Properties

Label 336.4.bj.f
Level 336336
Weight 44
Character orbit 336.bj
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 2828
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bj (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 2828
Relative dimension: 1414 over Q(ζ6)\Q(\zeta_{6})
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 28q+38q770q9+124q13462q19+500q21+566q25+1266q31+64q33+338q37+1254q39488q45206q49+522q51+2324q57340q61840q63+3344q97+O(q100) 28 q + 38 q^{7} - 70 q^{9} + 124 q^{13} - 462 q^{19} + 500 q^{21} + 566 q^{25} + 1266 q^{31} + 64 q^{33} + 338 q^{37} + 1254 q^{39} - 488 q^{45} - 206 q^{49} + 522 q^{51} + 2324 q^{57} - 340 q^{61} - 840 q^{63}+ \cdots - 3344 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
95.1 0 −5.18844 + 0.283083i 0 −8.90809 + 5.14309i 0 9.06303 + 16.1512i 0 26.8397 2.93751i 0
95.2 0 −5.04533 + 1.24284i 0 11.5701 6.68000i 0 −16.4792 + 8.45200i 0 23.9107 12.5411i 0
95.3 0 −4.15916 + 3.11470i 0 −17.2240 + 9.94429i 0 −5.66612 17.6322i 0 7.59723 25.9091i 0
95.4 0 −2.63380 + 4.47918i 0 10.1094 5.83669i 0 17.9159 4.69245i 0 −13.1262 23.5946i 0
95.5 0 −2.34906 4.63486i 0 8.90809 5.14309i 0 9.06303 + 16.1512i 0 −15.9638 + 21.7751i 0
95.6 0 −1.44633 4.99080i 0 −11.5701 + 6.68000i 0 −16.4792 + 8.45200i 0 −22.8163 + 14.4367i 0
95.7 0 −0.692259 + 5.14983i 0 4.30532 2.48568i 0 −14.4573 11.5752i 0 −26.0416 7.13004i 0
95.8 0 0.538038 + 5.16822i 0 −7.60125 + 4.38858i 0 3.39378 + 18.2067i 0 −26.4210 + 5.56140i 0
95.9 0 0.617833 5.15929i 0 17.2240 9.94429i 0 −5.66612 17.6322i 0 −26.2366 6.37516i 0
95.10 0 2.56219 4.52053i 0 −10.1094 + 5.83669i 0 17.9159 4.69245i 0 −13.8704 23.1649i 0
95.11 0 4.11376 3.17443i 0 −4.30532 + 2.48568i 0 −14.4573 11.5752i 0 6.84598 26.1177i 0
95.12 0 4.16378 + 3.10853i 0 13.4200 7.74804i 0 15.7299 9.77601i 0 7.67408 + 25.8865i 0
95.13 0 4.74483 2.11816i 0 7.60125 4.38858i 0 3.39378 + 18.2067i 0 18.0268 20.1006i 0
95.14 0 4.77395 + 2.05167i 0 −13.4200 + 7.74804i 0 15.7299 9.77601i 0 18.5813 + 19.5892i 0
191.1 0 −5.18844 0.283083i 0 −8.90809 5.14309i 0 9.06303 16.1512i 0 26.8397 + 2.93751i 0
191.2 0 −5.04533 1.24284i 0 11.5701 + 6.68000i 0 −16.4792 8.45200i 0 23.9107 + 12.5411i 0
191.3 0 −4.15916 3.11470i 0 −17.2240 9.94429i 0 −5.66612 + 17.6322i 0 7.59723 + 25.9091i 0
191.4 0 −2.63380 4.47918i 0 10.1094 + 5.83669i 0 17.9159 + 4.69245i 0 −13.1262 + 23.5946i 0
191.5 0 −2.34906 + 4.63486i 0 8.90809 + 5.14309i 0 9.06303 16.1512i 0 −15.9638 21.7751i 0
191.6 0 −1.44633 + 4.99080i 0 −11.5701 6.68000i 0 −16.4792 8.45200i 0 −22.8163 14.4367i 0
See all 28 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 95.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
28.g odd 6 1 inner
84.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bj.f yes 28
3.b odd 2 1 inner 336.4.bj.f yes 28
4.b odd 2 1 336.4.bj.e 28
7.c even 3 1 336.4.bj.e 28
12.b even 2 1 336.4.bj.e 28
21.h odd 6 1 336.4.bj.e 28
28.g odd 6 1 inner 336.4.bj.f yes 28
84.n even 6 1 inner 336.4.bj.f yes 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.bj.e 28 4.b odd 2 1
336.4.bj.e 28 7.c even 3 1
336.4.bj.e 28 12.b even 2 1
336.4.bj.e 28 21.h odd 6 1
336.4.bj.f yes 28 1.a even 1 1 trivial
336.4.bj.f yes 28 3.b odd 2 1 inner
336.4.bj.f yes 28 28.g odd 6 1 inner
336.4.bj.f yes 28 84.n even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T5281158T526+811629T524365180866T522+120762762282T520++21 ⁣ ⁣24 T_{5}^{28} - 1158 T_{5}^{26} + 811629 T_{5}^{24} - 365180866 T_{5}^{22} + 120762762282 T_{5}^{20} + \cdots + 21\!\cdots\!24 Copy content Toggle raw display
T13731T1367296T135+191240T134+8458096T133++5757261056 T_{13}^{7} - 31 T_{13}^{6} - 7296 T_{13}^{5} + 191240 T_{13}^{4} + 8458096 T_{13}^{3} + \cdots + 5757261056 Copy content Toggle raw display
T1914+231T1913+1995T19123647952T191113805967T1910++45 ⁣ ⁣00 T_{19}^{14} + 231 T_{19}^{13} + 1995 T_{19}^{12} - 3647952 T_{19}^{11} - 13805967 T_{19}^{10} + \cdots + 45\!\cdots\!00 Copy content Toggle raw display