Properties

Label 336.4.bj.g.95.7
Level $336$
Weight $4$
Character 336.95
Analytic conductor $19.825$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.7
Character \(\chi\) \(=\) 336.95
Dual form 336.4.bj.g.191.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.29238 + 4.66315i) q^{3} +(6.70049 - 3.86853i) q^{5} +(-13.9129 + 12.2242i) q^{7} +(-16.4900 - 21.3795i) q^{9} +(-2.34284 + 4.05791i) q^{11} +32.7753 q^{13} +(2.67945 + 40.1135i) q^{15} +(-63.6042 - 36.7219i) q^{17} +(-79.1618 + 45.7041i) q^{19} +(-25.1093 - 92.9006i) q^{21} +(-70.5000 - 122.110i) q^{23} +(-32.5690 + 56.4111i) q^{25} +(137.497 - 27.8853i) q^{27} -155.744i q^{29} +(76.0386 + 43.9009i) q^{31} +(-13.5520 - 20.2273i) q^{33} +(-45.9340 + 135.730i) q^{35} +(97.5712 + 168.998i) q^{37} +(-75.1336 + 152.836i) q^{39} -371.669i q^{41} -353.083i q^{43} +(-193.198 - 79.4609i) q^{45} +(20.4859 + 35.4826i) q^{47} +(44.1397 - 340.148i) q^{49} +(317.045 - 212.415i) q^{51} +(-617.427 - 356.471i) q^{53} +36.2533i q^{55} +(-31.6559 - 473.915i) q^{57} +(114.655 - 198.588i) q^{59} +(-208.757 - 361.577i) q^{61} +(490.770 + 95.8751i) q^{63} +(219.611 - 126.792i) q^{65} +(-524.154 - 302.620i) q^{67} +(731.028 - 48.8302i) q^{69} +419.021 q^{71} +(-82.5712 + 143.018i) q^{73} +(-188.393 - 281.190i) q^{75} +(-17.0088 - 85.0967i) q^{77} +(-486.508 + 280.886i) q^{79} +(-185.162 + 705.093i) q^{81} -447.063 q^{83} -568.239 q^{85} +(726.260 + 357.026i) q^{87} +(418.887 - 241.845i) q^{89} +(-456.001 + 400.651i) q^{91} +(-379.026 + 253.942i) q^{93} +(-353.615 + 612.480i) q^{95} +1165.63 q^{97} +(125.389 - 16.8262i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{9} - 40 q^{13} - 148 q^{21} + 316 q^{25} - 128 q^{33} - 644 q^{37} + 316 q^{45} + 632 q^{49} + 1136 q^{57} + 328 q^{61} - 1424 q^{69} + 1124 q^{73} + 1564 q^{81} - 912 q^{85} + 24 q^{93} - 3304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.29238 + 4.66315i −0.441169 + 0.897424i
\(4\) 0 0
\(5\) 6.70049 3.86853i 0.599310 0.346012i −0.169460 0.985537i \(-0.554202\pi\)
0.768770 + 0.639525i \(0.220869\pi\)
\(6\) 0 0
\(7\) −13.9129 + 12.2242i −0.751228 + 0.660043i
\(8\) 0 0
\(9\) −16.4900 21.3795i −0.610739 0.791832i
\(10\) 0 0
\(11\) −2.34284 + 4.05791i −0.0642174 + 0.111228i −0.896347 0.443354i \(-0.853788\pi\)
0.832129 + 0.554582i \(0.187122\pi\)
\(12\) 0 0
\(13\) 32.7753 0.699250 0.349625 0.936890i \(-0.386309\pi\)
0.349625 + 0.936890i \(0.386309\pi\)
\(14\) 0 0
\(15\) 2.67945 + 40.1135i 0.0461221 + 0.690485i
\(16\) 0 0
\(17\) −63.6042 36.7219i −0.907428 0.523904i −0.0278253 0.999613i \(-0.508858\pi\)
−0.879603 + 0.475709i \(0.842192\pi\)
\(18\) 0 0
\(19\) −79.1618 + 45.7041i −0.955841 + 0.551855i −0.894890 0.446286i \(-0.852746\pi\)
−0.0609501 + 0.998141i \(0.519413\pi\)
\(20\) 0 0
\(21\) −25.1093 92.9006i −0.260919 0.965361i
\(22\) 0 0
\(23\) −70.5000 122.110i −0.639142 1.10703i −0.985621 0.168969i \(-0.945956\pi\)
0.346480 0.938057i \(-0.387377\pi\)
\(24\) 0 0
\(25\) −32.5690 + 56.4111i −0.260552 + 0.451289i
\(26\) 0 0
\(27\) 137.497 27.8853i 0.980048 0.198760i
\(28\) 0 0
\(29\) 155.744i 0.997277i −0.866810 0.498638i \(-0.833834\pi\)
0.866810 0.498638i \(-0.166166\pi\)
\(30\) 0 0
\(31\) 76.0386 + 43.9009i 0.440546 + 0.254350i 0.703829 0.710369i \(-0.251472\pi\)
−0.263283 + 0.964719i \(0.584805\pi\)
\(32\) 0 0
\(33\) −13.5520 20.2273i −0.0714878 0.106701i
\(34\) 0 0
\(35\) −45.9340 + 135.730i −0.221836 + 0.655504i
\(36\) 0 0
\(37\) 97.5712 + 168.998i 0.433530 + 0.750896i 0.997174 0.0751215i \(-0.0239345\pi\)
−0.563644 + 0.826018i \(0.690601\pi\)
\(38\) 0 0
\(39\) −75.1336 + 152.836i −0.308487 + 0.627523i
\(40\) 0 0
\(41\) 371.669i 1.41573i −0.706347 0.707865i \(-0.749658\pi\)
0.706347 0.707865i \(-0.250342\pi\)
\(42\) 0 0
\(43\) 353.083i 1.25220i −0.779742 0.626100i \(-0.784650\pi\)
0.779742 0.626100i \(-0.215350\pi\)
\(44\) 0 0
\(45\) −193.198 79.4609i −0.640005 0.263230i
\(46\) 0 0
\(47\) 20.4859 + 35.4826i 0.0635782 + 0.110121i 0.896062 0.443928i \(-0.146415\pi\)
−0.832484 + 0.554049i \(0.813082\pi\)
\(48\) 0 0
\(49\) 44.1397 340.148i 0.128687 0.991685i
\(50\) 0 0
\(51\) 317.045 212.415i 0.870493 0.583217i
\(52\) 0 0
\(53\) −617.427 356.471i −1.60019 0.923870i −0.991448 0.130502i \(-0.958341\pi\)
−0.608742 0.793368i \(-0.708325\pi\)
\(54\) 0 0
\(55\) 36.2533i 0.0888800i
\(56\) 0 0
\(57\) −31.6559 473.915i −0.0735602 1.10126i
\(58\) 0 0
\(59\) 114.655 198.588i 0.252996 0.438202i −0.711353 0.702835i \(-0.751917\pi\)
0.964349 + 0.264632i \(0.0852506\pi\)
\(60\) 0 0
\(61\) −208.757 361.577i −0.438173 0.758938i 0.559376 0.828914i \(-0.311041\pi\)
−0.997549 + 0.0699762i \(0.977708\pi\)
\(62\) 0 0
\(63\) 490.770 + 95.8751i 0.981447 + 0.191732i
\(64\) 0 0
\(65\) 219.611 126.792i 0.419067 0.241949i
\(66\) 0 0
\(67\) −524.154 302.620i −0.955755 0.551805i −0.0608909 0.998144i \(-0.519394\pi\)
−0.894864 + 0.446339i \(0.852727\pi\)
\(68\) 0 0
\(69\) 731.028 48.8302i 1.27544 0.0851952i
\(70\) 0 0
\(71\) 419.021 0.700403 0.350201 0.936674i \(-0.386113\pi\)
0.350201 + 0.936674i \(0.386113\pi\)
\(72\) 0 0
\(73\) −82.5712 + 143.018i −0.132387 + 0.229301i −0.924596 0.380949i \(-0.875597\pi\)
0.792209 + 0.610249i \(0.208931\pi\)
\(74\) 0 0
\(75\) −188.393 281.190i −0.290050 0.432920i
\(76\) 0 0
\(77\) −17.0088 85.0967i −0.0251732 0.125944i
\(78\) 0 0
\(79\) −486.508 + 280.886i −0.692866 + 0.400026i −0.804685 0.593702i \(-0.797666\pi\)
0.111819 + 0.993729i \(0.464332\pi\)
\(80\) 0 0
\(81\) −185.162 + 705.093i −0.253995 + 0.967206i
\(82\) 0 0
\(83\) −447.063 −0.591223 −0.295611 0.955308i \(-0.595523\pi\)
−0.295611 + 0.955308i \(0.595523\pi\)
\(84\) 0 0
\(85\) −568.239 −0.725107
\(86\) 0 0
\(87\) 726.260 + 357.026i 0.894980 + 0.439968i
\(88\) 0 0
\(89\) 418.887 241.845i 0.498898 0.288039i −0.229360 0.973342i \(-0.573663\pi\)
0.728258 + 0.685303i \(0.240330\pi\)
\(90\) 0 0
\(91\) −456.001 + 400.651i −0.525296 + 0.461535i
\(92\) 0 0
\(93\) −379.026 + 253.942i −0.422615 + 0.283146i
\(94\) 0 0
\(95\) −353.615 + 612.480i −0.381896 + 0.661464i
\(96\) 0 0
\(97\) 1165.63 1.22012 0.610058 0.792356i \(-0.291146\pi\)
0.610058 + 0.792356i \(0.291146\pi\)
\(98\) 0 0
\(99\) 125.389 16.8262i 0.127294 0.0170818i
\(100\) 0 0
\(101\) −473.348 273.288i −0.466336 0.269239i 0.248369 0.968666i \(-0.420105\pi\)
−0.714704 + 0.699427i \(0.753439\pi\)
\(102\) 0 0
\(103\) −1226.20 + 707.949i −1.17302 + 0.677246i −0.954390 0.298562i \(-0.903493\pi\)
−0.218633 + 0.975807i \(0.570160\pi\)
\(104\) 0 0
\(105\) −527.634 525.343i −0.490398 0.488269i
\(106\) 0 0
\(107\) 463.957 + 803.596i 0.419181 + 0.726043i 0.995857 0.0909299i \(-0.0289839\pi\)
−0.576676 + 0.816973i \(0.695651\pi\)
\(108\) 0 0
\(109\) −588.950 + 1020.09i −0.517534 + 0.896395i 0.482259 + 0.876029i \(0.339817\pi\)
−0.999793 + 0.0203661i \(0.993517\pi\)
\(110\) 0 0
\(111\) −1011.74 + 67.5805i −0.865132 + 0.0577879i
\(112\) 0 0
\(113\) 1483.38i 1.23491i 0.786606 + 0.617456i \(0.211837\pi\)
−0.786606 + 0.617456i \(0.788163\pi\)
\(114\) 0 0
\(115\) −944.769 545.462i −0.766088 0.442301i
\(116\) 0 0
\(117\) −540.464 700.719i −0.427059 0.553688i
\(118\) 0 0
\(119\) 1333.82 266.598i 1.02748 0.205370i
\(120\) 0 0
\(121\) 654.522 + 1133.67i 0.491752 + 0.851740i
\(122\) 0 0
\(123\) 1733.15 + 852.008i 1.27051 + 0.624577i
\(124\) 0 0
\(125\) 1471.11i 1.05264i
\(126\) 0 0
\(127\) 104.505i 0.0730182i 0.999333 + 0.0365091i \(0.0116238\pi\)
−0.999333 + 0.0365091i \(0.988376\pi\)
\(128\) 0 0
\(129\) 1646.48 + 809.401i 1.12375 + 0.552432i
\(130\) 0 0
\(131\) −1173.78 2033.05i −0.782853 1.35594i −0.930273 0.366867i \(-0.880430\pi\)
0.147421 0.989074i \(-0.452903\pi\)
\(132\) 0 0
\(133\) 542.679 1603.57i 0.353806 1.04546i
\(134\) 0 0
\(135\) 813.422 718.756i 0.518579 0.458227i
\(136\) 0 0
\(137\) 2066.20 + 1192.92i 1.28852 + 0.743927i 0.978390 0.206768i \(-0.0662945\pi\)
0.310129 + 0.950695i \(0.399628\pi\)
\(138\) 0 0
\(139\) 1294.66i 0.790012i −0.918679 0.395006i \(-0.870743\pi\)
0.918679 0.395006i \(-0.129257\pi\)
\(140\) 0 0
\(141\) −212.422 + 14.1891i −0.126874 + 0.00847474i
\(142\) 0 0
\(143\) −76.7873 + 132.999i −0.0449040 + 0.0777761i
\(144\) 0 0
\(145\) −602.502 1043.56i −0.345069 0.597678i
\(146\) 0 0
\(147\) 1484.98 + 985.580i 0.833189 + 0.552988i
\(148\) 0 0
\(149\) −415.385 + 239.823i −0.228387 + 0.131859i −0.609828 0.792534i \(-0.708761\pi\)
0.381441 + 0.924393i \(0.375428\pi\)
\(150\) 0 0
\(151\) −1765.12 1019.09i −0.951279 0.549221i −0.0578012 0.998328i \(-0.518409\pi\)
−0.893478 + 0.449107i \(0.851742\pi\)
\(152\) 0 0
\(153\) 263.736 + 1965.36i 0.139358 + 1.03850i
\(154\) 0 0
\(155\) 679.328 0.352032
\(156\) 0 0
\(157\) −502.495 + 870.347i −0.255436 + 0.442428i −0.965014 0.262199i \(-0.915552\pi\)
0.709578 + 0.704627i \(0.248886\pi\)
\(158\) 0 0
\(159\) 3077.66 2061.98i 1.53506 1.02847i
\(160\) 0 0
\(161\) 2473.55 + 837.099i 1.21083 + 0.409768i
\(162\) 0 0
\(163\) −795.545 + 459.308i −0.382281 + 0.220710i −0.678810 0.734314i \(-0.737504\pi\)
0.296529 + 0.955024i \(0.404171\pi\)
\(164\) 0 0
\(165\) −169.055 83.1065i −0.0797630 0.0392111i
\(166\) 0 0
\(167\) −517.384 −0.239739 −0.119869 0.992790i \(-0.538248\pi\)
−0.119869 + 0.992790i \(0.538248\pi\)
\(168\) 0 0
\(169\) −1122.78 −0.511050
\(170\) 0 0
\(171\) 2282.50 + 938.778i 1.02075 + 0.419825i
\(172\) 0 0
\(173\) −2570.64 + 1484.16i −1.12972 + 0.652247i −0.943866 0.330330i \(-0.892840\pi\)
−0.185859 + 0.982576i \(0.559507\pi\)
\(174\) 0 0
\(175\) −236.449 1182.97i −0.102136 0.510996i
\(176\) 0 0
\(177\) 663.213 + 989.892i 0.281639 + 0.420366i
\(178\) 0 0
\(179\) −2046.60 + 3544.82i −0.854582 + 1.48018i 0.0224493 + 0.999748i \(0.492854\pi\)
−0.877032 + 0.480432i \(0.840480\pi\)
\(180\) 0 0
\(181\) 2003.11 0.822598 0.411299 0.911501i \(-0.365075\pi\)
0.411299 + 0.911501i \(0.365075\pi\)
\(182\) 0 0
\(183\) 2164.64 144.591i 0.874398 0.0584068i
\(184\) 0 0
\(185\) 1307.55 + 754.914i 0.519638 + 0.300013i
\(186\) 0 0
\(187\) 298.028 172.067i 0.116545 0.0672875i
\(188\) 0 0
\(189\) −1572.11 + 2068.75i −0.605049 + 0.796188i
\(190\) 0 0
\(191\) −1742.49 3018.09i −0.660117 1.14336i −0.980585 0.196097i \(-0.937173\pi\)
0.320467 0.947260i \(-0.396160\pi\)
\(192\) 0 0
\(193\) −1021.77 + 1769.75i −0.381080 + 0.660050i −0.991217 0.132246i \(-0.957781\pi\)
0.610137 + 0.792296i \(0.291114\pi\)
\(194\) 0 0
\(195\) 87.8199 + 1314.74i 0.0322508 + 0.482821i
\(196\) 0 0
\(197\) 1279.11i 0.462602i 0.972882 + 0.231301i \(0.0742983\pi\)
−0.972882 + 0.231301i \(0.925702\pi\)
\(198\) 0 0
\(199\) −4193.05 2420.86i −1.49366 0.862363i −0.493683 0.869642i \(-0.664350\pi\)
−0.999974 + 0.00727877i \(0.997683\pi\)
\(200\) 0 0
\(201\) 2612.73 1750.49i 0.916853 0.614278i
\(202\) 0 0
\(203\) 1903.85 + 2166.86i 0.658245 + 0.749182i
\(204\) 0 0
\(205\) −1437.81 2490.36i −0.489859 0.848461i
\(206\) 0 0
\(207\) −1448.09 + 3520.83i −0.486229 + 1.18220i
\(208\) 0 0
\(209\) 428.309i 0.141755i
\(210\) 0 0
\(211\) 2992.48i 0.976353i 0.872745 + 0.488177i \(0.162338\pi\)
−0.872745 + 0.488177i \(0.837662\pi\)
\(212\) 0 0
\(213\) −960.556 + 1953.96i −0.308996 + 0.628558i
\(214\) 0 0
\(215\) −1365.91 2365.83i −0.433276 0.750456i
\(216\) 0 0
\(217\) −1594.57 + 318.718i −0.498832 + 0.0997049i
\(218\) 0 0
\(219\) −477.628 712.893i −0.147375 0.219967i
\(220\) 0 0
\(221\) −2084.65 1203.57i −0.634519 0.366340i
\(222\) 0 0
\(223\) 3390.92i 1.01827i 0.860688 + 0.509133i \(0.170034\pi\)
−0.860688 + 0.509133i \(0.829966\pi\)
\(224\) 0 0
\(225\) 1743.10 233.910i 0.516474 0.0693067i
\(226\) 0 0
\(227\) 2329.02 4033.98i 0.680980 1.17949i −0.293702 0.955897i \(-0.594887\pi\)
0.974682 0.223596i \(-0.0717795\pi\)
\(228\) 0 0
\(229\) 1455.53 + 2521.06i 0.420019 + 0.727494i 0.995941 0.0900105i \(-0.0286901\pi\)
−0.575922 + 0.817505i \(0.695357\pi\)
\(230\) 0 0
\(231\) 435.810 + 115.759i 0.124131 + 0.0329715i
\(232\) 0 0
\(233\) 2639.30 1523.80i 0.742086 0.428444i −0.0807410 0.996735i \(-0.525729\pi\)
0.822827 + 0.568291i \(0.192395\pi\)
\(234\) 0 0
\(235\) 274.531 + 158.501i 0.0762061 + 0.0439976i
\(236\) 0 0
\(237\) −194.549 2912.56i −0.0533220 0.798274i
\(238\) 0 0
\(239\) 5931.88 1.60545 0.802723 0.596353i \(-0.203384\pi\)
0.802723 + 0.596353i \(0.203384\pi\)
\(240\) 0 0
\(241\) 2596.74 4497.68i 0.694068 1.20216i −0.276426 0.961035i \(-0.589150\pi\)
0.970494 0.241126i \(-0.0775167\pi\)
\(242\) 0 0
\(243\) −2863.49 2479.78i −0.755939 0.654643i
\(244\) 0 0
\(245\) −1020.12 2449.91i −0.266011 0.638854i
\(246\) 0 0
\(247\) −2594.56 + 1497.97i −0.668371 + 0.385884i
\(248\) 0 0
\(249\) 1024.84 2084.72i 0.260829 0.530578i
\(250\) 0 0
\(251\) −4028.98 −1.01318 −0.506588 0.862188i \(-0.669093\pi\)
−0.506588 + 0.862188i \(0.669093\pi\)
\(252\) 0 0
\(253\) 660.680 0.164176
\(254\) 0 0
\(255\) 1302.62 2649.78i 0.319895 0.650729i
\(256\) 0 0
\(257\) 1404.49 810.884i 0.340894 0.196815i −0.319773 0.947494i \(-0.603607\pi\)
0.660667 + 0.750679i \(0.270273\pi\)
\(258\) 0 0
\(259\) −3423.37 1158.54i −0.821303 0.277946i
\(260\) 0 0
\(261\) −3329.73 + 2568.22i −0.789675 + 0.609076i
\(262\) 0 0
\(263\) −3878.71 + 6718.12i −0.909397 + 1.57512i −0.0944932 + 0.995526i \(0.530123\pi\)
−0.814904 + 0.579596i \(0.803210\pi\)
\(264\) 0 0
\(265\) −5516.08 −1.27868
\(266\) 0 0
\(267\) 167.508 + 2507.73i 0.0383945 + 0.574797i
\(268\) 0 0
\(269\) −7067.44 4080.39i −1.60189 0.924854i −0.991108 0.133058i \(-0.957520\pi\)
−0.610786 0.791796i \(-0.709146\pi\)
\(270\) 0 0
\(271\) 1378.58 795.924i 0.309014 0.178409i −0.337471 0.941336i \(-0.609572\pi\)
0.646485 + 0.762927i \(0.276238\pi\)
\(272\) 0 0
\(273\) −822.967 3044.85i −0.182448 0.675028i
\(274\) 0 0
\(275\) −152.608 264.324i −0.0334639 0.0579612i
\(276\) 0 0
\(277\) 2066.86 3579.90i 0.448323 0.776517i −0.549954 0.835195i \(-0.685355\pi\)
0.998277 + 0.0586772i \(0.0186883\pi\)
\(278\) 0 0
\(279\) −315.296 2349.59i −0.0676569 0.504180i
\(280\) 0 0
\(281\) 2820.59i 0.598799i −0.954128 0.299399i \(-0.903214\pi\)
0.954128 0.299399i \(-0.0967863\pi\)
\(282\) 0 0
\(283\) 4201.91 + 2425.97i 0.882606 + 0.509573i 0.871517 0.490366i \(-0.163137\pi\)
0.0110894 + 0.999939i \(0.496470\pi\)
\(284\) 0 0
\(285\) −2045.46 3053.00i −0.425133 0.634541i
\(286\) 0 0
\(287\) 4543.34 + 5171.01i 0.934443 + 1.06354i
\(288\) 0 0
\(289\) 240.493 + 416.546i 0.0489504 + 0.0847845i
\(290\) 0 0
\(291\) −2672.06 + 5435.49i −0.538278 + 1.09496i
\(292\) 0 0
\(293\) 5793.57i 1.15517i −0.816332 0.577583i \(-0.803996\pi\)
0.816332 0.577583i \(-0.196004\pi\)
\(294\) 0 0
\(295\) 1774.18i 0.350159i
\(296\) 0 0
\(297\) −208.977 + 623.281i −0.0408285 + 0.121773i
\(298\) 0 0
\(299\) −2310.66 4002.18i −0.446920 0.774088i
\(300\) 0 0
\(301\) 4316.14 + 4912.42i 0.826506 + 0.940688i
\(302\) 0 0
\(303\) 2359.48 1580.81i 0.447354 0.299721i
\(304\) 0 0
\(305\) −2797.54 1615.16i −0.525203 0.303226i
\(306\) 0 0
\(307\) 7217.02i 1.34169i −0.741600 0.670843i \(-0.765933\pi\)
0.741600 0.670843i \(-0.234067\pi\)
\(308\) 0 0
\(309\) −490.345 7340.86i −0.0902743 1.35148i
\(310\) 0 0
\(311\) 922.733 1598.22i 0.168242 0.291404i −0.769560 0.638575i \(-0.779524\pi\)
0.937802 + 0.347171i \(0.112858\pi\)
\(312\) 0 0
\(313\) 4176.03 + 7233.10i 0.754132 + 1.30619i 0.945805 + 0.324736i \(0.105275\pi\)
−0.191673 + 0.981459i \(0.561391\pi\)
\(314\) 0 0
\(315\) 3659.29 1256.15i 0.654533 0.224685i
\(316\) 0 0
\(317\) 1141.27 658.913i 0.202209 0.116745i −0.395477 0.918476i \(-0.629421\pi\)
0.597685 + 0.801731i \(0.296087\pi\)
\(318\) 0 0
\(319\) 631.997 + 364.884i 0.110925 + 0.0640426i
\(320\) 0 0
\(321\) −4810.86 + 321.349i −0.836498 + 0.0558753i
\(322\) 0 0
\(323\) 6713.36 1.15648
\(324\) 0 0
\(325\) −1067.46 + 1848.89i −0.182191 + 0.315564i
\(326\) 0 0
\(327\) −3406.74 5084.80i −0.576126 0.859909i
\(328\) 0 0
\(329\) −718.765 243.245i −0.120446 0.0407614i
\(330\) 0 0
\(331\) 6350.28 3666.33i 1.05451 0.608822i 0.130601 0.991435i \(-0.458309\pi\)
0.923909 + 0.382613i \(0.124976\pi\)
\(332\) 0 0
\(333\) 2004.15 4872.80i 0.329810 0.801885i
\(334\) 0 0
\(335\) −4682.78 −0.763724
\(336\) 0 0
\(337\) 1339.02 0.216442 0.108221 0.994127i \(-0.465485\pi\)
0.108221 + 0.994127i \(0.465485\pi\)
\(338\) 0 0
\(339\) −6917.24 3400.48i −1.10824 0.544805i
\(340\) 0 0
\(341\) −356.292 + 205.705i −0.0565815 + 0.0326674i
\(342\) 0 0
\(343\) 3543.91 + 5272.03i 0.557881 + 0.829921i
\(344\) 0 0
\(345\) 4709.34 3155.19i 0.734906 0.492376i
\(346\) 0 0
\(347\) −2398.86 + 4154.95i −0.371117 + 0.642794i −0.989738 0.142896i \(-0.954358\pi\)
0.618621 + 0.785690i \(0.287692\pi\)
\(348\) 0 0
\(349\) −3512.47 −0.538735 −0.269367 0.963038i \(-0.586815\pi\)
−0.269367 + 0.963038i \(0.586815\pi\)
\(350\) 0 0
\(351\) 4506.51 913.950i 0.685298 0.138983i
\(352\) 0 0
\(353\) 988.134 + 570.499i 0.148989 + 0.0860187i 0.572641 0.819806i \(-0.305919\pi\)
−0.423652 + 0.905825i \(0.639252\pi\)
\(354\) 0 0
\(355\) 2807.64 1620.99i 0.419758 0.242348i
\(356\) 0 0
\(357\) −1814.43 + 6830.93i −0.268991 + 1.01269i
\(358\) 0 0
\(359\) −232.914 403.419i −0.0342416 0.0593081i 0.848397 0.529361i \(-0.177568\pi\)
−0.882638 + 0.470053i \(0.844235\pi\)
\(360\) 0 0
\(361\) 748.230 1295.97i 0.109087 0.188945i
\(362\) 0 0
\(363\) −6786.87 + 453.340i −0.981318 + 0.0655487i
\(364\) 0 0
\(365\) 1277.72i 0.183229i
\(366\) 0 0
\(367\) 7755.37 + 4477.57i 1.10307 + 0.636858i 0.937026 0.349260i \(-0.113567\pi\)
0.166045 + 0.986118i \(0.446900\pi\)
\(368\) 0 0
\(369\) −7946.08 + 6128.81i −1.12102 + 0.864642i
\(370\) 0 0
\(371\) 12947.8 2587.96i 1.81190 0.362157i
\(372\) 0 0
\(373\) −5666.81 9815.21i −0.786639 1.36250i −0.928015 0.372543i \(-0.878486\pi\)
0.141376 0.989956i \(-0.454847\pi\)
\(374\) 0 0
\(375\) −6860.00 3372.34i −0.944664 0.464392i
\(376\) 0 0
\(377\) 5104.58i 0.697345i
\(378\) 0 0
\(379\) 8721.01i 1.18197i −0.806681 0.590987i \(-0.798739\pi\)
0.806681 0.590987i \(-0.201261\pi\)
\(380\) 0 0
\(381\) −487.322 239.565i −0.0655283 0.0322134i
\(382\) 0 0
\(383\) −7220.73 12506.7i −0.963348 1.66857i −0.713991 0.700155i \(-0.753114\pi\)
−0.249357 0.968412i \(-0.580219\pi\)
\(384\) 0 0
\(385\) −443.167 504.390i −0.0586646 0.0667691i
\(386\) 0 0
\(387\) −7548.72 + 5822.32i −0.991532 + 0.764768i
\(388\) 0 0
\(389\) 1697.54 + 980.076i 0.221257 + 0.127743i 0.606532 0.795059i \(-0.292560\pi\)
−0.385275 + 0.922802i \(0.625894\pi\)
\(390\) 0 0
\(391\) 10355.6i 1.33940i
\(392\) 0 0
\(393\) 12171.2 812.993i 1.56222 0.104351i
\(394\) 0 0
\(395\) −2173.23 + 3764.14i −0.276828 + 0.479480i
\(396\) 0 0
\(397\) 1987.93 + 3443.20i 0.251313 + 0.435287i 0.963888 0.266309i \(-0.0858042\pi\)
−0.712574 + 0.701597i \(0.752471\pi\)
\(398\) 0 0
\(399\) 6233.64 + 6206.58i 0.782136 + 0.778741i
\(400\) 0 0
\(401\) −5696.07 + 3288.63i −0.709346 + 0.409541i −0.810819 0.585297i \(-0.800978\pi\)
0.101473 + 0.994838i \(0.467645\pi\)
\(402\) 0 0
\(403\) 2492.19 + 1438.87i 0.308052 + 0.177854i
\(404\) 0 0
\(405\) 1486.99 + 5440.77i 0.182443 + 0.667541i
\(406\) 0 0
\(407\) −914.374 −0.111361
\(408\) 0 0
\(409\) 5615.62 9726.54i 0.678911 1.17591i −0.296399 0.955064i \(-0.595786\pi\)
0.975309 0.220843i \(-0.0708810\pi\)
\(410\) 0 0
\(411\) −10299.3 + 6900.36i −1.23607 + 0.828150i
\(412\) 0 0
\(413\) 832.386 + 4164.50i 0.0991744 + 0.496178i
\(414\) 0 0
\(415\) −2995.54 + 1729.47i −0.354326 + 0.204570i
\(416\) 0 0
\(417\) 6037.20 + 2967.86i 0.708976 + 0.348529i
\(418\) 0 0
\(419\) −6390.84 −0.745138 −0.372569 0.928004i \(-0.621523\pi\)
−0.372569 + 0.928004i \(0.621523\pi\)
\(420\) 0 0
\(421\) −8934.00 −1.03424 −0.517122 0.855912i \(-0.672996\pi\)
−0.517122 + 0.855912i \(0.672996\pi\)
\(422\) 0 0
\(423\) 420.788 1023.08i 0.0483674 0.117598i
\(424\) 0 0
\(425\) 4143.04 2391.99i 0.472864 0.273008i
\(426\) 0 0
\(427\) 7324.40 + 2478.73i 0.830100 + 0.280923i
\(428\) 0 0
\(429\) −444.171 662.956i −0.0499878 0.0746103i
\(430\) 0 0
\(431\) −7639.35 + 13231.7i −0.853770 + 1.47877i 0.0240120 + 0.999712i \(0.492356\pi\)
−0.877782 + 0.479061i \(0.840977\pi\)
\(432\) 0 0
\(433\) −10344.9 −1.14813 −0.574067 0.818808i \(-0.694635\pi\)
−0.574067 + 0.818808i \(0.694635\pi\)
\(434\) 0 0
\(435\) 6247.46 417.310i 0.688604 0.0459965i
\(436\) 0 0
\(437\) 11161.8 + 6444.28i 1.22184 + 0.705427i
\(438\) 0 0
\(439\) −2626.01 + 1516.13i −0.285496 + 0.164831i −0.635909 0.771764i \(-0.719375\pi\)
0.350413 + 0.936595i \(0.386041\pi\)
\(440\) 0 0
\(441\) −8000.04 + 4665.35i −0.863842 + 0.503763i
\(442\) 0 0
\(443\) 32.5423 + 56.3650i 0.00349014 + 0.00604510i 0.867765 0.496974i \(-0.165556\pi\)
−0.864275 + 0.503020i \(0.832222\pi\)
\(444\) 0 0
\(445\) 1871.17 3240.95i 0.199330 0.345249i
\(446\) 0 0
\(447\) −166.108 2486.77i −0.0175764 0.263132i
\(448\) 0 0
\(449\) 13810.5i 1.45157i 0.687921 + 0.725786i \(0.258524\pi\)
−0.687921 + 0.725786i \(0.741476\pi\)
\(450\) 0 0
\(451\) 1508.20 + 870.760i 0.157469 + 0.0909146i
\(452\) 0 0
\(453\) 8798.50 5894.86i 0.912560 0.611401i
\(454\) 0 0
\(455\) −1505.50 + 4448.61i −0.155119 + 0.458361i
\(456\) 0 0
\(457\) 3947.83 + 6837.84i 0.404095 + 0.699914i 0.994216 0.107401i \(-0.0342530\pi\)
−0.590120 + 0.807315i \(0.700920\pi\)
\(458\) 0 0
\(459\) −9769.38 3275.53i −0.993454 0.333090i
\(460\) 0 0
\(461\) 17511.7i 1.76920i 0.466351 + 0.884600i \(0.345568\pi\)
−0.466351 + 0.884600i \(0.654432\pi\)
\(462\) 0 0
\(463\) 12405.7i 1.24523i 0.782530 + 0.622613i \(0.213929\pi\)
−0.782530 + 0.622613i \(0.786071\pi\)
\(464\) 0 0
\(465\) −1557.28 + 3167.81i −0.155306 + 0.315922i
\(466\) 0 0
\(467\) −6418.39 11117.0i −0.635990 1.10157i −0.986304 0.164935i \(-0.947258\pi\)
0.350314 0.936632i \(-0.386075\pi\)
\(468\) 0 0
\(469\) 10991.8 2197.00i 1.08220 0.216307i
\(470\) 0 0
\(471\) −2906.65 4338.38i −0.284355 0.424420i
\(472\) 0 0
\(473\) 1432.78 + 827.216i 0.139280 + 0.0804131i
\(474\) 0 0
\(475\) 5954.14i 0.575147i
\(476\) 0 0
\(477\) 2560.18 + 19078.4i 0.245749 + 1.83132i
\(478\) 0 0
\(479\) 8391.40 14534.3i 0.800445 1.38641i −0.118879 0.992909i \(-0.537930\pi\)
0.919324 0.393502i \(-0.128737\pi\)
\(480\) 0 0
\(481\) 3197.93 + 5538.98i 0.303146 + 0.525064i
\(482\) 0 0
\(483\) −9573.84 + 9615.58i −0.901915 + 0.905847i
\(484\) 0 0
\(485\) 7810.26 4509.26i 0.731228 0.422175i
\(486\) 0 0
\(487\) 4036.18 + 2330.29i 0.375558 + 0.216828i 0.675884 0.737008i \(-0.263762\pi\)
−0.300326 + 0.953837i \(0.597095\pi\)
\(488\) 0 0
\(489\) −318.129 4762.65i −0.0294198 0.440439i
\(490\) 0 0
\(491\) 11557.6 1.06230 0.531150 0.847278i \(-0.321760\pi\)
0.531150 + 0.847278i \(0.321760\pi\)
\(492\) 0 0
\(493\) −5719.23 + 9906.00i −0.522477 + 0.904957i
\(494\) 0 0
\(495\) 775.077 597.816i 0.0703780 0.0542825i
\(496\) 0 0
\(497\) −5829.81 + 5122.18i −0.526162 + 0.462296i
\(498\) 0 0
\(499\) 17114.6 9881.11i 1.53538 0.886452i 0.536279 0.844041i \(-0.319830\pi\)
0.999100 0.0424107i \(-0.0135038\pi\)
\(500\) 0 0
\(501\) 1186.04 2412.64i 0.105765 0.215147i
\(502\) 0 0
\(503\) 6607.52 0.585715 0.292858 0.956156i \(-0.405394\pi\)
0.292858 + 0.956156i \(0.405394\pi\)
\(504\) 0 0
\(505\) −4228.88 −0.372639
\(506\) 0 0
\(507\) 2573.83 5235.68i 0.225460 0.458628i
\(508\) 0 0
\(509\) −3471.97 + 2004.54i −0.302343 + 0.174558i −0.643495 0.765451i \(-0.722516\pi\)
0.341152 + 0.940008i \(0.389183\pi\)
\(510\) 0 0
\(511\) −599.462 2999.16i −0.0518955 0.259638i
\(512\) 0 0
\(513\) −9610.04 + 8491.63i −0.827083 + 0.730827i
\(514\) 0 0
\(515\) −5477.44 + 9487.21i −0.468670 + 0.811760i
\(516\) 0 0
\(517\) −191.981 −0.0163313
\(518\) 0 0
\(519\) −1027.97 15389.6i −0.0869420 1.30159i
\(520\) 0 0
\(521\) −187.285 108.129i −0.0157488 0.00909255i 0.492105 0.870536i \(-0.336228\pi\)
−0.507854 + 0.861443i \(0.669561\pi\)
\(522\) 0 0
\(523\) 9201.01 5312.20i 0.769277 0.444142i −0.0633395 0.997992i \(-0.520175\pi\)
0.832617 + 0.553850i \(0.186842\pi\)
\(524\) 0 0
\(525\) 6058.41 + 1609.23i 0.503639 + 0.133776i
\(526\) 0 0
\(527\) −3224.25 5584.56i −0.266509 0.461608i
\(528\) 0 0
\(529\) −3856.99 + 6680.51i −0.317004 + 0.549068i
\(530\) 0 0
\(531\) −6136.35 + 823.450i −0.501497 + 0.0672969i
\(532\) 0 0
\(533\) 12181.6i 0.989949i
\(534\) 0 0
\(535\) 6217.47 + 3589.66i 0.502439 + 0.290083i
\(536\) 0 0
\(537\) −11838.4 17669.7i −0.951334 1.41993i
\(538\) 0 0
\(539\) 1276.88 + 976.026i 0.102039 + 0.0779971i
\(540\) 0 0
\(541\) −1314.29 2276.42i −0.104447 0.180908i 0.809065 0.587719i \(-0.199974\pi\)
−0.913512 + 0.406811i \(0.866641\pi\)
\(542\) 0 0
\(543\) −4591.90 + 9340.82i −0.362905 + 0.738219i
\(544\) 0 0
\(545\) 9113.48i 0.716291i
\(546\) 0 0
\(547\) 655.077i 0.0512049i −0.999672 0.0256024i \(-0.991850\pi\)
0.999672 0.0256024i \(-0.00815040\pi\)
\(548\) 0 0
\(549\) −4287.94 + 10425.5i −0.333342 + 0.810473i
\(550\) 0 0
\(551\) 7118.16 + 12329.0i 0.550352 + 0.953237i
\(552\) 0 0
\(553\) 3335.17 9855.10i 0.256466 0.757832i
\(554\) 0 0
\(555\) −6517.68 + 4366.75i −0.498487 + 0.333979i
\(556\) 0 0
\(557\) 19261.3 + 11120.5i 1.46522 + 0.845943i 0.999245 0.0388564i \(-0.0123715\pi\)
0.465972 + 0.884800i \(0.345705\pi\)
\(558\) 0 0
\(559\) 11572.4i 0.875601i
\(560\) 0 0
\(561\) 119.178 + 1784.19i 0.00896918 + 0.134276i
\(562\) 0 0
\(563\) −2355.47 + 4079.80i −0.176326 + 0.305405i −0.940619 0.339464i \(-0.889754\pi\)
0.764294 + 0.644868i \(0.223088\pi\)
\(564\) 0 0
\(565\) 5738.51 + 9939.39i 0.427294 + 0.740095i
\(566\) 0 0
\(567\) −6043.02 12073.4i −0.447589 0.894239i
\(568\) 0 0
\(569\) −7762.55 + 4481.71i −0.571921 + 0.330199i −0.757916 0.652352i \(-0.773782\pi\)
0.185995 + 0.982551i \(0.440449\pi\)
\(570\) 0 0
\(571\) 10869.6 + 6275.54i 0.796632 + 0.459936i 0.842292 0.539021i \(-0.181206\pi\)
−0.0456601 + 0.998957i \(0.514539\pi\)
\(572\) 0 0
\(573\) 18068.3 1206.90i 1.31730 0.0879911i
\(574\) 0 0
\(575\) 9184.45 0.666118
\(576\) 0 0
\(577\) 10267.9 17784.5i 0.740827 1.28315i −0.211292 0.977423i \(-0.567767\pi\)
0.952119 0.305728i \(-0.0988997\pi\)
\(578\) 0 0
\(579\) −5910.35 8821.61i −0.424224 0.633184i
\(580\) 0 0
\(581\) 6219.95 5464.97i 0.444143 0.390232i
\(582\) 0 0
\(583\) 2893.06 1670.31i 0.205520 0.118657i
\(584\) 0 0
\(585\) −6332.13 2604.36i −0.447523 0.184063i
\(586\) 0 0
\(587\) −6864.64 −0.482681 −0.241341 0.970440i \(-0.577587\pi\)
−0.241341 + 0.970440i \(0.577587\pi\)
\(588\) 0 0
\(589\) −8025.81 −0.561456
\(590\) 0 0
\(591\) −5964.67 2932.21i −0.415150 0.204086i
\(592\) 0 0
\(593\) −13106.1 + 7566.82i −0.907595 + 0.524000i −0.879657 0.475609i \(-0.842228\pi\)
−0.0279385 + 0.999610i \(0.508894\pi\)
\(594\) 0 0
\(595\) 7905.87 6946.24i 0.544721 0.478602i
\(596\) 0 0
\(597\) 20900.9 14003.3i 1.43286 0.959995i
\(598\) 0 0
\(599\) −2088.66 + 3617.67i −0.142472 + 0.246768i −0.928427 0.371515i \(-0.878838\pi\)
0.785955 + 0.618283i \(0.212172\pi\)
\(600\) 0 0
\(601\) 11389.3 0.773013 0.386506 0.922287i \(-0.373682\pi\)
0.386506 + 0.922287i \(0.373682\pi\)
\(602\) 0 0
\(603\) 2173.42 + 16196.3i 0.146780 + 1.09381i
\(604\) 0 0
\(605\) 8771.24 + 5064.08i 0.589424 + 0.340304i
\(606\) 0 0
\(607\) −3355.86 + 1937.50i −0.224399 + 0.129557i −0.607985 0.793948i \(-0.708022\pi\)
0.383587 + 0.923505i \(0.374689\pi\)
\(608\) 0 0
\(609\) −14468.8 + 3910.64i −0.962732 + 0.260209i
\(610\) 0 0
\(611\) 671.433 + 1162.96i 0.0444570 + 0.0770019i
\(612\) 0 0
\(613\) −9363.76 + 16218.5i −0.616963 + 1.06861i 0.373073 + 0.927802i \(0.378304\pi\)
−0.990037 + 0.140810i \(0.955029\pi\)
\(614\) 0 0
\(615\) 14909.0 995.869i 0.977541 0.0652964i
\(616\) 0 0
\(617\) 23711.0i 1.54712i −0.633726 0.773558i \(-0.718475\pi\)
0.633726 0.773558i \(-0.281525\pi\)
\(618\) 0 0
\(619\) −6835.41 3946.43i −0.443842 0.256253i 0.261384 0.965235i \(-0.415821\pi\)
−0.705226 + 0.708982i \(0.749155\pi\)
\(620\) 0 0
\(621\) −13098.6 14823.8i −0.846422 0.957903i
\(622\) 0 0
\(623\) −2871.60 + 8485.31i −0.184668 + 0.545677i
\(624\) 0 0
\(625\) 1619.90 + 2805.76i 0.103674 + 0.179568i
\(626\) 0 0
\(627\) 1997.27 + 981.848i 0.127214 + 0.0625379i
\(628\) 0 0
\(629\) 14332.0i 0.908512i
\(630\) 0 0
\(631\) 6704.56i 0.422986i 0.977379 + 0.211493i \(0.0678326\pi\)
−0.977379 + 0.211493i \(0.932167\pi\)
\(632\) 0 0
\(633\) −13954.4 6859.90i −0.876203 0.430737i
\(634\) 0 0
\(635\) 404.280 + 700.234i 0.0252652 + 0.0437606i
\(636\) 0 0
\(637\) 1446.69 11148.5i 0.0899844 0.693436i
\(638\) 0 0
\(639\) −6909.63 8958.43i −0.427763 0.554601i
\(640\) 0 0
\(641\) −23997.4 13854.9i −1.47869 0.853721i −0.478979 0.877827i \(-0.658993\pi\)
−0.999709 + 0.0241056i \(0.992326\pi\)
\(642\) 0 0
\(643\) 24577.1i 1.50735i 0.657247 + 0.753676i \(0.271721\pi\)
−0.657247 + 0.753676i \(0.728279\pi\)
\(644\) 0 0
\(645\) 14163.4 946.068i 0.864626 0.0577541i
\(646\) 0 0
\(647\) 4572.00 7918.94i 0.277811 0.481184i −0.693029 0.720910i \(-0.743724\pi\)
0.970841 + 0.239726i \(0.0770576\pi\)
\(648\) 0 0
\(649\) 537.235 + 930.518i 0.0324935 + 0.0562805i
\(650\) 0 0
\(651\) 2169.14 8166.36i 0.130592 0.491651i
\(652\) 0 0
\(653\) −14696.3 + 8484.90i −0.880720 + 0.508484i −0.870896 0.491468i \(-0.836460\pi\)
−0.00982398 + 0.999952i \(0.503127\pi\)
\(654\) 0 0
\(655\) −15729.8 9081.61i −0.938343 0.541752i
\(656\) 0 0
\(657\) 4419.23 593.026i 0.262421 0.0352148i
\(658\) 0 0
\(659\) −11800.2 −0.697529 −0.348765 0.937210i \(-0.613399\pi\)
−0.348765 + 0.937210i \(0.613399\pi\)
\(660\) 0 0
\(661\) 4685.00 8114.67i 0.275682 0.477495i −0.694625 0.719372i \(-0.744430\pi\)
0.970307 + 0.241877i \(0.0777631\pi\)
\(662\) 0 0
\(663\) 10391.3 6961.98i 0.608692 0.407814i
\(664\) 0 0
\(665\) −2567.22 12844.0i −0.149703 0.748978i
\(666\) 0 0
\(667\) −19017.9 + 10980.0i −1.10401 + 0.637401i
\(668\) 0 0
\(669\) −15812.4 7773.30i −0.913815 0.449227i
\(670\) 0 0
\(671\) 1956.33 0.112553
\(672\) 0 0
\(673\) −23801.7 −1.36328 −0.681640 0.731688i \(-0.738733\pi\)
−0.681640 + 0.731688i \(0.738733\pi\)
\(674\) 0 0
\(675\) −2905.09 + 8664.55i −0.165655 + 0.494072i
\(676\) 0 0
\(677\) 22076.9 12746.1i 1.25330 0.723594i 0.281538 0.959550i \(-0.409156\pi\)
0.971764 + 0.235956i \(0.0758222\pi\)
\(678\) 0 0
\(679\) −16217.3 + 14248.8i −0.916586 + 0.805329i
\(680\) 0 0
\(681\) 13472.1 + 20108.0i 0.758077 + 1.13148i
\(682\) 0 0
\(683\) 15739.5 27261.5i 0.881777 1.52728i 0.0324129 0.999475i \(-0.489681\pi\)
0.849364 0.527808i \(-0.176986\pi\)
\(684\) 0 0
\(685\) 18459.4 1.02963
\(686\) 0 0
\(687\) −15092.7 + 1008.14i −0.838170 + 0.0559870i
\(688\) 0 0
\(689\) −20236.4 11683.5i −1.11893 0.646016i
\(690\) 0 0
\(691\) 13038.4 7527.71i 0.717805 0.414425i −0.0961394 0.995368i \(-0.530649\pi\)
0.813944 + 0.580943i \(0.197316\pi\)
\(692\) 0 0
\(693\) −1538.85 + 1766.88i −0.0843520 + 0.0968518i
\(694\) 0 0
\(695\) −5008.43 8674.86i −0.273353 0.473462i
\(696\) 0 0
\(697\) −13648.4 + 23639.7i −0.741707 + 1.28467i
\(698\) 0 0
\(699\) 1055.43 + 15800.6i 0.0571100 + 0.854982i
\(700\) 0 0
\(701\) 9108.30i 0.490750i −0.969428 0.245375i \(-0.921089\pi\)
0.969428 0.245375i \(-0.0789111\pi\)
\(702\) 0 0
\(703\) −15447.8 8918.81i −0.828771 0.478491i
\(704\) 0 0
\(705\) −1368.44 + 916.836i −0.0731043 + 0.0489788i
\(706\) 0 0
\(707\) 9926.38 1984.05i 0.528034 0.105542i
\(708\) 0 0
\(709\) −2242.61 3884.32i −0.118791 0.205753i 0.800498 0.599336i \(-0.204569\pi\)
−0.919289 + 0.393583i \(0.871235\pi\)
\(710\) 0 0
\(711\) 14027.7 + 5769.49i 0.739914 + 0.304322i
\(712\) 0 0
\(713\) 12380.1i 0.650262i
\(714\) 0 0
\(715\) 1188.22i 0.0621493i
\(716\) 0 0
\(717\) −13598.1 + 27661.3i −0.708273 + 1.44077i
\(718\) 0 0
\(719\) 1481.41 + 2565.87i 0.0768388 + 0.133089i 0.901884 0.431977i \(-0.142184\pi\)
−0.825046 + 0.565066i \(0.808851\pi\)
\(720\) 0 0
\(721\) 8406.01 24839.0i 0.434197 1.28301i
\(722\) 0 0
\(723\) 15020.6 + 22419.4i 0.772647 + 1.15323i
\(724\) 0 0
\(725\) 8785.72 + 5072.44i 0.450060 + 0.259842i
\(726\) 0 0
\(727\) 1003.13i 0.0511746i 0.999673 + 0.0255873i \(0.00814559\pi\)
−0.999673 + 0.0255873i \(0.991854\pi\)
\(728\) 0 0
\(729\) 18127.8 7668.28i 0.920989 0.389589i
\(730\) 0 0
\(731\) −12965.9 + 22457.5i −0.656033 + 1.13628i
\(732\) 0 0
\(733\) −2822.38 4888.51i −0.142220 0.246332i 0.786113 0.618083i \(-0.212091\pi\)
−0.928332 + 0.371752i \(0.878757\pi\)
\(734\) 0 0
\(735\) 13762.8 + 859.189i 0.690679 + 0.0431179i
\(736\) 0 0
\(737\) 2456.01 1417.98i 0.122752 0.0708710i
\(738\) 0 0
\(739\) −6173.16 3564.08i −0.307285 0.177411i 0.338426 0.940993i \(-0.390105\pi\)
−0.645711 + 0.763582i \(0.723439\pi\)
\(740\) 0 0
\(741\) −1037.53 15532.7i −0.0514369 0.770052i
\(742\) 0 0
\(743\) −8399.72 −0.414746 −0.207373 0.978262i \(-0.566491\pi\)
−0.207373 + 0.978262i \(0.566491\pi\)
\(744\) 0 0
\(745\) −1855.52 + 3213.86i −0.0912498 + 0.158049i
\(746\) 0 0
\(747\) 7372.05 + 9557.96i 0.361083 + 0.468149i
\(748\) 0 0
\(749\) −16278.3 5508.91i −0.794120 0.268746i
\(750\) 0 0
\(751\) −13791.0 + 7962.22i −0.670093 + 0.386878i −0.796112 0.605150i \(-0.793113\pi\)
0.126019 + 0.992028i \(0.459780\pi\)
\(752\) 0 0
\(753\) 9235.97 18787.8i 0.446982 0.909248i
\(754\) 0 0
\(755\) −15769.5 −0.760148
\(756\) 0 0
\(757\) −24367.3 −1.16994 −0.584971 0.811054i \(-0.698894\pi\)
−0.584971 + 0.811054i \(0.698894\pi\)
\(758\) 0 0
\(759\) −1514.53 + 3080.85i −0.0724295 + 0.147336i
\(760\) 0 0
\(761\) 16822.7 9712.61i 0.801345 0.462657i −0.0425963 0.999092i \(-0.513563\pi\)
0.843941 + 0.536436i \(0.180230\pi\)
\(762\) 0 0
\(763\) −4275.74 21391.9i −0.202873 1.01499i
\(764\) 0 0
\(765\) 9370.23 + 12148.6i 0.442852 + 0.574163i
\(766\) 0 0
\(767\) 3757.85 6508.79i 0.176908 0.306413i
\(768\) 0 0
\(769\) 11198.2 0.525122 0.262561 0.964915i \(-0.415433\pi\)
0.262561 + 0.964915i \(0.415433\pi\)
\(770\) 0 0
\(771\) 561.641 + 8408.22i 0.0262348 + 0.392756i
\(772\) 0 0
\(773\) −14571.8 8413.06i −0.678024 0.391458i 0.121086 0.992642i \(-0.461362\pi\)
−0.799110 + 0.601184i \(0.794696\pi\)
\(774\) 0 0
\(775\) −4953.00 + 2859.61i −0.229570 + 0.132542i
\(776\) 0 0
\(777\) 13250.1 13307.9i 0.611769 0.614436i
\(778\) 0 0
\(779\) 16986.8 + 29422.0i 0.781278 + 1.35321i
\(780\) 0 0
\(781\) −981.697 + 1700.35i −0.0449781 + 0.0779043i
\(782\) 0 0
\(783\) −4342.98 21414.4i −0.198219 0.977379i
\(784\) 0 0
\(785\) 7775.66i 0.353535i
\(786\) 0 0
\(787\) 8664.27 + 5002.32i 0.392437 + 0.226574i 0.683216 0.730217i \(-0.260581\pi\)
−0.290779 + 0.956790i \(0.593914\pi\)
\(788\) 0 0
\(789\) −22436.1 33487.5i −1.01235 1.51101i
\(790\) 0 0
\(791\) −18133.1 20638.2i −0.815094 0.927700i
\(792\) 0 0
\(793\) −6842.07 11850.8i −0.306392 0.530687i
\(794\) 0 0
\(795\) 12645.0 25722.3i 0.564114 1.14752i
\(796\) 0 0
\(797\) 5849.67i 0.259982i 0.991515 + 0.129991i \(0.0414949\pi\)
−0.991515 + 0.129991i \(0.958505\pi\)
\(798\) 0 0
\(799\) 3009.12i 0.133235i
\(800\) 0 0
\(801\) −12077.9 4967.57i −0.532775 0.219127i
\(802\) 0 0
\(803\) −386.902 670.134i −0.0170031 0.0294502i
\(804\) 0 0
\(805\) 19812.3 3960.02i 0.867444 0.173382i
\(806\) 0 0
\(807\) 35228.7 23602.7i 1.53669 1.02956i
\(808\) 0 0
\(809\) −23767.3 13722.1i −1.03290 0.596344i −0.115084 0.993356i \(-0.536714\pi\)
−0.917813 + 0.397012i \(0.870047\pi\)
\(810\) 0 0
\(811\) 38119.2i 1.65049i −0.564776 0.825244i \(-0.691037\pi\)
0.564776 0.825244i \(-0.308963\pi\)
\(812\) 0 0
\(813\) 551.279 + 8253.09i 0.0237813 + 0.356025i
\(814\) 0 0
\(815\) −3553.69 + 6155.17i −0.152737 + 0.264548i
\(816\) 0 0
\(817\) 16137.3 + 27950.7i 0.691033 + 1.19690i
\(818\) 0 0
\(819\) 16085.1 + 3142.34i 0.686277 + 0.134069i
\(820\) 0 0
\(821\) 13598.4 7851.04i 0.578060 0.333743i −0.182302 0.983243i \(-0.558355\pi\)
0.760362 + 0.649499i \(0.225021\pi\)
\(822\) 0 0
\(823\) 23489.8 + 13561.9i 0.994902 + 0.574407i 0.906736 0.421699i \(-0.138566\pi\)
0.0881660 + 0.996106i \(0.471899\pi\)
\(824\) 0 0
\(825\) 1582.42 105.700i 0.0667791 0.00446062i
\(826\) 0 0
\(827\) −31071.7 −1.30649 −0.653245 0.757146i \(-0.726593\pi\)
−0.653245 + 0.757146i \(0.726593\pi\)
\(828\) 0 0
\(829\) 11439.1 19813.1i 0.479248 0.830081i −0.520469 0.853880i \(-0.674243\pi\)
0.999717 + 0.0237993i \(0.00757626\pi\)
\(830\) 0 0
\(831\) 11955.6 + 17844.6i 0.499079 + 0.744911i
\(832\) 0 0
\(833\) −15298.3 + 20013.9i −0.636322 + 0.832463i
\(834\) 0 0
\(835\) −3466.73 + 2001.52i −0.143678 + 0.0829524i
\(836\) 0 0
\(837\) 11679.3 + 3915.88i 0.482311 + 0.161712i
\(838\) 0 0
\(839\) 32438.5 1.33480 0.667402 0.744698i \(-0.267406\pi\)
0.667402 + 0.744698i \(0.267406\pi\)
\(840\) 0 0
\(841\) 132.662 0.00543941
\(842\) 0 0
\(843\) 13152.9 + 6465.88i 0.537376 + 0.264172i
\(844\) 0 0
\(845\) −7523.15 + 4343.49i −0.306277 + 0.176829i
\(846\) 0 0
\(847\) −22964.4 7771.63i −0.931603 0.315273i
\(848\) 0 0
\(849\) −20945.1 + 14032.9i −0.846682 + 0.567264i
\(850\) 0 0
\(851\) 13757.5 23828.8i 0.554174 0.959858i
\(852\) 0 0
\(853\) 4830.11 0.193880 0.0969401 0.995290i \(-0.469094\pi\)
0.0969401 + 0.995290i \(0.469094\pi\)
\(854\) 0 0
\(855\) 18925.6 2539.66i 0.757007 0.101584i
\(856\) 0 0
\(857\) 43058.1 + 24859.6i 1.71626 + 0.990884i 0.925489 + 0.378774i \(0.123654\pi\)
0.790773 + 0.612110i \(0.209679\pi\)
\(858\) 0 0
\(859\) −15768.1 + 9103.74i −0.626312 + 0.361601i −0.779322 0.626623i \(-0.784436\pi\)
0.153011 + 0.988225i \(0.451103\pi\)
\(860\) 0 0
\(861\) −34528.3 + 9332.37i −1.36669 + 0.369392i
\(862\) 0 0
\(863\) −8185.47 14177.7i −0.322870 0.559227i 0.658209 0.752835i \(-0.271314\pi\)
−0.981079 + 0.193608i \(0.937981\pi\)
\(864\) 0 0
\(865\) −11483.0 + 19889.2i −0.451370 + 0.781796i
\(866\) 0 0
\(867\) −2493.72 + 166.572i −0.0976831 + 0.00652490i
\(868\) 0 0
\(869\) 2632.28i 0.102755i
\(870\) 0 0
\(871\) −17179.3 9918.48i −0.668311 0.385850i
\(872\) 0 0
\(873\) −19221.1 24920.4i −0.745173 0.966127i
\(874\) 0 0
\(875\) −17983.1 20467.4i −0.694787 0.790772i
\(876\) 0 0
\(877\) −4503.10 7799.60i −0.173385 0.300312i 0.766216 0.642583i \(-0.222137\pi\)
−0.939601 + 0.342271i \(0.888804\pi\)
\(878\) 0 0
\(879\) 27016.3 + 13281.1i 1.03667 + 0.509624i
\(880\) 0 0
\(881\) 14494.2i 0.554282i 0.960829 + 0.277141i \(0.0893868\pi\)
−0.960829 + 0.277141i \(0.910613\pi\)
\(882\) 0 0
\(883\) 47753.9i 1.81999i −0.414625 0.909993i \(-0.636087\pi\)
0.414625 0.909993i \(-0.363913\pi\)
\(884\) 0 0
\(885\) 8273.27 + 4067.10i 0.314241 + 0.154479i
\(886\) 0 0
\(887\) 20676.1 + 35812.0i 0.782677 + 1.35564i 0.930377 + 0.366604i \(0.119480\pi\)
−0.147700 + 0.989032i \(0.547187\pi\)
\(888\) 0 0
\(889\) −1277.49 1453.97i −0.0481952 0.0548533i
\(890\) 0 0
\(891\) −2427.40 2403.29i −0.0912693 0.0903628i
\(892\) 0 0
\(893\) −3243.40 1872.58i −0.121541 0.0701719i
\(894\) 0 0
\(895\) 31669.4i 1.18278i
\(896\) 0 0
\(897\) 23959.7 1600.43i 0.891852 0.0595727i
\(898\) 0 0
\(899\) 6837.32 11842.6i 0.253657 0.439347i
\(900\) 0 0
\(901\) 26180.6 + 45346.1i 0.968038 + 1.67669i
\(902\) 0 0
\(903\) −32801.6 + 8865.68i −1.20883 + 0.326723i
\(904\) 0 0
\(905\) 13421.8 7749.10i 0.492991 0.284629i
\(906\) 0 0
\(907\) −31748.2 18329.9i −1.16227 0.671040i −0.210427 0.977610i \(-0.567485\pi\)
−0.951848 + 0.306570i \(0.900819\pi\)
\(908\) 0 0
\(909\) 1962.75 + 14626.4i 0.0716175 + 0.533694i
\(910\) 0 0
\(911\) 5857.49 0.213027 0.106513 0.994311i \(-0.466031\pi\)
0.106513 + 0.994311i \(0.466031\pi\)
\(912\) 0 0
\(913\) 1047.39 1814.14i 0.0379668 0.0657605i
\(914\) 0 0
\(915\) 13944.8 9342.80i 0.503826 0.337556i
\(916\) 0 0
\(917\) 41183.1 + 13937.2i 1.48308 + 0.501904i
\(918\) 0 0
\(919\) −1338.60 + 772.843i −0.0480483 + 0.0277407i −0.523832 0.851822i \(-0.675498\pi\)
0.475783 + 0.879562i \(0.342165\pi\)
\(920\) 0 0
\(921\) 33654.1 + 16544.2i 1.20406 + 0.591910i
\(922\) 0 0
\(923\) 13733.5 0.489756
\(924\) 0 0
\(925\) −12711.2 −0.451828
\(926\) 0 0
\(927\) 35355.6 + 14541.5i 1.25268 + 0.515217i
\(928\) 0 0
\(929\) −23951.8 + 13828.6i −0.845892 + 0.488376i −0.859263 0.511535i \(-0.829077\pi\)
0.0133709 + 0.999911i \(0.495744\pi\)
\(930\) 0 0
\(931\) 12052.0 + 28944.1i 0.424262 + 1.01891i
\(932\) 0 0
\(933\) 5337.49 + 7966.58i 0.187290 + 0.279543i
\(934\) 0 0
\(935\) 1331.29 2305.86i 0.0465646 0.0806522i
\(936\) 0 0
\(937\) −28569.7 −0.996084 −0.498042 0.867153i \(-0.665947\pi\)
−0.498042 + 0.867153i \(0.665947\pi\)
\(938\) 0 0
\(939\) −43302.1 + 2892.43i −1.50491 + 0.100523i
\(940\) 0 0
\(941\) 3767.92 + 2175.41i 0.130532 + 0.0753628i 0.563844 0.825881i \(-0.309322\pi\)
−0.433312 + 0.901244i \(0.642655\pi\)
\(942\) 0 0
\(943\) −45384.3 + 26202.7i −1.56725 + 0.904853i
\(944\) 0 0
\(945\) −2530.90 + 19943.4i −0.0871218 + 0.686518i
\(946\) 0 0
\(947\) 21550.1 + 37325.9i 0.739476 + 1.28081i 0.952731 + 0.303814i \(0.0982602\pi\)
−0.213255 + 0.976997i \(0.568406\pi\)
\(948\) 0 0
\(949\) −2706.30 + 4687.45i −0.0925714 + 0.160338i
\(950\) 0 0
\(951\) 456.381 + 6832.40i 0.0155617 + 0.232971i
\(952\) 0 0
\(953\) 28162.0i 0.957246i 0.878020 + 0.478623i \(0.158864\pi\)
−0.878020 + 0.478623i \(0.841136\pi\)
\(954\) 0 0
\(955\) −23351.1 13481.8i −0.791230 0.456817i
\(956\) 0 0
\(957\) −3150.29 + 2110.65i −0.106410 + 0.0712931i
\(958\) 0 0
\(959\) −43329.3 + 8660.51i −1.45899 + 0.291619i
\(960\) 0 0
\(961\) −11040.9 19123.4i −0.370613 0.641920i
\(962\) 0 0
\(963\) 9529.83 23170.4i 0.318893 0.775344i
\(964\) 0 0
\(965\) 15811.0i 0.527433i
\(966\) 0 0
\(967\) 37267.7i 1.23935i 0.784859 + 0.619674i \(0.212735\pi\)
−0.784859 + 0.619674i \(0.787265\pi\)
\(968\) 0 0
\(969\) −15389.6 + 31305.4i −0.510201 + 1.03785i
\(970\) 0 0
\(971\) 13459.9 + 23313.3i 0.444851 + 0.770504i 0.998042 0.0625501i \(-0.0199233\pi\)
−0.553191 + 0.833055i \(0.686590\pi\)
\(972\) 0 0
\(973\) 15826.1 + 18012.5i 0.521442 + 0.593479i
\(974\) 0 0
\(975\) −6174.64 9216.09i −0.202817 0.302719i
\(976\) 0 0
\(977\) 44198.1 + 25517.8i 1.44731 + 0.835605i 0.998321 0.0579314i \(-0.0184505\pi\)
0.448990 + 0.893537i \(0.351784\pi\)
\(978\) 0 0
\(979\) 2266.41i 0.0739885i
\(980\) 0 0
\(981\) 31520.8 4229.84i 1.02587 0.137664i
\(982\) 0 0
\(983\) −16279.8 + 28197.5i −0.528225 + 0.914913i 0.471233 + 0.882009i \(0.343809\pi\)
−0.999458 + 0.0329045i \(0.989524\pi\)
\(984\) 0 0
\(985\) 4948.27 + 8570.65i 0.160066 + 0.277242i
\(986\) 0 0
\(987\) 2781.97 2794.10i 0.0897174 0.0901085i
\(988\) 0 0
\(989\) −43114.8 + 24892.3i −1.38622 + 0.800334i
\(990\) 0 0
\(991\) −49932.4 28828.5i −1.60056 0.924084i −0.991375 0.131055i \(-0.958164\pi\)
−0.609185 0.793028i \(-0.708503\pi\)
\(992\) 0 0
\(993\) 2539.40 + 38016.9i 0.0811536 + 1.21494i
\(994\) 0 0
\(995\) −37460.7 −1.19355
\(996\) 0 0
\(997\) 22275.1 38581.7i 0.707583 1.22557i −0.258168 0.966100i \(-0.583119\pi\)
0.965751 0.259470i \(-0.0835479\pi\)
\(998\) 0 0
\(999\) 18128.3 + 20516.0i 0.574129 + 0.649746i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bj.g.95.7 yes 32
3.2 odd 2 inner 336.4.bj.g.95.12 yes 32
4.3 odd 2 inner 336.4.bj.g.95.10 yes 32
7.2 even 3 inner 336.4.bj.g.191.5 yes 32
12.11 even 2 inner 336.4.bj.g.95.5 32
21.2 odd 6 inner 336.4.bj.g.191.10 yes 32
28.23 odd 6 inner 336.4.bj.g.191.12 yes 32
84.23 even 6 inner 336.4.bj.g.191.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bj.g.95.5 32 12.11 even 2 inner
336.4.bj.g.95.7 yes 32 1.1 even 1 trivial
336.4.bj.g.95.10 yes 32 4.3 odd 2 inner
336.4.bj.g.95.12 yes 32 3.2 odd 2 inner
336.4.bj.g.191.5 yes 32 7.2 even 3 inner
336.4.bj.g.191.7 yes 32 84.23 even 6 inner
336.4.bj.g.191.10 yes 32 21.2 odd 6 inner
336.4.bj.g.191.12 yes 32 28.23 odd 6 inner