gp: [N,k,chi] = [336,4,Mod(95,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 3, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.95");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [28,0,0,0,0,0,38]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 28 − 1158 T 5 26 + 811629 T 5 24 − 365180866 T 5 22 + 120762762282 T 5 20 + ⋯ + 21 ⋯ 24 T_{5}^{28} - 1158 T_{5}^{26} + 811629 T_{5}^{24} - 365180866 T_{5}^{22} + 120762762282 T_{5}^{20} + \cdots + 21\!\cdots\!24 T 5 2 8 − 1 1 5 8 T 5 2 6 + 8 1 1 6 2 9 T 5 2 4 − 3 6 5 1 8 0 8 6 6 T 5 2 2 + 1 2 0 7 6 2 7 6 2 2 8 2 T 5 2 0 + ⋯ + 2 1 ⋯ 2 4
T5^28 - 1158*T5^26 + 811629*T5^24 - 365180866*T5^22 + 120762762282*T5^20 - 29730148967502*T5^18 + 5681673112348005*T5^16 - 838493921558959758*T5^14 + 96980557607708372298*T5^12 - 8584404034950529467682*T5^10 + 580367740977433706877069*T5^8 - 28102878716418293861451798*T5^6 + 954619034782622058128117713*T5^4 - 17875031833233881864331390288*T5^2 + 216594421992348078302697556224
T 13 7 − 31 T 13 6 − 7296 T 13 5 + 191240 T 13 4 + 8458096 T 13 3 + ⋯ + 5757261056 T_{13}^{7} - 31 T_{13}^{6} - 7296 T_{13}^{5} + 191240 T_{13}^{4} + 8458096 T_{13}^{3} + \cdots + 5757261056 T 1 3 7 − 3 1 T 1 3 6 − 7 2 9 6 T 1 3 5 + 1 9 1 2 4 0 T 1 3 4 + 8 4 5 8 0 9 6 T 1 3 3 + ⋯ + 5 7 5 7 2 6 1 0 5 6
T13^7 - 31*T13^6 - 7296*T13^5 + 191240*T13^4 + 8458096*T13^3 - 165766128*T13^2 - 1671949568*T13 + 5757261056
T 19 14 + 231 T 19 13 + 1995 T 19 12 − 3647952 T 19 11 − 13805967 T 19 10 + ⋯ + 45 ⋯ 00 T_{19}^{14} + 231 T_{19}^{13} + 1995 T_{19}^{12} - 3647952 T_{19}^{11} - 13805967 T_{19}^{10} + \cdots + 45\!\cdots\!00 T 1 9 1 4 + 2 3 1 T 1 9 1 3 + 1 9 9 5 T 1 9 1 2 − 3 6 4 7 9 5 2 T 1 9 1 1 − 1 3 8 0 5 9 6 7 T 1 9 1 0 + ⋯ + 4 5 ⋯ 0 0
T19^14 + 231*T19^13 + 1995*T19^12 - 3647952*T19^11 - 13805967*T19^10 + 37127164455*T19^9 + 1406994917675*T19^8 - 125506127417712*T19^7 - 5733729396587295*T19^6 + 327632920689790359*T19^5 + 24575870297264341083*T19^4 + 333892326800271503520*T19^3 - 1776787352814933169520*T19^2 - 45964584628253295628800*T19 + 456822063402445977772800