Properties

Label 336.4.bj.f.95.13
Level $336$
Weight $4$
Character 336.95
Analytic conductor $19.825$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.13
Character \(\chi\) \(=\) 336.95
Dual form 336.4.bj.f.191.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.74483 - 2.11816i) q^{3} +(7.60125 - 4.38858i) q^{5} +(3.39378 + 18.2067i) q^{7} +(18.0268 - 20.1006i) q^{9} +(12.1881 - 21.1105i) q^{11} +2.78841 q^{13} +(26.7709 - 36.9237i) q^{15} +(23.4934 + 13.5639i) q^{17} +(57.2288 - 33.0411i) q^{19} +(54.6675 + 79.1989i) q^{21} +(44.5496 + 77.1622i) q^{23} +(-23.9807 + 41.5357i) q^{25} +(42.9580 - 133.558i) q^{27} -77.3681i q^{29} +(76.0645 + 43.9159i) q^{31} +(13.1154 - 125.982i) q^{33} +(105.698 + 123.499i) q^{35} +(-107.685 - 186.516i) q^{37} +(13.2305 - 5.90629i) q^{39} -197.104i q^{41} -251.818i q^{43} +(48.8133 - 231.902i) q^{45} +(307.037 + 531.804i) q^{47} +(-319.964 + 123.579i) q^{49} +(140.203 + 14.5958i) q^{51} +(-254.789 - 147.102i) q^{53} -213.955i q^{55} +(201.555 - 277.994i) q^{57} +(78.1027 - 135.278i) q^{59} +(-215.445 - 373.162i) q^{61} +(427.144 + 259.991i) q^{63} +(21.1954 - 12.2372i) q^{65} +(414.998 + 239.599i) q^{67} +(374.822 + 271.759i) q^{69} +794.386 q^{71} +(-372.340 + 644.912i) q^{73} +(-25.8050 + 247.875i) q^{75} +(425.715 + 150.261i) q^{77} +(389.250 - 224.734i) q^{79} +(-79.0671 - 724.700i) q^{81} -1026.68 q^{83} +238.106 q^{85} +(-163.878 - 367.098i) q^{87} +(578.622 - 334.067i) q^{89} +(9.46326 + 50.7676i) q^{91} +(453.934 + 47.2568i) q^{93} +(290.007 - 502.307i) q^{95} -1674.05 q^{97} +(-204.619 - 625.543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 38 q^{7} - 70 q^{9} + 124 q^{13} - 462 q^{19} + 500 q^{21} + 566 q^{25} + 1266 q^{31} + 64 q^{33} + 338 q^{37} + 1254 q^{39} - 488 q^{45} - 206 q^{49} + 522 q^{51} + 2324 q^{57} - 340 q^{61} - 840 q^{63}+ \cdots - 3344 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.74483 2.11816i 0.913143 0.407639i
\(4\) 0 0
\(5\) 7.60125 4.38858i 0.679877 0.392527i −0.119932 0.992782i \(-0.538268\pi\)
0.799809 + 0.600255i \(0.204934\pi\)
\(6\) 0 0
\(7\) 3.39378 + 18.2067i 0.183247 + 0.983067i
\(8\) 0 0
\(9\) 18.0268 20.1006i 0.667660 0.744466i
\(10\) 0 0
\(11\) 12.1881 21.1105i 0.334078 0.578641i −0.649229 0.760593i \(-0.724908\pi\)
0.983307 + 0.181952i \(0.0582417\pi\)
\(12\) 0 0
\(13\) 2.78841 0.0594897 0.0297449 0.999558i \(-0.490531\pi\)
0.0297449 + 0.999558i \(0.490531\pi\)
\(14\) 0 0
\(15\) 26.7709 36.9237i 0.460815 0.635578i
\(16\) 0 0
\(17\) 23.4934 + 13.5639i 0.335176 + 0.193514i 0.658137 0.752898i \(-0.271345\pi\)
−0.322961 + 0.946412i \(0.604678\pi\)
\(18\) 0 0
\(19\) 57.2288 33.0411i 0.691010 0.398955i −0.112980 0.993597i \(-0.536040\pi\)
0.803990 + 0.594643i \(0.202706\pi\)
\(20\) 0 0
\(21\) 54.6675 + 79.1989i 0.568068 + 0.822982i
\(22\) 0 0
\(23\) 44.5496 + 77.1622i 0.403880 + 0.699541i 0.994190 0.107636i \(-0.0343280\pi\)
−0.590310 + 0.807176i \(0.700995\pi\)
\(24\) 0 0
\(25\) −23.9807 + 41.5357i −0.191845 + 0.332286i
\(26\) 0 0
\(27\) 42.9580 133.558i 0.306196 0.951969i
\(28\) 0 0
\(29\) 77.3681i 0.495410i −0.968835 0.247705i \(-0.920324\pi\)
0.968835 0.247705i \(-0.0796764\pi\)
\(30\) 0 0
\(31\) 76.0645 + 43.9159i 0.440696 + 0.254436i 0.703893 0.710306i \(-0.251443\pi\)
−0.263197 + 0.964742i \(0.584777\pi\)
\(32\) 0 0
\(33\) 13.1154 125.982i 0.0691845 0.664565i
\(34\) 0 0
\(35\) 105.698 + 123.499i 0.510466 + 0.596435i
\(36\) 0 0
\(37\) −107.685 186.516i −0.478468 0.828731i 0.521227 0.853418i \(-0.325474\pi\)
−0.999695 + 0.0246870i \(0.992141\pi\)
\(38\) 0 0
\(39\) 13.2305 5.90629i 0.0543226 0.0242504i
\(40\) 0 0
\(41\) 197.104i 0.750791i −0.926865 0.375395i \(-0.877507\pi\)
0.926865 0.375395i \(-0.122493\pi\)
\(42\) 0 0
\(43\) 251.818i 0.893067i −0.894767 0.446533i \(-0.852658\pi\)
0.894767 0.446533i \(-0.147342\pi\)
\(44\) 0 0
\(45\) 48.8133 231.902i 0.161704 0.768220i
\(46\) 0 0
\(47\) 307.037 + 531.804i 0.952893 + 1.65046i 0.739118 + 0.673576i \(0.235242\pi\)
0.213775 + 0.976883i \(0.431424\pi\)
\(48\) 0 0
\(49\) −319.964 + 123.579i −0.932841 + 0.360288i
\(50\) 0 0
\(51\) 140.203 + 14.5958i 0.384948 + 0.0400750i
\(52\) 0 0
\(53\) −254.789 147.102i −0.660339 0.381247i 0.132067 0.991241i \(-0.457839\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(54\) 0 0
\(55\) 213.955i 0.524539i
\(56\) 0 0
\(57\) 201.555 277.994i 0.468361 0.645986i
\(58\) 0 0
\(59\) 78.1027 135.278i 0.172341 0.298503i −0.766897 0.641770i \(-0.778200\pi\)
0.939238 + 0.343267i \(0.111534\pi\)
\(60\) 0 0
\(61\) −215.445 373.162i −0.452212 0.783254i 0.546311 0.837582i \(-0.316032\pi\)
−0.998523 + 0.0543280i \(0.982698\pi\)
\(62\) 0 0
\(63\) 427.144 + 259.991i 0.854207 + 0.519933i
\(64\) 0 0
\(65\) 21.1954 12.2372i 0.0404457 0.0233513i
\(66\) 0 0
\(67\) 414.998 + 239.599i 0.756718 + 0.436891i 0.828116 0.560557i \(-0.189413\pi\)
−0.0713984 + 0.997448i \(0.522746\pi\)
\(68\) 0 0
\(69\) 374.822 + 271.759i 0.653961 + 0.474143i
\(70\) 0 0
\(71\) 794.386 1.32783 0.663917 0.747806i \(-0.268893\pi\)
0.663917 + 0.747806i \(0.268893\pi\)
\(72\) 0 0
\(73\) −372.340 + 644.912i −0.596974 + 1.03399i 0.396291 + 0.918125i \(0.370297\pi\)
−0.993265 + 0.115865i \(0.963036\pi\)
\(74\) 0 0
\(75\) −25.8050 + 247.875i −0.0397294 + 0.381628i
\(76\) 0 0
\(77\) 425.715 + 150.261i 0.630061 + 0.222387i
\(78\) 0 0
\(79\) 389.250 224.734i 0.554355 0.320057i −0.196522 0.980499i \(-0.562965\pi\)
0.750877 + 0.660442i \(0.229631\pi\)
\(80\) 0 0
\(81\) −79.0671 724.700i −0.108460 0.994101i
\(82\) 0 0
\(83\) −1026.68 −1.35775 −0.678875 0.734254i \(-0.737532\pi\)
−0.678875 + 0.734254i \(0.737532\pi\)
\(84\) 0 0
\(85\) 238.106 0.303838
\(86\) 0 0
\(87\) −163.878 367.098i −0.201949 0.452380i
\(88\) 0 0
\(89\) 578.622 334.067i 0.689144 0.397877i −0.114148 0.993464i \(-0.536414\pi\)
0.803291 + 0.595587i \(0.203080\pi\)
\(90\) 0 0
\(91\) 9.46326 + 50.7676i 0.0109013 + 0.0584824i
\(92\) 0 0
\(93\) 453.934 + 47.2568i 0.506137 + 0.0526914i
\(94\) 0 0
\(95\) 290.007 502.307i 0.313201 0.542480i
\(96\) 0 0
\(97\) −1674.05 −1.75231 −0.876156 0.482028i \(-0.839900\pi\)
−0.876156 + 0.482028i \(0.839900\pi\)
\(98\) 0 0
\(99\) −204.619 625.543i −0.207728 0.635045i
\(100\) 0 0
\(101\) 1218.79 + 703.669i 1.20073 + 0.693244i 0.960718 0.277525i \(-0.0895142\pi\)
0.240015 + 0.970769i \(0.422848\pi\)
\(102\) 0 0
\(103\) −1081.01 + 624.120i −1.03412 + 0.597052i −0.918164 0.396202i \(-0.870328\pi\)
−0.115961 + 0.993254i \(0.536995\pi\)
\(104\) 0 0
\(105\) 763.112 + 362.098i 0.709258 + 0.336544i
\(106\) 0 0
\(107\) −703.195 1217.97i −0.635331 1.10043i −0.986445 0.164093i \(-0.947530\pi\)
0.351114 0.936333i \(-0.385803\pi\)
\(108\) 0 0
\(109\) −400.519 + 693.719i −0.351952 + 0.609599i −0.986591 0.163210i \(-0.947815\pi\)
0.634639 + 0.772808i \(0.281149\pi\)
\(110\) 0 0
\(111\) −906.018 656.893i −0.774733 0.561707i
\(112\) 0 0
\(113\) 312.505i 0.260160i −0.991504 0.130080i \(-0.958477\pi\)
0.991504 0.130080i \(-0.0415233\pi\)
\(114\) 0 0
\(115\) 677.266 + 391.020i 0.549177 + 0.317068i
\(116\) 0 0
\(117\) 50.2662 56.0487i 0.0397189 0.0442881i
\(118\) 0 0
\(119\) −167.222 + 473.770i −0.128817 + 0.364962i
\(120\) 0 0
\(121\) 368.399 + 638.085i 0.276783 + 0.479403i
\(122\) 0 0
\(123\) −417.496 935.223i −0.306052 0.685579i
\(124\) 0 0
\(125\) 1518.11i 1.08627i
\(126\) 0 0
\(127\) 2205.83i 1.54122i 0.637305 + 0.770612i \(0.280049\pi\)
−0.637305 + 0.770612i \(0.719951\pi\)
\(128\) 0 0
\(129\) −533.390 1194.83i −0.364049 0.815498i
\(130\) 0 0
\(131\) −188.937 327.249i −0.126012 0.218258i 0.796116 0.605144i \(-0.206884\pi\)
−0.922128 + 0.386885i \(0.873551\pi\)
\(132\) 0 0
\(133\) 795.789 + 929.811i 0.518825 + 0.606202i
\(134\) 0 0
\(135\) −259.594 1203.73i −0.165498 0.767411i
\(136\) 0 0
\(137\) −2751.92 1588.82i −1.71615 0.990818i −0.925675 0.378320i \(-0.876502\pi\)
−0.790472 0.612498i \(-0.790165\pi\)
\(138\) 0 0
\(139\) 2010.28i 1.22669i 0.789815 + 0.613345i \(0.210176\pi\)
−0.789815 + 0.613345i \(0.789824\pi\)
\(140\) 0 0
\(141\) 2583.28 + 1872.97i 1.54292 + 1.11867i
\(142\) 0 0
\(143\) 33.9855 58.8647i 0.0198742 0.0344232i
\(144\) 0 0
\(145\) −339.536 588.094i −0.194462 0.336818i
\(146\) 0 0
\(147\) −1256.42 + 1264.10i −0.704950 + 0.709257i
\(148\) 0 0
\(149\) −2070.47 + 1195.39i −1.13839 + 0.657249i −0.946031 0.324076i \(-0.894947\pi\)
−0.192357 + 0.981325i \(0.561613\pi\)
\(150\) 0 0
\(151\) 1138.17 + 657.121i 0.613395 + 0.354144i 0.774293 0.632827i \(-0.218106\pi\)
−0.160898 + 0.986971i \(0.551439\pi\)
\(152\) 0 0
\(153\) 696.156 227.717i 0.367849 0.120326i
\(154\) 0 0
\(155\) 770.914 0.399492
\(156\) 0 0
\(157\) 57.9218 100.323i 0.0294437 0.0509980i −0.850928 0.525282i \(-0.823960\pi\)
0.880372 + 0.474284i \(0.157293\pi\)
\(158\) 0 0
\(159\) −1520.52 158.293i −0.758395 0.0789527i
\(160\) 0 0
\(161\) −1253.67 + 1072.97i −0.613686 + 0.525230i
\(162\) 0 0
\(163\) −1761.05 + 1016.74i −0.846235 + 0.488574i −0.859379 0.511340i \(-0.829149\pi\)
0.0131437 + 0.999914i \(0.495816\pi\)
\(164\) 0 0
\(165\) −453.189 1015.18i −0.213823 0.478979i
\(166\) 0 0
\(167\) −4291.70 −1.98863 −0.994317 0.106457i \(-0.966049\pi\)
−0.994317 + 0.106457i \(0.966049\pi\)
\(168\) 0 0
\(169\) −2189.22 −0.996461
\(170\) 0 0
\(171\) 367.509 1745.96i 0.164352 0.780800i
\(172\) 0 0
\(173\) 1813.17 1046.84i 0.796839 0.460055i −0.0455258 0.998963i \(-0.514496\pi\)
0.842365 + 0.538908i \(0.181163\pi\)
\(174\) 0 0
\(175\) −837.612 295.644i −0.361814 0.127706i
\(176\) 0 0
\(177\) 84.0444 807.305i 0.0356902 0.342829i
\(178\) 0 0
\(179\) −814.114 + 1410.09i −0.339943 + 0.588798i −0.984422 0.175824i \(-0.943741\pi\)
0.644479 + 0.764622i \(0.277074\pi\)
\(180\) 0 0
\(181\) −850.842 −0.349407 −0.174703 0.984621i \(-0.555897\pi\)
−0.174703 + 0.984621i \(0.555897\pi\)
\(182\) 0 0
\(183\) −1812.67 1314.24i −0.732220 0.530884i
\(184\) 0 0
\(185\) −1637.08 945.170i −0.650598 0.375623i
\(186\) 0 0
\(187\) 572.683 330.639i 0.223950 0.129298i
\(188\) 0 0
\(189\) 2577.43 + 328.857i 0.991958 + 0.126565i
\(190\) 0 0
\(191\) −944.455 1635.84i −0.357792 0.619714i 0.629799 0.776758i \(-0.283137\pi\)
−0.987592 + 0.157043i \(0.949804\pi\)
\(192\) 0 0
\(193\) −2397.16 + 4152.00i −0.894049 + 1.54854i −0.0590708 + 0.998254i \(0.518814\pi\)
−0.834978 + 0.550284i \(0.814520\pi\)
\(194\) 0 0
\(195\) 74.6484 102.959i 0.0274138 0.0378103i
\(196\) 0 0
\(197\) 3853.03i 1.39349i 0.717321 + 0.696743i \(0.245368\pi\)
−0.717321 + 0.696743i \(0.754632\pi\)
\(198\) 0 0
\(199\) −1716.62 991.091i −0.611497 0.353048i 0.162054 0.986782i \(-0.448188\pi\)
−0.773551 + 0.633734i \(0.781521\pi\)
\(200\) 0 0
\(201\) 2476.60 + 257.827i 0.869085 + 0.0904761i
\(202\) 0 0
\(203\) 1408.61 262.570i 0.487021 0.0907824i
\(204\) 0 0
\(205\) −865.006 1498.23i −0.294706 0.510445i
\(206\) 0 0
\(207\) 2354.09 + 495.516i 0.790439 + 0.166381i
\(208\) 0 0
\(209\) 1610.84i 0.533128i
\(210\) 0 0
\(211\) 762.088i 0.248646i −0.992242 0.124323i \(-0.960324\pi\)
0.992242 0.124323i \(-0.0396759\pi\)
\(212\) 0 0
\(213\) 3769.23 1682.63i 1.21250 0.541278i
\(214\) 0 0
\(215\) −1105.12 1914.13i −0.350553 0.607175i
\(216\) 0 0
\(217\) −541.414 + 1533.92i −0.169371 + 0.479859i
\(218\) 0 0
\(219\) −400.666 + 3848.67i −0.123628 + 1.18753i
\(220\) 0 0
\(221\) 65.5094 + 37.8219i 0.0199395 + 0.0115121i
\(222\) 0 0
\(223\) 384.858i 0.115570i −0.998329 0.0577848i \(-0.981596\pi\)
0.998329 0.0577848i \(-0.0184037\pi\)
\(224\) 0 0
\(225\) 402.597 + 1230.78i 0.119288 + 0.364676i
\(226\) 0 0
\(227\) −634.801 + 1099.51i −0.185609 + 0.321484i −0.943782 0.330570i \(-0.892759\pi\)
0.758173 + 0.652054i \(0.226092\pi\)
\(228\) 0 0
\(229\) −343.776 595.437i −0.0992024 0.171824i 0.812152 0.583445i \(-0.198296\pi\)
−0.911355 + 0.411622i \(0.864962\pi\)
\(230\) 0 0
\(231\) 2338.22 188.769i 0.665990 0.0537665i
\(232\) 0 0
\(233\) 3084.40 1780.78i 0.867234 0.500698i 0.000805994 1.00000i \(-0.499743\pi\)
0.866428 + 0.499302i \(0.166410\pi\)
\(234\) 0 0
\(235\) 4667.73 + 2694.92i 1.29570 + 0.748072i
\(236\) 0 0
\(237\) 1370.90 1890.82i 0.375738 0.518235i
\(238\) 0 0
\(239\) 6005.30 1.62532 0.812658 0.582741i \(-0.198020\pi\)
0.812658 + 0.582741i \(0.198020\pi\)
\(240\) 0 0
\(241\) 568.914 985.388i 0.152062 0.263379i −0.779923 0.625875i \(-0.784742\pi\)
0.931985 + 0.362496i \(0.118075\pi\)
\(242\) 0 0
\(243\) −1910.19 3271.10i −0.504274 0.863544i
\(244\) 0 0
\(245\) −1889.79 + 2343.54i −0.492794 + 0.611117i
\(246\) 0 0
\(247\) 159.577 92.1321i 0.0411080 0.0237337i
\(248\) 0 0
\(249\) −4871.44 + 2174.68i −1.23982 + 0.553473i
\(250\) 0 0
\(251\) 4620.63 1.16196 0.580980 0.813918i \(-0.302670\pi\)
0.580980 + 0.813918i \(0.302670\pi\)
\(252\) 0 0
\(253\) 2171.91 0.539710
\(254\) 0 0
\(255\) 1129.77 504.346i 0.277448 0.123856i
\(256\) 0 0
\(257\) 6191.64 3574.75i 1.50282 0.867652i 0.502823 0.864389i \(-0.332295\pi\)
0.999995 0.00326261i \(-0.00103852\pi\)
\(258\) 0 0
\(259\) 3030.37 2593.58i 0.727020 0.622229i
\(260\) 0 0
\(261\) −1555.14 1394.70i −0.368816 0.330766i
\(262\) 0 0
\(263\) −1809.48 + 3134.11i −0.424248 + 0.734819i −0.996350 0.0853634i \(-0.972795\pi\)
0.572102 + 0.820183i \(0.306128\pi\)
\(264\) 0 0
\(265\) −2582.29 −0.598599
\(266\) 0 0
\(267\) 2037.85 2810.70i 0.467096 0.644241i
\(268\) 0 0
\(269\) 5220.52 + 3014.07i 1.18327 + 0.683164i 0.956770 0.290847i \(-0.0939369\pi\)
0.226504 + 0.974010i \(0.427270\pi\)
\(270\) 0 0
\(271\) 608.576 351.362i 0.136415 0.0787591i −0.430239 0.902715i \(-0.641571\pi\)
0.566654 + 0.823956i \(0.308238\pi\)
\(272\) 0 0
\(273\) 152.435 + 220.839i 0.0337942 + 0.0489590i
\(274\) 0 0
\(275\) 584.559 + 1012.49i 0.128183 + 0.222019i
\(276\) 0 0
\(277\) −1253.40 + 2170.96i −0.271876 + 0.470903i −0.969342 0.245715i \(-0.920977\pi\)
0.697466 + 0.716618i \(0.254311\pi\)
\(278\) 0 0
\(279\) 2253.94 737.277i 0.483655 0.158207i
\(280\) 0 0
\(281\) 2033.41i 0.431684i −0.976428 0.215842i \(-0.930750\pi\)
0.976428 0.215842i \(-0.0692497\pi\)
\(282\) 0 0
\(283\) −1275.45 736.382i −0.267907 0.154676i 0.360029 0.932941i \(-0.382767\pi\)
−0.627936 + 0.778265i \(0.716100\pi\)
\(284\) 0 0
\(285\) 312.069 2997.64i 0.0648610 0.623035i
\(286\) 0 0
\(287\) 3588.60 668.927i 0.738077 0.137580i
\(288\) 0 0
\(289\) −2088.54 3617.45i −0.425105 0.736303i
\(290\) 0 0
\(291\) −7943.09 + 3545.90i −1.60011 + 0.714311i
\(292\) 0 0
\(293\) 7744.68i 1.54420i −0.635504 0.772098i \(-0.719208\pi\)
0.635504 0.772098i \(-0.280792\pi\)
\(294\) 0 0
\(295\) 1371.04i 0.270594i
\(296\) 0 0
\(297\) −2295.88 2534.68i −0.448554 0.495209i
\(298\) 0 0
\(299\) 124.223 + 215.160i 0.0240267 + 0.0416155i
\(300\) 0 0
\(301\) 4584.76 854.615i 0.877945 0.163652i
\(302\) 0 0
\(303\) 7273.43 + 757.200i 1.37904 + 0.143564i
\(304\) 0 0
\(305\) −3275.31 1891.00i −0.614897 0.355011i
\(306\) 0 0
\(307\) 1959.84i 0.364344i 0.983267 + 0.182172i \(0.0583128\pi\)
−0.983267 + 0.182172i \(0.941687\pi\)
\(308\) 0 0
\(309\) −3807.21 + 5251.09i −0.700922 + 0.966744i
\(310\) 0 0
\(311\) −1502.61 + 2602.60i −0.273972 + 0.474533i −0.969875 0.243602i \(-0.921671\pi\)
0.695903 + 0.718135i \(0.255004\pi\)
\(312\) 0 0
\(313\) −4305.63 7457.56i −0.777535 1.34673i −0.933359 0.358945i \(-0.883137\pi\)
0.155824 0.987785i \(-0.450197\pi\)
\(314\) 0 0
\(315\) 4387.82 + 101.703i 0.784843 + 0.0181914i
\(316\) 0 0
\(317\) 2090.67 1207.05i 0.370422 0.213863i −0.303221 0.952920i \(-0.598062\pi\)
0.673643 + 0.739057i \(0.264729\pi\)
\(318\) 0 0
\(319\) −1633.28 942.973i −0.286664 0.165506i
\(320\) 0 0
\(321\) −5916.39 4289.58i −1.02872 0.745860i
\(322\) 0 0
\(323\) 1792.67 0.308814
\(324\) 0 0
\(325\) −66.8680 + 115.819i −0.0114128 + 0.0197676i
\(326\) 0 0
\(327\) −430.989 + 4139.94i −0.0728860 + 0.700120i
\(328\) 0 0
\(329\) −8640.35 + 7394.94i −1.44790 + 1.23920i
\(330\) 0 0
\(331\) 1812.45 1046.42i 0.300970 0.173765i −0.341909 0.939733i \(-0.611073\pi\)
0.642879 + 0.765968i \(0.277740\pi\)
\(332\) 0 0
\(333\) −5690.30 1197.76i −0.936416 0.197107i
\(334\) 0 0
\(335\) 4206.01 0.685966
\(336\) 0 0
\(337\) 11050.9 1.78629 0.893143 0.449773i \(-0.148495\pi\)
0.893143 + 0.449773i \(0.148495\pi\)
\(338\) 0 0
\(339\) −661.935 1482.78i −0.106051 0.237563i
\(340\) 0 0
\(341\) 1854.17 1070.50i 0.294454 0.170003i
\(342\) 0 0
\(343\) −3335.85 5406.08i −0.525128 0.851023i
\(344\) 0 0
\(345\) 4041.75 + 420.767i 0.630727 + 0.0656618i
\(346\) 0 0
\(347\) −5378.34 + 9315.56i −0.832059 + 1.44117i 0.0643444 + 0.997928i \(0.479504\pi\)
−0.896403 + 0.443240i \(0.853829\pi\)
\(348\) 0 0
\(349\) −559.037 −0.0857438 −0.0428719 0.999081i \(-0.513651\pi\)
−0.0428719 + 0.999081i \(0.513651\pi\)
\(350\) 0 0
\(351\) 119.785 372.413i 0.0182155 0.0566323i
\(352\) 0 0
\(353\) 333.482 + 192.536i 0.0502818 + 0.0290302i 0.524930 0.851145i \(-0.324091\pi\)
−0.474648 + 0.880176i \(0.657425\pi\)
\(354\) 0 0
\(355\) 6038.32 3486.23i 0.902763 0.521211i
\(356\) 0 0
\(357\) 210.077 + 2602.16i 0.0311442 + 0.385773i
\(358\) 0 0
\(359\) 2671.75 + 4627.60i 0.392784 + 0.680322i 0.992816 0.119655i \(-0.0381787\pi\)
−0.600032 + 0.799976i \(0.704845\pi\)
\(360\) 0 0
\(361\) −1246.08 + 2158.27i −0.181670 + 0.314662i
\(362\) 0 0
\(363\) 3099.55 + 2247.28i 0.448166 + 0.324936i
\(364\) 0 0
\(365\) 6536.19i 0.937314i
\(366\) 0 0
\(367\) −3484.74 2011.91i −0.495645 0.286161i 0.231268 0.972890i \(-0.425713\pi\)
−0.726914 + 0.686729i \(0.759046\pi\)
\(368\) 0 0
\(369\) −3961.90 3553.15i −0.558938 0.501273i
\(370\) 0 0
\(371\) 1813.55 5138.09i 0.253786 0.719020i
\(372\) 0 0
\(373\) 3513.21 + 6085.05i 0.487686 + 0.844697i 0.999900 0.0141608i \(-0.00450767\pi\)
−0.512213 + 0.858858i \(0.671174\pi\)
\(374\) 0 0
\(375\) 3215.60 + 7203.18i 0.442807 + 0.991921i
\(376\) 0 0
\(377\) 215.734i 0.0294718i
\(378\) 0 0
\(379\) 3545.64i 0.480547i −0.970705 0.240273i \(-0.922763\pi\)
0.970705 0.240273i \(-0.0772371\pi\)
\(380\) 0 0
\(381\) 4672.28 + 10466.3i 0.628263 + 1.40736i
\(382\) 0 0
\(383\) −4402.09 7624.65i −0.587301 1.01724i −0.994584 0.103933i \(-0.966857\pi\)
0.407283 0.913302i \(-0.366476\pi\)
\(384\) 0 0
\(385\) 3895.40 726.116i 0.515657 0.0961202i
\(386\) 0 0
\(387\) −5061.69 4539.48i −0.664858 0.596265i
\(388\) 0 0
\(389\) −9530.96 5502.70i −1.24226 0.717219i −0.272706 0.962098i \(-0.587918\pi\)
−0.969554 + 0.244879i \(0.921252\pi\)
\(390\) 0 0
\(391\) 2417.08i 0.312626i
\(392\) 0 0
\(393\) −1589.64 1152.54i −0.204037 0.147934i
\(394\) 0 0
\(395\) 1972.52 3416.51i 0.251262 0.435199i
\(396\) 0 0
\(397\) −6019.91 10426.8i −0.761035 1.31815i −0.942318 0.334720i \(-0.891358\pi\)
0.181283 0.983431i \(-0.441975\pi\)
\(398\) 0 0
\(399\) 5745.37 + 2726.19i 0.720873 + 0.342055i
\(400\) 0 0
\(401\) 8573.68 4950.01i 1.06770 0.616439i 0.140150 0.990130i \(-0.455241\pi\)
0.927553 + 0.373692i \(0.121908\pi\)
\(402\) 0 0
\(403\) 212.099 + 122.455i 0.0262169 + 0.0151363i
\(404\) 0 0
\(405\) −3781.41 5161.63i −0.463951 0.633293i
\(406\) 0 0
\(407\) −5249.92 −0.639383
\(408\) 0 0
\(409\) 925.425 1602.88i 0.111881 0.193784i −0.804648 0.593753i \(-0.797646\pi\)
0.916529 + 0.399969i \(0.130979\pi\)
\(410\) 0 0
\(411\) −16422.7 1709.69i −1.97098 0.205189i
\(412\) 0 0
\(413\) 2728.02 + 962.886i 0.325030 + 0.114723i
\(414\) 0 0
\(415\) −7804.09 + 4505.69i −0.923103 + 0.532954i
\(416\) 0 0
\(417\) 4258.09 + 9538.45i 0.500047 + 1.12014i
\(418\) 0 0
\(419\) 1239.28 0.144493 0.0722465 0.997387i \(-0.476983\pi\)
0.0722465 + 0.997387i \(0.476983\pi\)
\(420\) 0 0
\(421\) 10125.5 1.17217 0.586086 0.810249i \(-0.300668\pi\)
0.586086 + 0.810249i \(0.300668\pi\)
\(422\) 0 0
\(423\) 16224.5 + 3415.11i 1.86492 + 0.392549i
\(424\) 0 0
\(425\) −1126.78 + 650.545i −0.128604 + 0.0742496i
\(426\) 0 0
\(427\) 6062.86 5188.97i 0.687125 0.588084i
\(428\) 0 0
\(429\) 36.5710 351.290i 0.00411577 0.0395348i
\(430\) 0 0
\(431\) −1419.73 + 2459.04i −0.158668 + 0.274821i −0.934389 0.356255i \(-0.884053\pi\)
0.775720 + 0.631077i \(0.217387\pi\)
\(432\) 0 0
\(433\) 7227.32 0.802131 0.401065 0.916049i \(-0.368640\pi\)
0.401065 + 0.916049i \(0.368640\pi\)
\(434\) 0 0
\(435\) −2856.72 2071.22i −0.314872 0.228292i
\(436\) 0 0
\(437\) 5099.04 + 2943.93i 0.558170 + 0.322260i
\(438\) 0 0
\(439\) −9330.15 + 5386.77i −1.01436 + 0.585641i −0.912465 0.409154i \(-0.865824\pi\)
−0.101895 + 0.994795i \(0.532490\pi\)
\(440\) 0 0
\(441\) −3283.94 + 8659.21i −0.354598 + 0.935019i
\(442\) 0 0
\(443\) −4647.03 8048.89i −0.498391 0.863238i 0.501608 0.865095i \(-0.332742\pi\)
−0.999998 + 0.00185721i \(0.999409\pi\)
\(444\) 0 0
\(445\) 2932.17 5078.66i 0.312355 0.541015i
\(446\) 0 0
\(447\) −7292.03 + 10057.5i −0.771591 + 1.06421i
\(448\) 0 0
\(449\) 10672.5i 1.12176i 0.827899 + 0.560878i \(0.189536\pi\)
−0.827899 + 0.560878i \(0.810464\pi\)
\(450\) 0 0
\(451\) −4160.95 2402.33i −0.434438 0.250823i
\(452\) 0 0
\(453\) 6792.29 + 707.111i 0.704480 + 0.0733399i
\(454\) 0 0
\(455\) 294.731 + 344.367i 0.0303675 + 0.0354817i
\(456\) 0 0
\(457\) 5558.05 + 9626.82i 0.568916 + 0.985391i 0.996674 + 0.0814975i \(0.0259703\pi\)
−0.427758 + 0.903893i \(0.640696\pi\)
\(458\) 0 0
\(459\) 2820.80 2555.05i 0.286849 0.259824i
\(460\) 0 0
\(461\) 8828.83i 0.891973i −0.895040 0.445987i \(-0.852853\pi\)
0.895040 0.445987i \(-0.147147\pi\)
\(462\) 0 0
\(463\) 5136.70i 0.515600i −0.966198 0.257800i \(-0.917002\pi\)
0.966198 0.257800i \(-0.0829975\pi\)
\(464\) 0 0
\(465\) 3657.85 1632.92i 0.364793 0.162849i
\(466\) 0 0
\(467\) −4743.26 8215.57i −0.470004 0.814071i 0.529408 0.848368i \(-0.322414\pi\)
−0.999412 + 0.0342966i \(0.989081\pi\)
\(468\) 0 0
\(469\) −2953.89 + 8368.87i −0.290827 + 0.823963i
\(470\) 0 0
\(471\) 62.3282 598.705i 0.00609752 0.0585709i
\(472\) 0 0
\(473\) −5316.00 3069.19i −0.516765 0.298354i
\(474\) 0 0
\(475\) 3169.39i 0.306150i
\(476\) 0 0
\(477\) −7549.88 + 2469.62i −0.724707 + 0.237057i
\(478\) 0 0
\(479\) 2121.83 3675.12i 0.202399 0.350565i −0.746902 0.664934i \(-0.768460\pi\)
0.949301 + 0.314369i \(0.101793\pi\)
\(480\) 0 0
\(481\) −300.270 520.084i −0.0284639 0.0493010i
\(482\) 0 0
\(483\) −3675.75 + 7746.55i −0.346278 + 0.729772i
\(484\) 0 0
\(485\) −12724.9 + 7346.72i −1.19136 + 0.687829i
\(486\) 0 0
\(487\) −29.4912 17.0267i −0.00274409 0.00158430i 0.498627 0.866816i \(-0.333838\pi\)
−0.501371 + 0.865232i \(0.667171\pi\)
\(488\) 0 0
\(489\) −6202.27 + 8554.47i −0.573572 + 0.791097i
\(490\) 0 0
\(491\) −5234.29 −0.481101 −0.240550 0.970637i \(-0.577328\pi\)
−0.240550 + 0.970637i \(0.577328\pi\)
\(492\) 0 0
\(493\) 1049.42 1817.64i 0.0958689 0.166050i
\(494\) 0 0
\(495\) −4300.61 3856.92i −0.390501 0.350214i
\(496\) 0 0
\(497\) 2695.97 + 14463.1i 0.243322 + 1.30535i
\(498\) 0 0
\(499\) −1292.50 + 746.223i −0.115952 + 0.0669450i −0.556854 0.830610i \(-0.687992\pi\)
0.440902 + 0.897555i \(0.354659\pi\)
\(500\) 0 0
\(501\) −20363.4 + 9090.50i −1.81591 + 0.810646i
\(502\) 0 0
\(503\) −10823.7 −0.959457 −0.479728 0.877417i \(-0.659265\pi\)
−0.479728 + 0.877417i \(0.659265\pi\)
\(504\) 0 0
\(505\) 12352.4 1.08847
\(506\) 0 0
\(507\) −10387.5 + 4637.12i −0.909911 + 0.406197i
\(508\) 0 0
\(509\) −3420.40 + 1974.77i −0.297852 + 0.171965i −0.641478 0.767142i \(-0.721678\pi\)
0.343625 + 0.939107i \(0.388345\pi\)
\(510\) 0 0
\(511\) −13005.3 4590.38i −1.12588 0.397390i
\(512\) 0 0
\(513\) −1954.44 9062.71i −0.168208 0.779978i
\(514\) 0 0
\(515\) −5478.01 + 9488.19i −0.468718 + 0.811844i
\(516\) 0 0
\(517\) 14968.8 1.27336
\(518\) 0 0
\(519\) 6385.84 8807.65i 0.540091 0.744919i
\(520\) 0 0
\(521\) −4057.40 2342.54i −0.341186 0.196984i 0.319610 0.947549i \(-0.396448\pi\)
−0.660796 + 0.750565i \(0.729781\pi\)
\(522\) 0 0
\(523\) 5888.28 3399.60i 0.492307 0.284234i −0.233224 0.972423i \(-0.574928\pi\)
0.725531 + 0.688190i \(0.241594\pi\)
\(524\) 0 0
\(525\) −4600.55 + 371.410i −0.382446 + 0.0308756i
\(526\) 0 0
\(527\) 1191.34 + 2063.47i 0.0984740 + 0.170562i
\(528\) 0 0
\(529\) 2114.16 3661.83i 0.173762 0.300964i
\(530\) 0 0
\(531\) −1311.22 4008.54i −0.107160 0.327601i
\(532\) 0 0
\(533\) 549.606i 0.0446643i
\(534\) 0 0
\(535\) −10690.3 6172.06i −0.863893 0.498769i
\(536\) 0 0
\(537\) −876.048 + 8415.04i −0.0703990 + 0.676231i
\(538\) 0 0
\(539\) −1290.96 + 8260.80i −0.103165 + 0.660144i
\(540\) 0 0
\(541\) −9233.09 15992.2i −0.733755 1.27090i −0.955268 0.295743i \(-0.904433\pi\)
0.221513 0.975157i \(-0.428901\pi\)
\(542\) 0 0
\(543\) −4037.10 + 1802.22i −0.319058 + 0.142432i
\(544\) 0 0
\(545\) 7030.84i 0.552602i
\(546\) 0 0
\(547\) 21227.5i 1.65927i 0.558304 + 0.829637i \(0.311452\pi\)
−0.558304 + 0.829637i \(0.688548\pi\)
\(548\) 0 0
\(549\) −11384.6 2396.35i −0.885030 0.186291i
\(550\) 0 0
\(551\) −2556.32 4427.68i −0.197646 0.342333i
\(552\) 0 0
\(553\) 5412.68 + 6324.24i 0.416221 + 0.486319i
\(554\) 0 0
\(555\) −9769.70 1017.07i −0.747208 0.0777881i
\(556\) 0 0
\(557\) −6535.13 3773.06i −0.497132 0.287019i 0.230396 0.973097i \(-0.425998\pi\)
−0.727528 + 0.686078i \(0.759331\pi\)
\(558\) 0 0
\(559\) 702.172i 0.0531283i
\(560\) 0 0
\(561\) 2016.94 2781.86i 0.151792 0.209358i
\(562\) 0 0
\(563\) 7465.27 12930.2i 0.558834 0.967929i −0.438760 0.898604i \(-0.644582\pi\)
0.997594 0.0693250i \(-0.0220846\pi\)
\(564\) 0 0
\(565\) −1371.46 2375.43i −0.102120 0.176876i
\(566\) 0 0
\(567\) 12926.0 3899.02i 0.957393 0.288789i
\(568\) 0 0
\(569\) −3316.48 + 1914.77i −0.244348 + 0.141074i −0.617173 0.786827i \(-0.711722\pi\)
0.372826 + 0.927901i \(0.378389\pi\)
\(570\) 0 0
\(571\) 16305.8 + 9414.18i 1.19506 + 0.689967i 0.959449 0.281881i \(-0.0909583\pi\)
0.235609 + 0.971848i \(0.424292\pi\)
\(572\) 0 0
\(573\) −7946.25 5761.30i −0.579336 0.420038i
\(574\) 0 0
\(575\) −4273.32 −0.309930
\(576\) 0 0
\(577\) 9133.01 15818.8i 0.658946 1.14133i −0.321942 0.946759i \(-0.604336\pi\)
0.980889 0.194569i \(-0.0623310\pi\)
\(578\) 0 0
\(579\) −2579.53 + 24778.1i −0.185149 + 1.77849i
\(580\) 0 0
\(581\) −3484.34 18692.5i −0.248804 1.33476i
\(582\) 0 0
\(583\) −6210.81 + 3585.81i −0.441210 + 0.254733i
\(584\) 0 0
\(585\) 136.112 646.638i 0.00961970 0.0457012i
\(586\) 0 0
\(587\) −6151.55 −0.432541 −0.216271 0.976333i \(-0.569389\pi\)
−0.216271 + 0.976333i \(0.569389\pi\)
\(588\) 0 0
\(589\) 5804.11 0.406034
\(590\) 0 0
\(591\) 8161.31 + 18282.0i 0.568040 + 1.27245i
\(592\) 0 0
\(593\) 19560.5 11293.3i 1.35456 0.782056i 0.365677 0.930742i \(-0.380838\pi\)
0.988884 + 0.148686i \(0.0475043\pi\)
\(594\) 0 0
\(595\) 808.080 + 4335.12i 0.0556774 + 0.298693i
\(596\) 0 0
\(597\) −10244.4 1066.49i −0.702301 0.0731130i
\(598\) 0 0
\(599\) 12117.8 20988.7i 0.826581 1.43168i −0.0741247 0.997249i \(-0.523616\pi\)
0.900705 0.434431i \(-0.143050\pi\)
\(600\) 0 0
\(601\) −4304.93 −0.292183 −0.146091 0.989271i \(-0.546669\pi\)
−0.146091 + 0.989271i \(0.546669\pi\)
\(602\) 0 0
\(603\) 12297.2 4022.49i 0.830481 0.271656i
\(604\) 0 0
\(605\) 5600.58 + 3233.50i 0.376357 + 0.217290i
\(606\) 0 0
\(607\) 15112.9 8725.46i 1.01057 0.583452i 0.0992104 0.995066i \(-0.468368\pi\)
0.911358 + 0.411615i \(0.135035\pi\)
\(608\) 0 0
\(609\) 6127.47 4229.52i 0.407714 0.281426i
\(610\) 0 0
\(611\) 856.146 + 1482.89i 0.0566873 + 0.0981853i
\(612\) 0 0
\(613\) −5236.19 + 9069.34i −0.345004 + 0.597565i −0.985355 0.170518i \(-0.945456\pi\)
0.640350 + 0.768083i \(0.278789\pi\)
\(614\) 0 0
\(615\) −7277.80 5276.65i −0.477186 0.345976i
\(616\) 0 0
\(617\) 12748.9i 0.831847i 0.909400 + 0.415923i \(0.136542\pi\)
−0.909400 + 0.415923i \(0.863458\pi\)
\(618\) 0 0
\(619\) −8761.41 5058.40i −0.568903 0.328456i 0.187808 0.982206i \(-0.439862\pi\)
−0.756711 + 0.653749i \(0.773195\pi\)
\(620\) 0 0
\(621\) 12219.4 2635.20i 0.789607 0.170285i
\(622\) 0 0
\(623\) 8045.97 + 9401.01i 0.517423 + 0.604564i
\(624\) 0 0
\(625\) 3664.77 + 6347.57i 0.234546 + 0.406245i
\(626\) 0 0
\(627\) −3412.00 7643.14i −0.217324 0.486823i
\(628\) 0 0
\(629\) 5842.54i 0.370361i
\(630\) 0 0
\(631\) 11836.9i 0.746785i 0.927673 + 0.373393i \(0.121806\pi\)
−0.927673 + 0.373393i \(0.878194\pi\)
\(632\) 0 0
\(633\) −1614.22 3615.98i −0.101358 0.227049i
\(634\) 0 0
\(635\) 9680.45 + 16767.0i 0.604972 + 1.04784i
\(636\) 0 0
\(637\) −892.193 + 344.589i −0.0554944 + 0.0214334i
\(638\) 0 0
\(639\) 14320.3 15967.6i 0.886542 0.988528i
\(640\) 0 0
\(641\) 9540.73 + 5508.34i 0.587888 + 0.339417i 0.764262 0.644906i \(-0.223103\pi\)
−0.176374 + 0.984323i \(0.556437\pi\)
\(642\) 0 0
\(643\) 23348.8i 1.43201i −0.698093 0.716007i \(-0.745968\pi\)
0.698093 0.716007i \(-0.254032\pi\)
\(644\) 0 0
\(645\) −9298.06 6741.40i −0.567613 0.411539i
\(646\) 0 0
\(647\) −2201.38 + 3812.90i −0.133764 + 0.231685i −0.925124 0.379664i \(-0.876040\pi\)
0.791361 + 0.611349i \(0.209373\pi\)
\(648\) 0 0
\(649\) −1903.85 3297.57i −0.115151 0.199447i
\(650\) 0 0
\(651\) 680.165 + 8424.99i 0.0409489 + 0.507222i
\(652\) 0 0
\(653\) 10836.9 6256.70i 0.649435 0.374952i −0.138804 0.990320i \(-0.544326\pi\)
0.788240 + 0.615368i \(0.210993\pi\)
\(654\) 0 0
\(655\) −2872.32 1658.33i −0.171345 0.0989258i
\(656\) 0 0
\(657\) 6251.00 + 19110.0i 0.371194 + 1.13478i
\(658\) 0 0
\(659\) 23795.0 1.40656 0.703279 0.710914i \(-0.251718\pi\)
0.703279 + 0.710914i \(0.251718\pi\)
\(660\) 0 0
\(661\) −9965.48 + 17260.7i −0.586403 + 1.01568i 0.408296 + 0.912849i \(0.366123\pi\)
−0.994699 + 0.102830i \(0.967210\pi\)
\(662\) 0 0
\(663\) 390.944 + 40.6992i 0.0229004 + 0.00238405i
\(664\) 0 0
\(665\) 10129.5 + 3575.34i 0.590687 + 0.208490i
\(666\) 0 0
\(667\) 5969.89 3446.72i 0.346560 0.200086i
\(668\) 0 0
\(669\) −815.190 1826.09i −0.0471107 0.105532i
\(670\) 0 0
\(671\) −10503.5 −0.604297
\(672\) 0 0
\(673\) −7281.03 −0.417033 −0.208516 0.978019i \(-0.566863\pi\)
−0.208516 + 0.978019i \(0.566863\pi\)
\(674\) 0 0
\(675\) 4517.24 + 4987.09i 0.257583 + 0.284375i
\(676\) 0 0
\(677\) 459.878 265.511i 0.0261071 0.0150730i −0.486890 0.873464i \(-0.661869\pi\)
0.512997 + 0.858391i \(0.328535\pi\)
\(678\) 0 0
\(679\) −5681.37 30478.9i −0.321106 1.72264i
\(680\) 0 0
\(681\) −683.094 + 6561.58i −0.0384379 + 0.369222i
\(682\) 0 0
\(683\) 6673.07 11558.1i 0.373847 0.647523i −0.616306 0.787506i \(-0.711372\pi\)
0.990154 + 0.139984i \(0.0447050\pi\)
\(684\) 0 0
\(685\) −27890.7 −1.55569
\(686\) 0 0
\(687\) −2892.39 2097.08i −0.160628 0.116461i
\(688\) 0 0
\(689\) −710.457 410.182i −0.0392834 0.0226803i
\(690\) 0 0
\(691\) 26766.6 15453.7i 1.47359 0.850775i 0.474028 0.880510i \(-0.342799\pi\)
0.999558 + 0.0297344i \(0.00946615\pi\)
\(692\) 0 0
\(693\) 10694.6 5848.39i 0.586227 0.320580i
\(694\) 0 0
\(695\) 8822.29 + 15280.7i 0.481509 + 0.833998i
\(696\) 0 0
\(697\) 2673.50 4630.64i 0.145289 0.251647i
\(698\) 0 0
\(699\) 10863.0 14982.7i 0.587805 0.810728i
\(700\) 0 0
\(701\) 17128.9i 0.922898i −0.887167 0.461449i \(-0.847330\pi\)
0.887167 0.461449i \(-0.152670\pi\)
\(702\) 0 0
\(703\) −12325.4 7116.06i −0.661252 0.381774i
\(704\) 0 0
\(705\) 27855.8 + 2899.93i 1.48810 + 0.154919i
\(706\) 0 0
\(707\) −8675.14 + 24578.2i −0.461474 + 1.30744i
\(708\) 0 0
\(709\) −1208.87 2093.82i −0.0640339 0.110910i 0.832231 0.554429i \(-0.187063\pi\)
−0.896265 + 0.443519i \(0.853730\pi\)
\(710\) 0 0
\(711\) 2499.67 11875.4i 0.131849 0.626388i
\(712\) 0 0
\(713\) 7825.74i 0.411047i
\(714\) 0 0
\(715\) 596.594i 0.0312047i
\(716\) 0 0
\(717\) 28494.1 12720.2i 1.48415 0.662543i
\(718\) 0 0
\(719\) 3706.88 + 6420.51i 0.192272 + 0.333024i 0.946003 0.324159i \(-0.105081\pi\)
−0.753731 + 0.657183i \(0.771748\pi\)
\(720\) 0 0
\(721\) −15031.8 17563.4i −0.776443 0.907206i
\(722\) 0 0
\(723\) 612.194 5880.54i 0.0314907 0.302489i
\(724\) 0 0
\(725\) 3213.54 + 1855.34i 0.164618 + 0.0950421i
\(726\) 0 0
\(727\) 25603.2i 1.30615i 0.757293 + 0.653075i \(0.226521\pi\)
−0.757293 + 0.653075i \(0.773479\pi\)
\(728\) 0 0
\(729\) −15992.2 11474.7i −0.812489 0.582977i
\(730\) 0 0
\(731\) 3415.65 5916.07i 0.172821 0.299335i
\(732\) 0 0
\(733\) 2400.38 + 4157.59i 0.120955 + 0.209501i 0.920145 0.391579i \(-0.128071\pi\)
−0.799189 + 0.601079i \(0.794738\pi\)
\(734\) 0 0
\(735\) −4002.76 + 15122.6i −0.200876 + 0.758919i
\(736\) 0 0
\(737\) 10116.1 5840.54i 0.505606 0.291912i
\(738\) 0 0
\(739\) 20403.3 + 11779.8i 1.01562 + 0.586371i 0.912833 0.408332i \(-0.133889\pi\)
0.102791 + 0.994703i \(0.467223\pi\)
\(740\) 0 0
\(741\) 562.018 775.161i 0.0278627 0.0384295i
\(742\) 0 0
\(743\) 9070.46 0.447864 0.223932 0.974605i \(-0.428111\pi\)
0.223932 + 0.974605i \(0.428111\pi\)
\(744\) 0 0
\(745\) −10492.1 + 18172.9i −0.515976 + 0.893696i
\(746\) 0 0
\(747\) −18507.9 + 20637.0i −0.906516 + 1.01080i
\(748\) 0 0
\(749\) 19788.7 16936.3i 0.965369 0.826223i
\(750\) 0 0
\(751\) 15453.0 8921.78i 0.750848 0.433502i −0.0751522 0.997172i \(-0.523944\pi\)
0.826000 + 0.563670i \(0.190611\pi\)
\(752\) 0 0
\(753\) 21924.1 9787.22i 1.06103 0.473660i
\(754\) 0 0
\(755\) 11535.3 0.556044
\(756\) 0 0
\(757\) −29075.4 −1.39599 −0.697995 0.716103i \(-0.745924\pi\)
−0.697995 + 0.716103i \(0.745924\pi\)
\(758\) 0 0
\(759\) 10305.3 4600.44i 0.492833 0.220007i
\(760\) 0 0
\(761\) −13557.9 + 7827.66i −0.645826 + 0.372868i −0.786855 0.617138i \(-0.788292\pi\)
0.141029 + 0.990005i \(0.454959\pi\)
\(762\) 0 0
\(763\) −13989.6 4937.78i −0.663770 0.234285i
\(764\) 0 0
\(765\) 4292.30 4786.07i 0.202861 0.226197i
\(766\) 0 0
\(767\) 217.783 377.211i 0.0102525 0.0177579i
\(768\) 0 0
\(769\) 9369.72 0.439377 0.219688 0.975570i \(-0.429496\pi\)
0.219688 + 0.975570i \(0.429496\pi\)
\(770\) 0 0
\(771\) 21806.4 30076.4i 1.01860 1.40490i
\(772\) 0 0
\(773\) −32342.1 18672.7i −1.50487 0.868838i −0.999984 0.00565196i \(-0.998201\pi\)
−0.504887 0.863186i \(-0.668466\pi\)
\(774\) 0 0
\(775\) −3648.15 + 2106.26i −0.169091 + 0.0976247i
\(776\) 0 0
\(777\) 8885.00 18724.9i 0.410228 0.864546i
\(778\) 0 0
\(779\) −6512.51 11280.0i −0.299531 0.518804i
\(780\) 0 0
\(781\) 9682.08 16769.9i 0.443601 0.768339i
\(782\) 0 0
\(783\) −10333.1 3323.58i −0.471615 0.151692i
\(784\) 0 0
\(785\) 1016.78i 0.0462298i
\(786\) 0 0
\(787\) 22693.0 + 13101.8i 1.02785 + 0.593430i 0.916368 0.400337i \(-0.131107\pi\)
0.111482 + 0.993766i \(0.464440\pi\)
\(788\) 0 0
\(789\) −1947.14 + 18703.6i −0.0878579 + 0.843935i
\(790\) 0 0
\(791\) 5689.68 1060.58i 0.255754 0.0476735i
\(792\) 0 0
\(793\) −600.750 1040.53i −0.0269020 0.0465956i
\(794\) 0 0
\(795\) −12252.5 + 5469.69i −0.546606 + 0.244012i
\(796\) 0 0
\(797\) 10114.2i 0.449513i 0.974415 + 0.224756i \(0.0721586\pi\)
−0.974415 + 0.224756i \(0.927841\pi\)
\(798\) 0 0
\(799\) 16658.5i 0.737593i
\(800\) 0 0
\(801\) 3715.76 17652.8i 0.163908 0.778691i
\(802\) 0 0
\(803\) 9076.27 + 15720.6i 0.398872 + 0.690867i
\(804\) 0 0
\(805\) −4820.67 + 13657.8i −0.211064 + 0.597980i
\(806\) 0 0
\(807\) 31154.8 + 3243.37i 1.35898 + 0.141477i
\(808\) 0 0
\(809\) −17343.4 10013.2i −0.753720 0.435161i 0.0733162 0.997309i \(-0.476642\pi\)
−0.827037 + 0.562148i \(0.809975\pi\)
\(810\) 0 0
\(811\) 3159.94i 0.136819i 0.997657 + 0.0684097i \(0.0217925\pi\)
−0.997657 + 0.0684097i \(0.978207\pi\)
\(812\) 0 0
\(813\) 2143.35 2956.21i 0.0924608 0.127526i
\(814\) 0 0
\(815\) −8924.14 + 15457.1i −0.383557 + 0.664340i
\(816\) 0 0
\(817\) −8320.33 14411.2i −0.356293 0.617118i
\(818\) 0 0
\(819\) 1191.05 + 724.962i 0.0508165 + 0.0309307i
\(820\) 0 0
\(821\) −21797.5 + 12584.8i −0.926599 + 0.534972i −0.885734 0.464193i \(-0.846344\pi\)
−0.0408643 + 0.999165i \(0.513011\pi\)
\(822\) 0 0
\(823\) −12732.5 7351.13i −0.539281 0.311354i 0.205507 0.978656i \(-0.434116\pi\)
−0.744787 + 0.667302i \(0.767449\pi\)
\(824\) 0 0
\(825\) 4918.24 + 3565.89i 0.207553 + 0.150483i
\(826\) 0 0
\(827\) −34523.2 −1.45162 −0.725810 0.687895i \(-0.758535\pi\)
−0.725810 + 0.687895i \(0.758535\pi\)
\(828\) 0 0
\(829\) −10290.3 + 17823.4i −0.431120 + 0.746722i −0.996970 0.0777863i \(-0.975215\pi\)
0.565850 + 0.824508i \(0.308548\pi\)
\(830\) 0 0
\(831\) −1348.75 + 12955.7i −0.0563030 + 0.540829i
\(832\) 0 0
\(833\) −9193.29 1436.69i −0.382387 0.0597579i
\(834\) 0 0
\(835\) −32622.3 + 18834.5i −1.35203 + 0.780593i
\(836\) 0 0
\(837\) 9132.87 8272.44i 0.377154 0.341622i
\(838\) 0 0
\(839\) 13818.8 0.568626 0.284313 0.958731i \(-0.408234\pi\)
0.284313 + 0.958731i \(0.408234\pi\)
\(840\) 0 0
\(841\) 18403.2 0.754569
\(842\) 0 0
\(843\) −4307.09 9648.20i −0.175972 0.394189i
\(844\) 0 0
\(845\) −16640.8 + 9607.60i −0.677470 + 0.391138i
\(846\) 0 0
\(847\) −10367.1 + 8872.83i −0.420565 + 0.359946i
\(848\) 0 0
\(849\) −7611.57 792.403i −0.307690 0.0320320i
\(850\) 0 0
\(851\) 9594.66 16618.4i 0.386487 0.669416i
\(852\) 0 0
\(853\) −22275.8 −0.894148 −0.447074 0.894497i \(-0.647534\pi\)
−0.447074 + 0.894497i \(0.647534\pi\)
\(854\) 0 0
\(855\) −4868.76 14884.3i −0.194746 0.595360i
\(856\) 0 0
\(857\) −5704.00 3293.21i −0.227357 0.131265i 0.381995 0.924164i \(-0.375237\pi\)
−0.609352 + 0.792900i \(0.708570\pi\)
\(858\) 0 0
\(859\) 34673.6 20018.8i 1.37724 0.795150i 0.385413 0.922744i \(-0.374059\pi\)
0.991826 + 0.127595i \(0.0407257\pi\)
\(860\) 0 0
\(861\) 15610.4 10775.2i 0.617887 0.426500i
\(862\) 0 0
\(863\) 10566.0 + 18300.9i 0.416769 + 0.721865i 0.995612 0.0935740i \(-0.0298292\pi\)
−0.578844 + 0.815439i \(0.696496\pi\)
\(864\) 0 0
\(865\) 9188.26 15914.5i 0.361168 0.625561i
\(866\) 0 0
\(867\) −17572.1 12740.4i −0.688327 0.499060i
\(868\) 0 0
\(869\) 10956.3i 0.427696i
\(870\) 0 0
\(871\) 1157.19 + 668.101i 0.0450169 + 0.0259905i
\(872\) 0 0
\(873\) −30177.8 + 33649.4i −1.16995 + 1.30454i
\(874\) 0 0
\(875\) −27639.7 + 5152.14i −1.06788 + 0.199056i
\(876\) 0 0
\(877\) 21605.4 + 37421.6i 0.831883 + 1.44086i 0.896544 + 0.442956i \(0.146070\pi\)
−0.0646610 + 0.997907i \(0.520597\pi\)
\(878\) 0 0
\(879\) −16404.5 36747.2i −0.629475 1.41007i
\(880\) 0 0
\(881\) 17875.4i 0.683584i 0.939776 + 0.341792i \(0.111034\pi\)
−0.939776 + 0.341792i \(0.888966\pi\)
\(882\) 0 0
\(883\) 39508.8i 1.50575i 0.658163 + 0.752875i \(0.271334\pi\)
−0.658163 + 0.752875i \(0.728666\pi\)
\(884\) 0 0
\(885\) −2904.08 6505.36i −0.110305 0.247091i
\(886\) 0 0
\(887\) −1461.85 2532.00i −0.0553372 0.0958469i 0.837030 0.547157i \(-0.184290\pi\)
−0.892367 + 0.451310i \(0.850957\pi\)
\(888\) 0 0
\(889\) −40160.7 + 7486.09i −1.51513 + 0.282425i
\(890\) 0 0
\(891\) −16262.4 7163.59i −0.611461 0.269348i
\(892\) 0 0
\(893\) 35142.7 + 20289.7i 1.31692 + 0.760322i
\(894\) 0 0
\(895\) 14291.2i 0.533747i
\(896\) 0 0
\(897\) 1045.16 + 757.775i 0.0389039 + 0.0282067i
\(898\) 0 0
\(899\) 3397.69 5884.96i 0.126050 0.218325i
\(900\) 0 0
\(901\) −3990.58 6911.89i −0.147553 0.255570i
\(902\) 0 0
\(903\) 19943.7 13766.3i 0.734978 0.507322i
\(904\) 0 0
\(905\) −6467.46 + 3733.99i −0.237553 + 0.137151i
\(906\) 0 0
\(907\) 27482.3 + 15866.9i 1.00610 + 0.580874i 0.910049 0.414502i \(-0.136044\pi\)
0.0960553 + 0.995376i \(0.469377\pi\)
\(908\) 0 0
\(909\) 36115.1 11813.5i 1.31778 0.431054i
\(910\) 0 0
\(911\) −34819.5 −1.26633 −0.633163 0.774019i \(-0.718244\pi\)
−0.633163 + 0.774019i \(0.718244\pi\)
\(912\) 0 0
\(913\) −12513.4 + 21673.8i −0.453595 + 0.785650i
\(914\) 0 0
\(915\) −19546.2 2034.86i −0.706205 0.0735195i
\(916\) 0 0
\(917\) 5316.89 4550.52i 0.191471 0.163873i
\(918\) 0 0
\(919\) −19143.4 + 11052.4i −0.687140 + 0.396720i −0.802540 0.596599i \(-0.796518\pi\)
0.115400 + 0.993319i \(0.463185\pi\)
\(920\) 0 0
\(921\) 4151.24 + 9299.09i 0.148521 + 0.332699i
\(922\) 0 0
\(923\) 2215.07 0.0789925
\(924\) 0 0
\(925\) 10329.4 0.367167
\(926\) 0 0
\(927\) −6941.96 + 32979.8i −0.245959 + 1.16850i
\(928\) 0 0
\(929\) 6330.81 3655.09i 0.223581 0.129085i −0.384026 0.923322i \(-0.625463\pi\)
0.607607 + 0.794237i \(0.292129\pi\)
\(930\) 0 0
\(931\) −14228.0 + 17644.2i −0.500864 + 0.621124i
\(932\) 0 0
\(933\) −1616.92 + 15531.7i −0.0567371 + 0.544998i
\(934\) 0 0
\(935\) 2902.07 5026.53i 0.101506 0.175813i
\(936\) 0 0
\(937\) 13072.7 0.455782 0.227891 0.973687i \(-0.426817\pi\)
0.227891 + 0.973687i \(0.426817\pi\)
\(938\) 0 0
\(939\) −36225.8 26264.9i −1.25898 0.912803i
\(940\) 0 0
\(941\) 16652.8 + 9614.49i 0.576903 + 0.333075i 0.759902 0.650038i \(-0.225247\pi\)
−0.182999 + 0.983113i \(0.558580\pi\)
\(942\) 0 0
\(943\) 15209.0 8780.90i 0.525209 0.303229i
\(944\) 0 0
\(945\) 21034.9 8811.52i 0.724089 0.303322i
\(946\) 0 0
\(947\) −26029.8 45085.0i −0.893195 1.54706i −0.836022 0.548695i \(-0.815125\pi\)
−0.0571727 0.998364i \(-0.518209\pi\)
\(948\) 0 0
\(949\) −1038.24 + 1798.28i −0.0355138 + 0.0615118i
\(950\) 0 0
\(951\) 7363.15 10155.6i 0.251069 0.346286i
\(952\) 0 0
\(953\) 34655.9i 1.17798i −0.808141 0.588989i \(-0.799526\pi\)
0.808141 0.588989i \(-0.200474\pi\)
\(954\) 0 0
\(955\) −14358.1 8289.64i −0.486509 0.280886i
\(956\) 0 0
\(957\) −9746.99 1014.71i −0.329232 0.0342747i
\(958\) 0 0
\(959\) 19587.7 55495.3i 0.659561 1.86865i
\(960\) 0 0
\(961\) −11038.3 19118.9i −0.370524 0.641767i
\(962\) 0 0
\(963\) −37158.3 7821.49i −1.24341 0.261728i
\(964\) 0 0
\(965\) 42080.6i 1.40375i
\(966\) 0 0
\(967\) 57897.5i 1.92540i 0.270580 + 0.962698i \(0.412785\pi\)
−0.270580 + 0.962698i \(0.587215\pi\)
\(968\) 0 0
\(969\) 8505.91 3797.15i 0.281991 0.125885i
\(970\) 0 0
\(971\) −5475.45 9483.76i −0.180964 0.313438i 0.761245 0.648464i \(-0.224588\pi\)
−0.942209 + 0.335026i \(0.891255\pi\)
\(972\) 0 0
\(973\) −36600.5 + 6822.46i −1.20592 + 0.224787i
\(974\) 0 0
\(975\) −71.9550 + 691.177i −0.00236349 + 0.0227029i
\(976\) 0 0
\(977\) 39504.6 + 22808.0i 1.29362 + 0.746870i 0.979293 0.202447i \(-0.0648892\pi\)
0.314323 + 0.949316i \(0.398223\pi\)
\(978\) 0 0
\(979\) 16286.6i 0.531689i
\(980\) 0 0
\(981\) 6724.08 + 20556.2i 0.218841 + 0.669021i
\(982\) 0 0
\(983\) 4240.94 7345.52i 0.137604 0.238337i −0.788985 0.614412i \(-0.789393\pi\)
0.926589 + 0.376075i \(0.122726\pi\)
\(984\) 0 0
\(985\) 16909.3 + 29287.8i 0.546981 + 0.947399i
\(986\) 0 0
\(987\) −25333.3 + 53389.4i −0.816990 + 1.72179i
\(988\) 0 0
\(989\) 19430.8 11218.4i 0.624737 0.360692i
\(990\) 0 0
\(991\) −25611.9 14787.0i −0.820977 0.473991i 0.0297762 0.999557i \(-0.490521\pi\)
−0.850753 + 0.525565i \(0.823854\pi\)
\(992\) 0 0
\(993\) 6383.28 8804.11i 0.203995 0.281360i
\(994\) 0 0
\(995\) −17397.9 −0.554323
\(996\) 0 0
\(997\) −4906.99 + 8499.15i −0.155873 + 0.269981i −0.933377 0.358898i \(-0.883153\pi\)
0.777503 + 0.628879i \(0.216486\pi\)
\(998\) 0 0
\(999\) −29536.6 + 6369.79i −0.935431 + 0.201733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bj.f.95.13 yes 28
3.2 odd 2 inner 336.4.bj.f.95.8 yes 28
4.3 odd 2 336.4.bj.e.95.2 28
7.2 even 3 336.4.bj.e.191.7 yes 28
12.11 even 2 336.4.bj.e.95.7 yes 28
21.2 odd 6 336.4.bj.e.191.2 yes 28
28.23 odd 6 inner 336.4.bj.f.191.8 yes 28
84.23 even 6 inner 336.4.bj.f.191.13 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bj.e.95.2 28 4.3 odd 2
336.4.bj.e.95.7 yes 28 12.11 even 2
336.4.bj.e.191.2 yes 28 21.2 odd 6
336.4.bj.e.191.7 yes 28 7.2 even 3
336.4.bj.f.95.8 yes 28 3.2 odd 2 inner
336.4.bj.f.95.13 yes 28 1.1 even 1 trivial
336.4.bj.f.191.8 yes 28 28.23 odd 6 inner
336.4.bj.f.191.13 yes 28 84.23 even 6 inner