L(s) = 1 | + (−2.34 − 4.63i)3-s + (8.90 − 5.14i)5-s + (9.06 + 16.1i)7-s + (−15.9 + 21.7i)9-s + (−23.0 + 40.0i)11-s + 26.5·13-s + (−44.7 − 29.2i)15-s + (−102. − 59.4i)17-s + (−142. + 82.5i)19-s + (53.5 − 79.9i)21-s + (65.7 + 113. i)23-s + (−9.59 + 16.6i)25-s + (138. + 22.8i)27-s + 15.1i·29-s + (−101. − 58.4i)31-s + ⋯ |
L(s) = 1 | + (−0.452 − 0.891i)3-s + (0.796 − 0.460i)5-s + (0.489 + 0.872i)7-s + (−0.591 + 0.806i)9-s + (−0.633 + 1.09i)11-s + 0.566·13-s + (−0.770 − 0.502i)15-s + (−1.46 − 0.848i)17-s + (−1.72 + 0.996i)19-s + (0.556 − 0.830i)21-s + (0.596 + 1.03i)23-s + (−0.0767 + 0.132i)25-s + (0.986 + 0.162i)27-s + 0.0968i·29-s + (−0.586 − 0.338i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.129 - 0.991i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.011918940\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.011918940\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.34 + 4.63i)T \) |
| 7 | \( 1 + (-9.06 - 16.1i)T \) |
good | 5 | \( 1 + (-8.90 + 5.14i)T + (62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (23.0 - 40.0i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 26.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + (102. + 59.4i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (142. - 82.5i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-65.7 - 113. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 15.1iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (101. + 58.4i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-113. - 196. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 220. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 338. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (169. + 293. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-660. - 381. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (238. - 412. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (148. + 257. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (596. + 344. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 700.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (155. - 268. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (248. - 143. i)T + (2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 906.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-616. + 355. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 354.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43730410004864222434517740358, −10.57768814947705529009867070846, −9.318439700229927486077227514624, −8.535199093739595068527862025581, −7.49091693142598302353200932499, −6.37971755396125311693470454983, −5.52870181806095799670232509720, −4.64444965800023584325818588374, −2.35021634631816599402886962062, −1.66021395865460227868005710817,
0.35842166016936132136713465064, 2.38441297331688946225842765244, 3.88345335159383848793334313414, 4.80902372404003739687394847031, 6.09243953691833300320720166236, 6.67575206893022583130211185199, 8.390885514680262795515354488076, 9.007491821000158930761249810970, 10.52232259128952496172038421367, 10.66700943645799211332983356640