L(s) = 1 | + (−2.34 + 4.63i)3-s + (8.90 + 5.14i)5-s + (9.06 − 16.1i)7-s + (−15.9 − 21.7i)9-s + (−23.0 − 40.0i)11-s + 26.5·13-s + (−44.7 + 29.2i)15-s + (−102. + 59.4i)17-s + (−142. − 82.5i)19-s + (53.5 + 79.9i)21-s + (65.7 − 113. i)23-s + (−9.59 − 16.6i)25-s + (138. − 22.8i)27-s − 15.1i·29-s + (−101. + 58.4i)31-s + ⋯ |
L(s) = 1 | + (−0.452 + 0.891i)3-s + (0.796 + 0.460i)5-s + (0.489 − 0.872i)7-s + (−0.591 − 0.806i)9-s + (−0.633 − 1.09i)11-s + 0.566·13-s + (−0.770 + 0.502i)15-s + (−1.46 + 0.848i)17-s + (−1.72 − 0.996i)19-s + (0.556 + 0.830i)21-s + (0.596 − 1.03i)23-s + (−0.0767 − 0.132i)25-s + (0.986 − 0.162i)27-s − 0.0968i·29-s + (−0.586 + 0.338i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.129 + 0.991i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.129 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.011918940\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.011918940\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.34 - 4.63i)T \) |
| 7 | \( 1 + (-9.06 + 16.1i)T \) |
good | 5 | \( 1 + (-8.90 - 5.14i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (23.0 + 40.0i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 26.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + (102. - 59.4i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (142. + 82.5i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-65.7 + 113. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 15.1iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (101. - 58.4i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-113. + 196. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 220. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 338. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (169. - 293. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-660. + 381. i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (238. + 412. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (148. - 257. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (596. - 344. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 700.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (155. + 268. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (248. + 143. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 906.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-616. - 355. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 354.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66700943645799211332983356640, −10.52232259128952496172038421367, −9.007491821000158930761249810970, −8.390885514680262795515354488076, −6.67575206893022583130211185199, −6.09243953691833300320720166236, −4.80902372404003739687394847031, −3.88345335159383848793334313414, −2.38441297331688946225842765244, −0.35842166016936132136713465064,
1.66021395865460227868005710817, 2.35021634631816599402886962062, 4.64444965800023584325818588374, 5.52870181806095799670232509720, 6.37971755396125311693470454983, 7.49091693142598302353200932499, 8.535199093739595068527862025581, 9.318439700229927486077227514624, 10.57768814947705529009867070846, 11.43730410004864222434517740358