3 0 1 4 6 7
T^2 + 301467
47 47 4 7
T 2 + 66 T + 4356 T^{2} + 66T + 4356 T 2 + 6 6 T + 4 3 5 6
T^2 + 66*T + 4356
53 53 5 3
T 2 − 288 T + 82944 T^{2} - 288T + 82944 T 2 − 2 8 8 T + 8 2 9 4 4
T^2 - 288*T + 82944
59 59 5 9
T 2 + 720 T + 518400 T^{2} + 720T + 518400 T 2 + 7 2 0 T + 5 1 8 4 0 0
T^2 + 720*T + 518400
61 61 6 1
T 2 + 840 T + 235200 T^{2} + 840T + 235200 T 2 + 8 4 0 T + 2 3 5 2 0 0
T^2 + 840*T + 235200
67 67 6 7
T 2 + 1017 T + 344763 T^{2} + 1017 T + 344763 T 2 + 1 0 1 7 T + 3 4 4 7 6 3
T^2 + 1017*T + 344763
71 71 7 1
T 2 + 295788 T^{2} + 295788 T 2 + 2 9 5 7 8 8
T^2 + 295788
73 73 7 3
T 2 − 111 T + 4107 T^{2} - 111T + 4107 T 2 − 1 1 1 T + 4 1 0 7
T^2 - 111*T + 4107
79 79 7 9
T 2 − 297 T + 29403 T^{2} - 297T + 29403 T 2 − 2 9 7 T + 2 9 4 0 3
T^2 - 297*T + 29403
83 83 8 3
( T − 66 ) 2 (T - 66)^{2} ( T − 6 6 ) 2
(T - 66)^2
89 89 8 9
T 2 − 1356 T + 612912 T^{2} - 1356 T + 612912 T 2 − 1 3 5 6 T + 6 1 2 9 1 2
T^2 - 1356*T + 612912
97 97 9 7
T 2 + 3072432 T^{2} + 3072432 T 2 + 3 0 7 2 4 3 2
T^2 + 3072432
show more
show less