Properties

Label 336.4.bj.e.95.13
Level $336$
Weight $4$
Character 336.95
Analytic conductor $19.825$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(95,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.95"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,-38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.13
Character \(\chi\) \(=\) 336.95
Dual form 336.4.bj.e.191.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.04533 - 1.24284i) q^{3} +(11.5701 - 6.68000i) q^{5} +(16.4792 - 8.45200i) q^{7} +(23.9107 - 12.5411i) q^{9} +(11.6130 - 20.1143i) q^{11} -10.0140 q^{13} +(50.0727 - 48.0826i) q^{15} +(-11.8337 - 6.83218i) q^{17} +(-86.0386 + 49.6744i) q^{19} +(72.6384 - 63.1242i) q^{21} +(19.9988 + 34.6389i) q^{23} +(26.7447 - 46.3232i) q^{25} +(105.051 - 92.9913i) q^{27} +107.245i q^{29} +(-190.094 - 109.751i) q^{31} +(33.5924 - 115.916i) q^{33} +(134.206 - 207.871i) q^{35} +(36.4793 + 63.1841i) q^{37} +(-50.5238 + 12.4458i) q^{39} +469.609i q^{41} -223.017i q^{43} +(192.874 - 304.825i) q^{45} +(-29.2317 - 50.6307i) q^{47} +(200.127 - 278.564i) q^{49} +(-68.1962 - 19.7632i) q^{51} +(152.639 + 88.1261i) q^{53} -310.299i q^{55} +(-372.356 + 357.556i) q^{57} +(302.084 - 523.224i) q^{59} +(452.924 + 784.488i) q^{61} +(288.031 - 408.760i) q^{63} +(-115.863 + 66.8933i) q^{65} +(-536.945 - 310.005i) q^{67} +(143.951 + 149.909i) q^{69} -415.880 q^{71} +(-80.5578 + 139.530i) q^{73} +(77.3634 - 266.955i) q^{75} +(21.3667 - 429.620i) q^{77} +(25.4816 - 14.7118i) q^{79} +(414.441 - 599.733i) q^{81} +1419.98 q^{83} -182.556 q^{85} +(133.289 + 541.088i) q^{87} +(1167.51 - 674.063i) q^{89} +(-165.022 + 84.6381i) q^{91} +(-1095.49 - 317.472i) q^{93} +(-663.650 + 1149.48i) q^{95} +229.880 q^{97} +(25.4190 - 626.586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 38 q^{7} - 70 q^{9} + 124 q^{13} + 462 q^{19} + 500 q^{21} + 566 q^{25} - 1266 q^{31} + 64 q^{33} + 338 q^{37} - 1254 q^{39} - 488 q^{45} - 206 q^{49} - 522 q^{51} + 2324 q^{57} - 340 q^{61} + 840 q^{63}+ \cdots - 3344 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.04533 1.24284i 0.970974 0.239185i
\(4\) 0 0
\(5\) 11.5701 6.68000i 1.03486 0.597477i 0.116487 0.993192i \(-0.462837\pi\)
0.918373 + 0.395715i \(0.129503\pi\)
\(6\) 0 0
\(7\) 16.4792 8.45200i 0.889793 0.456365i
\(8\) 0 0
\(9\) 23.9107 12.5411i 0.885581 0.464486i
\(10\) 0 0
\(11\) 11.6130 20.1143i 0.318314 0.551335i −0.661823 0.749660i \(-0.730217\pi\)
0.980136 + 0.198325i \(0.0635502\pi\)
\(12\) 0 0
\(13\) −10.0140 −0.213644 −0.106822 0.994278i \(-0.534068\pi\)
−0.106822 + 0.994278i \(0.534068\pi\)
\(14\) 0 0
\(15\) 50.0727 48.0826i 0.861915 0.827658i
\(16\) 0 0
\(17\) −11.8337 6.83218i −0.168829 0.0974734i 0.413205 0.910638i \(-0.364409\pi\)
−0.582034 + 0.813165i \(0.697743\pi\)
\(18\) 0 0
\(19\) −86.0386 + 49.6744i −1.03887 + 0.599794i −0.919514 0.393057i \(-0.871418\pi\)
−0.119360 + 0.992851i \(0.538084\pi\)
\(20\) 0 0
\(21\) 72.6384 63.1242i 0.754809 0.655944i
\(22\) 0 0
\(23\) 19.9988 + 34.6389i 0.181306 + 0.314031i 0.942326 0.334698i \(-0.108634\pi\)
−0.761020 + 0.648729i \(0.775301\pi\)
\(24\) 0 0
\(25\) 26.7447 46.3232i 0.213958 0.370586i
\(26\) 0 0
\(27\) 105.051 92.9913i 0.748778 0.662821i
\(28\) 0 0
\(29\) 107.245i 0.686723i 0.939203 + 0.343362i \(0.111566\pi\)
−0.939203 + 0.343362i \(0.888434\pi\)
\(30\) 0 0
\(31\) −190.094 109.751i −1.10135 0.635865i −0.164775 0.986331i \(-0.552690\pi\)
−0.936575 + 0.350466i \(0.886023\pi\)
\(32\) 0 0
\(33\) 33.5924 115.916i 0.177203 0.611468i
\(34\) 0 0
\(35\) 134.206 207.871i 0.648144 1.00391i
\(36\) 0 0
\(37\) 36.4793 + 63.1841i 0.162086 + 0.280740i 0.935616 0.353018i \(-0.114845\pi\)
−0.773531 + 0.633759i \(0.781511\pi\)
\(38\) 0 0
\(39\) −50.5238 + 12.4458i −0.207443 + 0.0511006i
\(40\) 0 0
\(41\) 469.609i 1.78880i 0.447272 + 0.894398i \(0.352396\pi\)
−0.447272 + 0.894398i \(0.647604\pi\)
\(42\) 0 0
\(43\) 223.017i 0.790926i −0.918482 0.395463i \(-0.870584\pi\)
0.918482 0.395463i \(-0.129416\pi\)
\(44\) 0 0
\(45\) 192.874 304.825i 0.638933 1.00979i
\(46\) 0 0
\(47\) −29.2317 50.6307i −0.0907208 0.157133i 0.817094 0.576505i \(-0.195584\pi\)
−0.907815 + 0.419372i \(0.862250\pi\)
\(48\) 0 0
\(49\) 200.127 278.564i 0.583462 0.812141i
\(50\) 0 0
\(51\) −68.1962 19.7632i −0.187243 0.0542627i
\(52\) 0 0
\(53\) 152.639 + 88.1261i 0.395596 + 0.228397i 0.684582 0.728936i \(-0.259985\pi\)
−0.288986 + 0.957333i \(0.593318\pi\)
\(54\) 0 0
\(55\) 310.299i 0.760740i
\(56\) 0 0
\(57\) −372.356 + 357.556i −0.865258 + 0.830868i
\(58\) 0 0
\(59\) 302.084 523.224i 0.666575 1.15454i −0.312281 0.949990i \(-0.601093\pi\)
0.978856 0.204552i \(-0.0655737\pi\)
\(60\) 0 0
\(61\) 452.924 + 784.488i 0.950672 + 1.64661i 0.743975 + 0.668208i \(0.232938\pi\)
0.206697 + 0.978405i \(0.433728\pi\)
\(62\) 0 0
\(63\) 288.031 408.760i 0.576008 0.817444i
\(64\) 0 0
\(65\) −115.863 + 66.8933i −0.221092 + 0.127648i
\(66\) 0 0
\(67\) −536.945 310.005i −0.979078 0.565271i −0.0770864 0.997024i \(-0.524562\pi\)
−0.901992 + 0.431753i \(0.857895\pi\)
\(68\) 0 0
\(69\) 143.951 + 149.909i 0.251155 + 0.261550i
\(70\) 0 0
\(71\) −415.880 −0.695153 −0.347576 0.937652i \(-0.612995\pi\)
−0.347576 + 0.937652i \(0.612995\pi\)
\(72\) 0 0
\(73\) −80.5578 + 139.530i −0.129159 + 0.223709i −0.923351 0.383957i \(-0.874561\pi\)
0.794192 + 0.607667i \(0.207894\pi\)
\(74\) 0 0
\(75\) 77.3634 266.955i 0.119109 0.411005i
\(76\) 0 0
\(77\) 21.3667 429.620i 0.0316228 0.635841i
\(78\) 0 0
\(79\) 25.4816 14.7118i 0.0362900 0.0209520i −0.481745 0.876311i \(-0.659997\pi\)
0.518035 + 0.855359i \(0.326664\pi\)
\(80\) 0 0
\(81\) 414.441 599.733i 0.568506 0.822679i
\(82\) 0 0
\(83\) 1419.98 1.87787 0.938935 0.344095i \(-0.111814\pi\)
0.938935 + 0.344095i \(0.111814\pi\)
\(84\) 0 0
\(85\) −182.556 −0.232953
\(86\) 0 0
\(87\) 133.289 + 541.088i 0.164254 + 0.666790i
\(88\) 0 0
\(89\) 1167.51 674.063i 1.39052 0.802815i 0.397144 0.917756i \(-0.370001\pi\)
0.993372 + 0.114941i \(0.0366679\pi\)
\(90\) 0 0
\(91\) −165.022 + 84.6381i −0.190099 + 0.0974999i
\(92\) 0 0
\(93\) −1095.49 317.472i −1.22147 0.353981i
\(94\) 0 0
\(95\) −663.650 + 1149.48i −0.716727 + 1.24141i
\(96\) 0 0
\(97\) 229.880 0.240627 0.120313 0.992736i \(-0.461610\pi\)
0.120313 + 0.992736i \(0.461610\pi\)
\(98\) 0 0
\(99\) 25.4190 626.586i 0.0258051 0.636104i
\(100\) 0 0
\(101\) −856.215 494.336i −0.843530 0.487012i 0.0149325 0.999889i \(-0.495247\pi\)
−0.858463 + 0.512876i \(0.828580\pi\)
\(102\) 0 0
\(103\) −1249.44 + 721.366i −1.19525 + 0.690081i −0.959494 0.281731i \(-0.909092\pi\)
−0.235761 + 0.971811i \(0.575758\pi\)
\(104\) 0 0
\(105\) 418.764 1215.58i 0.389211 1.12979i
\(106\) 0 0
\(107\) 669.798 + 1160.12i 0.605157 + 1.04816i 0.992027 + 0.126029i \(0.0402231\pi\)
−0.386869 + 0.922135i \(0.626444\pi\)
\(108\) 0 0
\(109\) −621.761 + 1076.92i −0.546366 + 0.946333i 0.452154 + 0.891940i \(0.350656\pi\)
−0.998520 + 0.0543932i \(0.982678\pi\)
\(110\) 0 0
\(111\) 262.578 + 273.446i 0.224530 + 0.233823i
\(112\) 0 0
\(113\) 1678.88i 1.39766i −0.715285 0.698832i \(-0.753703\pi\)
0.715285 0.698832i \(-0.246297\pi\)
\(114\) 0 0
\(115\) 462.776 + 267.184i 0.375253 + 0.216652i
\(116\) 0 0
\(117\) −239.441 + 125.586i −0.189199 + 0.0992347i
\(118\) 0 0
\(119\) −252.755 12.5705i −0.194706 0.00968349i
\(120\) 0 0
\(121\) 395.777 + 685.505i 0.297353 + 0.515030i
\(122\) 0 0
\(123\) 583.651 + 2369.33i 0.427854 + 1.73687i
\(124\) 0 0
\(125\) 955.380i 0.683615i
\(126\) 0 0
\(127\) 51.9979i 0.0363312i 0.999835 + 0.0181656i \(0.00578261\pi\)
−0.999835 + 0.0181656i \(0.994217\pi\)
\(128\) 0 0
\(129\) −277.176 1125.20i −0.189178 0.767968i
\(130\) 0 0
\(131\) −1266.66 2193.92i −0.844799 1.46323i −0.885796 0.464075i \(-0.846387\pi\)
0.0409970 0.999159i \(-0.486947\pi\)
\(132\) 0 0
\(133\) −997.998 + 1545.79i −0.650657 + 1.00780i
\(134\) 0 0
\(135\) 594.264 1777.66i 0.378860 1.13331i
\(136\) 0 0
\(137\) 672.176 + 388.081i 0.419182 + 0.242015i 0.694727 0.719273i \(-0.255525\pi\)
−0.275546 + 0.961288i \(0.588858\pi\)
\(138\) 0 0
\(139\) 2238.46i 1.36592i 0.730454 + 0.682962i \(0.239309\pi\)
−0.730454 + 0.682962i \(0.760691\pi\)
\(140\) 0 0
\(141\) −210.409 219.118i −0.125671 0.130873i
\(142\) 0 0
\(143\) −116.292 + 201.424i −0.0680059 + 0.117790i
\(144\) 0 0
\(145\) 716.399 + 1240.84i 0.410301 + 0.710663i
\(146\) 0 0
\(147\) 663.496 1654.18i 0.372274 0.928123i
\(148\) 0 0
\(149\) −2026.78 + 1170.16i −1.11436 + 0.643377i −0.939956 0.341297i \(-0.889134\pi\)
−0.174406 + 0.984674i \(0.555801\pi\)
\(150\) 0 0
\(151\) 1937.87 + 1118.83i 1.04438 + 0.602973i 0.921071 0.389396i \(-0.127316\pi\)
0.123309 + 0.992368i \(0.460649\pi\)
\(152\) 0 0
\(153\) −368.635 14.9545i −0.194787 0.00790198i
\(154\) 0 0
\(155\) −2932.54 −1.51966
\(156\) 0 0
\(157\) −1587.02 + 2748.81i −0.806741 + 1.39732i 0.108369 + 0.994111i \(0.465437\pi\)
−0.915110 + 0.403205i \(0.867896\pi\)
\(158\) 0 0
\(159\) 879.640 + 254.919i 0.438742 + 0.127147i
\(160\) 0 0
\(161\) 622.332 + 401.792i 0.304638 + 0.196681i
\(162\) 0 0
\(163\) −1826.31 + 1054.42i −0.877591 + 0.506678i −0.869863 0.493293i \(-0.835793\pi\)
−0.00772789 + 0.999970i \(0.502460\pi\)
\(164\) 0 0
\(165\) −385.653 1565.56i −0.181958 0.738659i
\(166\) 0 0
\(167\) −996.345 −0.461673 −0.230837 0.972993i \(-0.574146\pi\)
−0.230837 + 0.972993i \(0.574146\pi\)
\(168\) 0 0
\(169\) −2096.72 −0.954356
\(170\) 0 0
\(171\) −1434.27 + 2266.77i −0.641411 + 1.01371i
\(172\) 0 0
\(173\) −3624.74 + 2092.74i −1.59297 + 0.919702i −0.600177 + 0.799867i \(0.704903\pi\)
−0.992794 + 0.119835i \(0.961764\pi\)
\(174\) 0 0
\(175\) 49.2075 989.416i 0.0212556 0.427387i
\(176\) 0 0
\(177\) 873.825 3015.28i 0.371077 1.28046i
\(178\) 0 0
\(179\) −1752.48 + 3035.39i −0.731769 + 1.26746i 0.224358 + 0.974507i \(0.427972\pi\)
−0.956127 + 0.292954i \(0.905362\pi\)
\(180\) 0 0
\(181\) 1770.87 0.727225 0.363612 0.931550i \(-0.381543\pi\)
0.363612 + 0.931550i \(0.381543\pi\)
\(182\) 0 0
\(183\) 3260.15 + 3395.08i 1.31692 + 1.37143i
\(184\) 0 0
\(185\) 844.139 + 487.364i 0.335472 + 0.193685i
\(186\) 0 0
\(187\) −274.849 + 158.684i −0.107481 + 0.0620542i
\(188\) 0 0
\(189\) 945.186 2420.31i 0.363768 0.931490i
\(190\) 0 0
\(191\) 715.639 + 1239.52i 0.271109 + 0.469574i 0.969146 0.246487i \(-0.0792763\pi\)
−0.698037 + 0.716062i \(0.745943\pi\)
\(192\) 0 0
\(193\) 2049.20 3549.32i 0.764274 1.32376i −0.176356 0.984327i \(-0.556431\pi\)
0.940630 0.339435i \(-0.110236\pi\)
\(194\) 0 0
\(195\) −501.427 + 481.498i −0.184143 + 0.176825i
\(196\) 0 0
\(197\) 3993.72i 1.44437i −0.691700 0.722185i \(-0.743138\pi\)
0.691700 0.722185i \(-0.256862\pi\)
\(198\) 0 0
\(199\) −1629.07 940.544i −0.580310 0.335042i 0.180947 0.983493i \(-0.442084\pi\)
−0.761257 + 0.648451i \(0.775417\pi\)
\(200\) 0 0
\(201\) −3094.35 896.739i −1.08586 0.314682i
\(202\) 0 0
\(203\) 906.438 + 1767.32i 0.313397 + 0.611041i
\(204\) 0 0
\(205\) 3136.99 + 5433.42i 1.06876 + 1.85115i
\(206\) 0 0
\(207\) 912.596 + 577.433i 0.306424 + 0.193886i
\(208\) 0 0
\(209\) 2307.48i 0.763691i
\(210\) 0 0
\(211\) 579.780i 0.189164i −0.995517 0.0945822i \(-0.969848\pi\)
0.995517 0.0945822i \(-0.0301515\pi\)
\(212\) 0 0
\(213\) −2098.25 + 516.874i −0.674975 + 0.166270i
\(214\) 0 0
\(215\) −1489.75 2580.33i −0.472560 0.818498i
\(216\) 0 0
\(217\) −4060.21 201.930i −1.27016 0.0631700i
\(218\) 0 0
\(219\) −233.026 + 804.096i −0.0719016 + 0.248109i
\(220\) 0 0
\(221\) 118.502 + 68.4173i 0.0360694 + 0.0208247i
\(222\) 0 0
\(223\) 2261.10i 0.678990i −0.940608 0.339495i \(-0.889744\pi\)
0.940608 0.339495i \(-0.110256\pi\)
\(224\) 0 0
\(225\) 58.5399 1443.03i 0.0173452 0.427564i
\(226\) 0 0
\(227\) 1311.07 2270.83i 0.383341 0.663967i −0.608196 0.793787i \(-0.708107\pi\)
0.991538 + 0.129820i \(0.0414399\pi\)
\(228\) 0 0
\(229\) 1128.44 + 1954.51i 0.325629 + 0.564007i 0.981640 0.190745i \(-0.0610905\pi\)
−0.656010 + 0.754752i \(0.727757\pi\)
\(230\) 0 0
\(231\) −426.149 2194.13i −0.121379 0.624949i
\(232\) 0 0
\(233\) 3251.45 1877.23i 0.914205 0.527817i 0.0324233 0.999474i \(-0.489678\pi\)
0.881782 + 0.471658i \(0.156344\pi\)
\(234\) 0 0
\(235\) −676.426 390.535i −0.187767 0.108407i
\(236\) 0 0
\(237\) 110.279 105.896i 0.0302252 0.0290239i
\(238\) 0 0
\(239\) 3346.72 0.905780 0.452890 0.891566i \(-0.350393\pi\)
0.452890 + 0.891566i \(0.350393\pi\)
\(240\) 0 0
\(241\) −1180.68 + 2045.00i −0.315579 + 0.546599i −0.979560 0.201150i \(-0.935532\pi\)
0.663981 + 0.747749i \(0.268865\pi\)
\(242\) 0 0
\(243\) 1345.62 3540.94i 0.355232 0.934778i
\(244\) 0 0
\(245\) 454.684 4559.87i 0.118566 1.18906i
\(246\) 0 0
\(247\) 861.589 497.439i 0.221950 0.128143i
\(248\) 0 0
\(249\) 7164.27 1764.82i 1.82336 0.449159i
\(250\) 0 0
\(251\) 2672.34 0.672018 0.336009 0.941859i \(-0.390923\pi\)
0.336009 + 0.941859i \(0.390923\pi\)
\(252\) 0 0
\(253\) 928.984 0.230849
\(254\) 0 0
\(255\) −921.055 + 226.888i −0.226191 + 0.0557189i
\(256\) 0 0
\(257\) −2224.11 + 1284.09i −0.539829 + 0.311670i −0.745010 0.667054i \(-0.767555\pi\)
0.205181 + 0.978724i \(0.434222\pi\)
\(258\) 0 0
\(259\) 1135.18 + 732.899i 0.272343 + 0.175831i
\(260\) 0 0
\(261\) 1344.98 + 2564.31i 0.318973 + 0.608149i
\(262\) 0 0
\(263\) 3535.00 6122.81i 0.828812 1.43555i −0.0701582 0.997536i \(-0.522350\pi\)
0.898970 0.438009i \(-0.144316\pi\)
\(264\) 0 0
\(265\) 2354.73 0.545848
\(266\) 0 0
\(267\) 5052.72 4851.90i 1.15813 1.11210i
\(268\) 0 0
\(269\) 5423.90 + 3131.49i 1.22937 + 0.709779i 0.966899 0.255161i \(-0.0821283\pi\)
0.262474 + 0.964939i \(0.415462\pi\)
\(270\) 0 0
\(271\) −4335.37 + 2503.03i −0.971790 + 0.561063i −0.899782 0.436341i \(-0.856274\pi\)
−0.0720087 + 0.997404i \(0.522941\pi\)
\(272\) 0 0
\(273\) −727.399 + 632.124i −0.161261 + 0.140139i
\(274\) 0 0
\(275\) −621.173 1075.90i −0.136211 0.235925i
\(276\) 0 0
\(277\) 3255.53 5638.74i 0.706157 1.22310i −0.260115 0.965578i \(-0.583760\pi\)
0.966272 0.257523i \(-0.0829063\pi\)
\(278\) 0 0
\(279\) −5921.67 240.227i −1.27069 0.0515484i
\(280\) 0 0
\(281\) 3819.59i 0.810882i −0.914121 0.405441i \(-0.867118\pi\)
0.914121 0.405441i \(-0.132882\pi\)
\(282\) 0 0
\(283\) −3017.67 1742.25i −0.633859 0.365958i 0.148386 0.988929i \(-0.452592\pi\)
−0.782245 + 0.622971i \(0.785925\pi\)
\(284\) 0 0
\(285\) −1919.71 + 6624.30i −0.398997 + 1.37680i
\(286\) 0 0
\(287\) 3969.14 + 7738.78i 0.816344 + 1.59166i
\(288\) 0 0
\(289\) −2363.14 4093.08i −0.480998 0.833113i
\(290\) 0 0
\(291\) 1159.82 285.705i 0.233642 0.0575544i
\(292\) 0 0
\(293\) 485.271i 0.0967571i −0.998829 0.0483785i \(-0.984595\pi\)
0.998829 0.0483785i \(-0.0154054\pi\)
\(294\) 0 0
\(295\) 8071.67i 1.59305i
\(296\) 0 0
\(297\) −650.502 3192.93i −0.127091 0.623813i
\(298\) 0 0
\(299\) −200.268 346.874i −0.0387350 0.0670910i
\(300\) 0 0
\(301\) −1884.94 3675.14i −0.360951 0.703760i
\(302\) 0 0
\(303\) −4934.27 1429.95i −0.935532 0.271116i
\(304\) 0 0
\(305\) 10480.8 + 6051.07i 1.96763 + 1.13601i
\(306\) 0 0
\(307\) 1611.66i 0.299617i 0.988715 + 0.149808i \(0.0478656\pi\)
−0.988715 + 0.149808i \(0.952134\pi\)
\(308\) 0 0
\(309\) −5407.30 + 5192.39i −0.995504 + 0.955938i
\(310\) 0 0
\(311\) 3502.15 6065.90i 0.638549 1.10600i −0.347202 0.937790i \(-0.612868\pi\)
0.985751 0.168209i \(-0.0537984\pi\)
\(312\) 0 0
\(313\) 72.0217 + 124.745i 0.0130061 + 0.0225272i 0.872455 0.488694i \(-0.162527\pi\)
−0.859449 + 0.511221i \(0.829193\pi\)
\(314\) 0 0
\(315\) 602.029 6653.44i 0.107684 1.19009i
\(316\) 0 0
\(317\) −7703.34 + 4447.53i −1.36487 + 0.788006i −0.990267 0.139180i \(-0.955553\pi\)
−0.374600 + 0.927186i \(0.622220\pi\)
\(318\) 0 0
\(319\) 2157.17 + 1245.44i 0.378615 + 0.218593i
\(320\) 0 0
\(321\) 4821.21 + 5020.75i 0.838297 + 0.872994i
\(322\) 0 0
\(323\) 1357.54 0.233856
\(324\) 0 0
\(325\) −267.821 + 463.880i −0.0457109 + 0.0791736i
\(326\) 0 0
\(327\) −1798.54 + 6206.17i −0.304158 + 1.04955i
\(328\) 0 0
\(329\) −909.645 587.287i −0.152433 0.0984140i
\(330\) 0 0
\(331\) −2898.68 + 1673.55i −0.481346 + 0.277905i −0.720977 0.692959i \(-0.756307\pi\)
0.239631 + 0.970864i \(0.422974\pi\)
\(332\) 0 0
\(333\) 1664.64 + 1053.28i 0.273940 + 0.173332i
\(334\) 0 0
\(335\) −8283.33 −1.35095
\(336\) 0 0
\(337\) 3073.13 0.496748 0.248374 0.968664i \(-0.420104\pi\)
0.248374 + 0.968664i \(0.420104\pi\)
\(338\) 0 0
\(339\) −2086.59 8470.52i −0.334301 1.35710i
\(340\) 0 0
\(341\) −4415.12 + 2549.07i −0.701150 + 0.404809i
\(342\) 0 0
\(343\) 943.511 6281.99i 0.148527 0.988908i
\(344\) 0 0
\(345\) 2666.93 + 772.872i 0.416181 + 0.120609i
\(346\) 0 0
\(347\) −844.772 + 1463.19i −0.130691 + 0.226363i −0.923943 0.382530i \(-0.875053\pi\)
0.793252 + 0.608893i \(0.208386\pi\)
\(348\) 0 0
\(349\) 1586.49 0.243333 0.121666 0.992571i \(-0.461176\pi\)
0.121666 + 0.992571i \(0.461176\pi\)
\(350\) 0 0
\(351\) −1051.97 + 931.212i −0.159972 + 0.141608i
\(352\) 0 0
\(353\) −8288.27 4785.23i −1.24969 0.721508i −0.278641 0.960395i \(-0.589884\pi\)
−0.971047 + 0.238887i \(0.923217\pi\)
\(354\) 0 0
\(355\) −4811.77 + 2778.08i −0.719386 + 0.415338i
\(356\) 0 0
\(357\) −1290.86 + 250.713i −0.191371 + 0.0371685i
\(358\) 0 0
\(359\) −1449.67 2510.91i −0.213122 0.369138i 0.739568 0.673082i \(-0.235030\pi\)
−0.952690 + 0.303944i \(0.901697\pi\)
\(360\) 0 0
\(361\) 1505.60 2607.77i 0.219507 0.380197i
\(362\) 0 0
\(363\) 2848.80 + 2966.71i 0.411910 + 0.428959i
\(364\) 0 0
\(365\) 2152.50i 0.308677i
\(366\) 0 0
\(367\) 5074.96 + 2930.03i 0.721828 + 0.416748i 0.815425 0.578863i \(-0.196503\pi\)
−0.0935971 + 0.995610i \(0.529837\pi\)
\(368\) 0 0
\(369\) 5889.42 + 11228.7i 0.830870 + 1.58412i
\(370\) 0 0
\(371\) 3260.21 + 162.143i 0.456231 + 0.0226901i
\(372\) 0 0
\(373\) −3571.94 6186.79i −0.495840 0.858820i 0.504149 0.863617i \(-0.331806\pi\)
−0.999988 + 0.00479716i \(0.998473\pi\)
\(374\) 0 0
\(375\) 1187.39 + 4820.21i 0.163511 + 0.663772i
\(376\) 0 0
\(377\) 1073.95i 0.146715i
\(378\) 0 0
\(379\) 2290.29i 0.310408i −0.987882 0.155204i \(-0.950397\pi\)
0.987882 0.155204i \(-0.0496034\pi\)
\(380\) 0 0
\(381\) 64.6253 + 262.346i 0.00868990 + 0.0352767i
\(382\) 0 0
\(383\) 1469.76 + 2545.70i 0.196087 + 0.339632i 0.947256 0.320477i \(-0.103843\pi\)
−0.751170 + 0.660109i \(0.770510\pi\)
\(384\) 0 0
\(385\) −2622.65 5113.48i −0.347175 0.676901i
\(386\) 0 0
\(387\) −2796.88 5332.49i −0.367374 0.700429i
\(388\) 0 0
\(389\) 12685.1 + 7323.74i 1.65337 + 0.954571i 0.975674 + 0.219226i \(0.0703531\pi\)
0.677692 + 0.735346i \(0.262980\pi\)
\(390\) 0 0
\(391\) 546.542i 0.0706901i
\(392\) 0 0
\(393\) −9117.42 9494.79i −1.17026 1.21870i
\(394\) 0 0
\(395\) 196.550 340.435i 0.0250367 0.0433649i
\(396\) 0 0
\(397\) 3630.54 + 6288.28i 0.458971 + 0.794961i 0.998907 0.0467449i \(-0.0148848\pi\)
−0.539936 + 0.841706i \(0.681551\pi\)
\(398\) 0 0
\(399\) −3114.05 + 9039.39i −0.390721 + 1.13417i
\(400\) 0 0
\(401\) 422.755 244.078i 0.0526469 0.0303957i −0.473446 0.880823i \(-0.656990\pi\)
0.526092 + 0.850427i \(0.323657\pi\)
\(402\) 0 0
\(403\) 1903.60 + 1099.04i 0.235297 + 0.135849i
\(404\) 0 0
\(405\) 788.908 9707.43i 0.0967930 1.19103i
\(406\) 0 0
\(407\) 1694.54 0.206376
\(408\) 0 0
\(409\) 1873.82 3245.56i 0.226539 0.392377i −0.730241 0.683190i \(-0.760592\pi\)
0.956780 + 0.290812i \(0.0939255\pi\)
\(410\) 0 0
\(411\) 3873.67 + 1122.59i 0.464901 + 0.134728i
\(412\) 0 0
\(413\) 555.801 11175.5i 0.0662208 1.33150i
\(414\) 0 0
\(415\) 16429.3 9485.47i 1.94333 1.12198i
\(416\) 0 0
\(417\) 2782.05 + 11293.8i 0.326709 + 1.32628i
\(418\) 0 0
\(419\) −8857.57 −1.03275 −0.516373 0.856364i \(-0.672718\pi\)
−0.516373 + 0.856364i \(0.672718\pi\)
\(420\) 0 0
\(421\) −16445.8 −1.90385 −0.951926 0.306329i \(-0.900899\pi\)
−0.951926 + 0.306329i \(0.900899\pi\)
\(422\) 0 0
\(423\) −1333.91 844.018i −0.153327 0.0970155i
\(424\) 0 0
\(425\) −632.978 + 365.450i −0.0722446 + 0.0417104i
\(426\) 0 0
\(427\) 14094.3 + 9099.61i 1.59736 + 1.03129i
\(428\) 0 0
\(429\) −336.394 + 1160.78i −0.0378584 + 0.130637i
\(430\) 0 0
\(431\) −1918.68 + 3323.25i −0.214430 + 0.371404i −0.953096 0.302668i \(-0.902123\pi\)
0.738666 + 0.674072i \(0.235456\pi\)
\(432\) 0 0
\(433\) 4469.43 0.496044 0.248022 0.968754i \(-0.420219\pi\)
0.248022 + 0.968754i \(0.420219\pi\)
\(434\) 0 0
\(435\) 5156.64 + 5370.07i 0.568372 + 0.591897i
\(436\) 0 0
\(437\) −3441.34 1986.86i −0.376708 0.217493i
\(438\) 0 0
\(439\) −4013.35 + 2317.11i −0.436325 + 0.251912i −0.702037 0.712140i \(-0.747726\pi\)
0.265713 + 0.964052i \(0.414393\pi\)
\(440\) 0 0
\(441\) 1291.68 9170.48i 0.139475 0.990226i
\(442\) 0 0
\(443\) −4541.62 7866.31i −0.487085 0.843656i 0.512804 0.858505i \(-0.328607\pi\)
−0.999890 + 0.0148490i \(0.995273\pi\)
\(444\) 0 0
\(445\) 9005.48 15597.9i 0.959327 1.66160i
\(446\) 0 0
\(447\) −8771.42 + 8422.81i −0.928130 + 0.891242i
\(448\) 0 0
\(449\) 2239.89i 0.235427i 0.993048 + 0.117713i \(0.0375564\pi\)
−0.993048 + 0.117713i \(0.962444\pi\)
\(450\) 0 0
\(451\) 9445.86 + 5453.57i 0.986226 + 0.569398i
\(452\) 0 0
\(453\) 11167.7 + 3236.39i 1.15829 + 0.335671i
\(454\) 0 0
\(455\) −1343.94 + 2081.62i −0.138472 + 0.214479i
\(456\) 0 0
\(457\) 2777.88 + 4811.43i 0.284341 + 0.492492i 0.972449 0.233115i \(-0.0748920\pi\)
−0.688108 + 0.725608i \(0.741559\pi\)
\(458\) 0 0
\(459\) −1878.47 + 382.705i −0.191023 + 0.0389175i
\(460\) 0 0
\(461\) 2893.36i 0.292315i −0.989261 0.146157i \(-0.953309\pi\)
0.989261 0.146157i \(-0.0466906\pi\)
\(462\) 0 0
\(463\) 7368.39i 0.739607i −0.929110 0.369804i \(-0.879425\pi\)
0.929110 0.369804i \(-0.120575\pi\)
\(464\) 0 0
\(465\) −14795.6 + 3644.69i −1.47555 + 0.363480i
\(466\) 0 0
\(467\) 3290.33 + 5699.02i 0.326035 + 0.564709i 0.981721 0.190324i \(-0.0609540\pi\)
−0.655686 + 0.755033i \(0.727621\pi\)
\(468\) 0 0
\(469\) −11468.6 570.376i −1.12915 0.0561568i
\(470\) 0 0
\(471\) −4590.72 + 15841.0i −0.449107 + 1.54972i
\(472\) 0 0
\(473\) −4485.83 2589.90i −0.436065 0.251762i
\(474\) 0 0
\(475\) 5314.12i 0.513323i
\(476\) 0 0
\(477\) 4754.90 + 192.894i 0.456419 + 0.0185157i
\(478\) 0 0
\(479\) −5132.23 + 8889.28i −0.489556 + 0.847936i −0.999928 0.0120177i \(-0.996175\pi\)
0.510372 + 0.859954i \(0.329508\pi\)
\(480\) 0 0
\(481\) −365.303 632.724i −0.0346287 0.0599786i
\(482\) 0 0
\(483\) 3639.24 + 1253.71i 0.342838 + 0.118107i
\(484\) 0 0
\(485\) 2659.73 1535.60i 0.249015 0.143769i
\(486\) 0 0
\(487\) 2124.30 + 1226.47i 0.197662 + 0.114120i 0.595564 0.803308i \(-0.296928\pi\)
−0.397902 + 0.917428i \(0.630262\pi\)
\(488\) 0 0
\(489\) −7903.84 + 7589.70i −0.730928 + 0.701878i
\(490\) 0 0
\(491\) 3723.61 0.342249 0.171125 0.985249i \(-0.445260\pi\)
0.171125 + 0.985249i \(0.445260\pi\)
\(492\) 0 0
\(493\) 732.720 1269.11i 0.0669373 0.115939i
\(494\) 0 0
\(495\) −3891.50 7419.46i −0.353353 0.673697i
\(496\) 0 0
\(497\) −6853.36 + 3515.02i −0.618542 + 0.317243i
\(498\) 0 0
\(499\) −7233.48 + 4176.25i −0.648928 + 0.374659i −0.788045 0.615617i \(-0.788907\pi\)
0.139117 + 0.990276i \(0.455573\pi\)
\(500\) 0 0
\(501\) −5026.89 + 1238.30i −0.448273 + 0.110426i
\(502\) 0 0
\(503\) −5873.38 −0.520638 −0.260319 0.965523i \(-0.583828\pi\)
−0.260319 + 0.965523i \(0.583828\pi\)
\(504\) 0 0
\(505\) −13208.6 −1.16391
\(506\) 0 0
\(507\) −10578.6 + 2605.90i −0.926655 + 0.228268i
\(508\) 0 0
\(509\) −7741.87 + 4469.77i −0.674170 + 0.389232i −0.797655 0.603114i \(-0.793926\pi\)
0.123485 + 0.992346i \(0.460593\pi\)
\(510\) 0 0
\(511\) −148.218 + 2980.22i −0.0128312 + 0.257998i
\(512\) 0 0
\(513\) −4419.12 + 13219.2i −0.380329 + 1.13770i
\(514\) 0 0
\(515\) −9637.44 + 16692.5i −0.824615 + 1.42827i
\(516\) 0 0
\(517\) −1357.87 −0.115511
\(518\) 0 0
\(519\) −15687.1 + 15063.6i −1.32675 + 1.27402i
\(520\) 0 0
\(521\) −12183.1 7033.94i −1.02448 0.591483i −0.109081 0.994033i \(-0.534791\pi\)
−0.915398 + 0.402550i \(0.868124\pi\)
\(522\) 0 0
\(523\) −13073.1 + 7547.76i −1.09302 + 0.631053i −0.934378 0.356284i \(-0.884044\pi\)
−0.158638 + 0.987337i \(0.550710\pi\)
\(524\) 0 0
\(525\) −981.422 5053.09i −0.0815862 0.420066i
\(526\) 0 0
\(527\) 1499.68 + 2597.51i 0.123960 + 0.214705i
\(528\) 0 0
\(529\) 5283.60 9151.46i 0.434256 0.752154i
\(530\) 0 0
\(531\) 661.212 16299.1i 0.0540380 1.33205i
\(532\) 0 0
\(533\) 4702.66i 0.382166i
\(534\) 0 0
\(535\) 15499.3 + 8948.50i 1.25251 + 0.723135i
\(536\) 0 0
\(537\) −5069.33 + 17492.6i −0.407370 + 1.40570i
\(538\) 0 0
\(539\) −3279.05 7260.39i −0.262038 0.580198i
\(540\) 0 0
\(541\) −1937.02 3355.01i −0.153935 0.266623i 0.778736 0.627352i \(-0.215861\pi\)
−0.932671 + 0.360729i \(0.882528\pi\)
\(542\) 0 0
\(543\) 8934.62 2200.91i 0.706116 0.173942i
\(544\) 0 0
\(545\) 16613.4i 1.30576i
\(546\) 0 0
\(547\) 3872.55i 0.302703i −0.988480 0.151351i \(-0.951638\pi\)
0.988480 0.151351i \(-0.0483625\pi\)
\(548\) 0 0
\(549\) 20668.1 + 13077.5i 1.60672 + 1.01663i
\(550\) 0 0
\(551\) −5327.35 9227.25i −0.411893 0.713419i
\(552\) 0 0
\(553\) 295.572 457.810i 0.0227288 0.0352044i
\(554\) 0 0
\(555\) 4864.68 + 1409.78i 0.372061 + 0.107823i
\(556\) 0 0
\(557\) −641.603 370.430i −0.0488072 0.0281788i 0.475398 0.879771i \(-0.342304\pi\)
−0.524205 + 0.851592i \(0.675637\pi\)
\(558\) 0 0
\(559\) 2233.29i 0.168977i
\(560\) 0 0
\(561\) −1189.48 + 1142.21i −0.0895189 + 0.0859609i
\(562\) 0 0
\(563\) −537.329 + 930.681i −0.0402233 + 0.0696688i −0.885436 0.464761i \(-0.846140\pi\)
0.845213 + 0.534430i \(0.179474\pi\)
\(564\) 0 0
\(565\) −11214.9 19424.8i −0.835073 1.44639i
\(566\) 0 0
\(567\) 1760.71 13386.0i 0.130411 0.991460i
\(568\) 0 0
\(569\) 11504.1 6641.88i 0.847585 0.489353i −0.0122506 0.999925i \(-0.503900\pi\)
0.859835 + 0.510572i \(0.170566\pi\)
\(570\) 0 0
\(571\) 20824.1 + 12022.8i 1.52620 + 0.881153i 0.999517 + 0.0310917i \(0.00989839\pi\)
0.526684 + 0.850061i \(0.323435\pi\)
\(572\) 0 0
\(573\) 5151.17 + 5364.37i 0.375555 + 0.391099i
\(574\) 0 0
\(575\) 2139.45 0.155167
\(576\) 0 0
\(577\) −7539.75 + 13059.2i −0.543993 + 0.942223i 0.454677 + 0.890657i \(0.349755\pi\)
−0.998670 + 0.0515666i \(0.983579\pi\)
\(578\) 0 0
\(579\) 5927.65 20454.3i 0.425466 1.46814i
\(580\) 0 0
\(581\) 23400.1 12001.7i 1.67091 0.856994i
\(582\) 0 0
\(583\) 3545.19 2046.82i 0.251847 0.145404i
\(584\) 0 0
\(585\) −1931.44 + 3052.51i −0.136505 + 0.215736i
\(586\) 0 0
\(587\) 4997.70 0.351409 0.175705 0.984443i \(-0.443780\pi\)
0.175705 + 0.984443i \(0.443780\pi\)
\(588\) 0 0
\(589\) 21807.2 1.52555
\(590\) 0 0
\(591\) −4963.57 20149.6i −0.345472 1.40244i
\(592\) 0 0
\(593\) −3718.80 + 2147.05i −0.257526 + 0.148683i −0.623205 0.782058i \(-0.714170\pi\)
0.365680 + 0.930741i \(0.380837\pi\)
\(594\) 0 0
\(595\) −3008.37 + 1542.96i −0.207279 + 0.106311i
\(596\) 0 0
\(597\) −9388.14 2720.67i −0.643603 0.186515i
\(598\) 0 0
\(599\) 164.026 284.101i 0.0111885 0.0193790i −0.860377 0.509658i \(-0.829772\pi\)
0.871565 + 0.490279i \(0.163105\pi\)
\(600\) 0 0
\(601\) −6205.79 −0.421197 −0.210599 0.977573i \(-0.567541\pi\)
−0.210599 + 0.977573i \(0.567541\pi\)
\(602\) 0 0
\(603\) −16726.5 678.551i −1.12961 0.0458254i
\(604\) 0 0
\(605\) 9158.35 + 5287.58i 0.615438 + 0.355323i
\(606\) 0 0
\(607\) 8076.57 4663.01i 0.540063 0.311805i −0.205042 0.978753i \(-0.565733\pi\)
0.745104 + 0.666948i \(0.232400\pi\)
\(608\) 0 0
\(609\) 6769.78 + 7790.13i 0.450452 + 0.518345i
\(610\) 0 0
\(611\) 292.725 + 507.015i 0.0193820 + 0.0335706i
\(612\) 0 0
\(613\) −2329.07 + 4034.07i −0.153459 + 0.265798i −0.932497 0.361178i \(-0.882375\pi\)
0.779038 + 0.626977i \(0.215708\pi\)
\(614\) 0 0
\(615\) 22580.0 + 23514.6i 1.48051 + 1.54179i
\(616\) 0 0
\(617\) 13705.7i 0.894280i −0.894464 0.447140i \(-0.852443\pi\)
0.894464 0.447140i \(-0.147557\pi\)
\(618\) 0 0
\(619\) −13377.8 7723.69i −0.868659 0.501520i −0.00175654 0.999998i \(-0.500559\pi\)
−0.866902 + 0.498478i \(0.833892\pi\)
\(620\) 0 0
\(621\) 5322.00 + 1779.13i 0.343905 + 0.114966i
\(622\) 0 0
\(623\) 13542.5 20975.8i 0.870895 1.34892i
\(624\) 0 0
\(625\) 9725.03 + 16844.2i 0.622402 + 1.07803i
\(626\) 0 0
\(627\) 2867.83 + 11642.0i 0.182664 + 0.741524i
\(628\) 0 0
\(629\) 996.934i 0.0631961i
\(630\) 0 0
\(631\) 23178.5i 1.46232i −0.682207 0.731159i \(-0.738980\pi\)
0.682207 0.731159i \(-0.261020\pi\)
\(632\) 0 0
\(633\) −720.575 2925.18i −0.0452453 0.183674i
\(634\) 0 0
\(635\) 347.346 + 601.621i 0.0217071 + 0.0375978i
\(636\) 0 0
\(637\) −2004.07 + 2789.54i −0.124653 + 0.173509i
\(638\) 0 0
\(639\) −9943.97 + 5215.59i −0.615614 + 0.322888i
\(640\) 0 0
\(641\) −12963.0 7484.22i −0.798767 0.461168i 0.0442730 0.999019i \(-0.485903\pi\)
−0.843040 + 0.537851i \(0.819236\pi\)
\(642\) 0 0
\(643\) 4802.69i 0.294556i −0.989095 0.147278i \(-0.952949\pi\)
0.989095 0.147278i \(-0.0470513\pi\)
\(644\) 0 0
\(645\) −10723.2 11167.1i −0.654616 0.681711i
\(646\) 0 0
\(647\) −3086.70 + 5346.31i −0.187559 + 0.324861i −0.944436 0.328696i \(-0.893391\pi\)
0.756877 + 0.653557i \(0.226724\pi\)
\(648\) 0 0
\(649\) −7016.19 12152.4i −0.424360 0.735013i
\(650\) 0 0
\(651\) −20736.0 + 4027.40i −1.24840 + 0.242467i
\(652\) 0 0
\(653\) 2287.04 1320.42i 0.137058 0.0791304i −0.429903 0.902875i \(-0.641452\pi\)
0.566961 + 0.823745i \(0.308119\pi\)
\(654\) 0 0
\(655\) −29310.8 16922.6i −1.74850 1.00950i
\(656\) 0 0
\(657\) −176.328 + 4346.55i −0.0104706 + 0.258105i
\(658\) 0 0
\(659\) 26277.5 1.55330 0.776650 0.629932i \(-0.216917\pi\)
0.776650 + 0.629932i \(0.216917\pi\)
\(660\) 0 0
\(661\) 7099.71 12297.1i 0.417771 0.723601i −0.577944 0.816077i \(-0.696145\pi\)
0.995715 + 0.0924758i \(0.0294781\pi\)
\(662\) 0 0
\(663\) 682.915 + 197.908i 0.0400034 + 0.0115929i
\(664\) 0 0
\(665\) −1221.05 + 24551.6i −0.0712032 + 1.43168i
\(666\) 0 0
\(667\) −3714.87 + 2144.78i −0.215653 + 0.124507i
\(668\) 0 0
\(669\) −2810.20 11408.0i −0.162404 0.659281i
\(670\) 0 0
\(671\) 21039.2 1.21045
\(672\) 0 0
\(673\) 27705.8 1.58689 0.793446 0.608641i \(-0.208285\pi\)
0.793446 + 0.608641i \(0.208285\pi\)
\(674\) 0 0
\(675\) −1498.11 7353.31i −0.0854254 0.419302i
\(676\) 0 0
\(677\) 7290.15 4208.97i 0.413860 0.238942i −0.278587 0.960411i \(-0.589866\pi\)
0.692447 + 0.721469i \(0.256533\pi\)
\(678\) 0 0
\(679\) 3788.24 1942.95i 0.214108 0.109814i
\(680\) 0 0
\(681\) 3792.47 13086.5i 0.213403 0.736384i
\(682\) 0 0
\(683\) 5075.16 8790.44i 0.284328 0.492470i −0.688118 0.725599i \(-0.741563\pi\)
0.972446 + 0.233129i \(0.0748963\pi\)
\(684\) 0 0
\(685\) 10369.5 0.578393
\(686\) 0 0
\(687\) 8122.48 + 8458.67i 0.451080 + 0.469750i
\(688\) 0 0
\(689\) −1528.52 882.493i −0.0845168 0.0487958i
\(690\) 0 0
\(691\) −15978.4 + 9225.13i −0.879662 + 0.507873i −0.870547 0.492085i \(-0.836235\pi\)
−0.00911511 + 0.999958i \(0.502901\pi\)
\(692\) 0 0
\(693\) −4877.02 10540.5i −0.267335 0.577777i
\(694\) 0 0
\(695\) 14952.9 + 25899.2i 0.816109 + 1.41354i
\(696\) 0 0
\(697\) 3208.46 5557.21i 0.174360 0.302001i
\(698\) 0 0
\(699\) 14071.5 13512.3i 0.761423 0.731161i
\(700\) 0 0
\(701\) 3673.68i 0.197936i 0.995091 + 0.0989678i \(0.0315541\pi\)
−0.995091 + 0.0989678i \(0.968446\pi\)
\(702\) 0 0
\(703\) −6277.26 3624.18i −0.336773 0.194436i
\(704\) 0 0
\(705\) −3898.17 1129.68i −0.208246 0.0603495i
\(706\) 0 0
\(707\) −18287.8 909.525i −0.972822 0.0483822i
\(708\) 0 0
\(709\) −3464.86 6001.31i −0.183534 0.317890i 0.759548 0.650452i \(-0.225420\pi\)
−0.943081 + 0.332562i \(0.892087\pi\)
\(710\) 0 0
\(711\) 424.781 671.338i 0.0224058 0.0354109i
\(712\) 0 0
\(713\) 8779.54i 0.461145i
\(714\) 0 0
\(715\) 3107.33i 0.162528i
\(716\) 0 0
\(717\) 16885.3 4159.45i 0.879489 0.216649i
\(718\) 0 0
\(719\) −11904.0 20618.3i −0.617445 1.06945i −0.989950 0.141416i \(-0.954834\pi\)
0.372505 0.928030i \(-0.378499\pi\)
\(720\) 0 0
\(721\) −14492.8 + 22447.8i −0.748600 + 1.15950i
\(722\) 0 0
\(723\) −3415.32 + 11785.1i −0.175680 + 0.606215i
\(724\) 0 0
\(725\) 4967.95 + 2868.25i 0.254490 + 0.146930i
\(726\) 0 0
\(727\) 24707.5i 1.26045i −0.776411 0.630227i \(-0.782962\pi\)
0.776411 0.630227i \(-0.217038\pi\)
\(728\) 0 0
\(729\) 2388.25 19537.6i 0.121336 0.992612i
\(730\) 0 0
\(731\) −1523.69 + 2639.12i −0.0770942 + 0.133531i
\(732\) 0 0
\(733\) −7155.22 12393.2i −0.360551 0.624493i 0.627500 0.778616i \(-0.284078\pi\)
−0.988052 + 0.154123i \(0.950745\pi\)
\(734\) 0 0
\(735\) −3373.17 23571.1i −0.169281 1.18290i
\(736\) 0 0
\(737\) −12471.1 + 7200.18i −0.623308 + 0.359867i
\(738\) 0 0
\(739\) −26994.8 15585.5i −1.34373 0.775806i −0.356381 0.934341i \(-0.615990\pi\)
−0.987353 + 0.158535i \(0.949323\pi\)
\(740\) 0 0
\(741\) 3728.76 3580.56i 0.184858 0.177510i
\(742\) 0 0
\(743\) 5859.01 0.289295 0.144648 0.989483i \(-0.453795\pi\)
0.144648 + 0.989483i \(0.453795\pi\)
\(744\) 0 0
\(745\) −15633.3 + 27077.7i −0.768806 + 1.33161i
\(746\) 0 0
\(747\) 33952.7 17808.1i 1.66301 0.872243i
\(748\) 0 0
\(749\) 20843.1 + 13456.8i 1.01681 + 0.656475i
\(750\) 0 0
\(751\) 22074.4 12744.7i 1.07258 0.619255i 0.143695 0.989622i \(-0.454102\pi\)
0.928885 + 0.370367i \(0.120768\pi\)
\(752\) 0 0
\(753\) 13482.8 3321.30i 0.652512 0.160737i
\(754\) 0 0
\(755\) 29895.1 1.44105
\(756\) 0 0
\(757\) 18677.8 0.896771 0.448386 0.893840i \(-0.351999\pi\)
0.448386 + 0.893840i \(0.351999\pi\)
\(758\) 0 0
\(759\) 4687.03 1154.58i 0.224148 0.0552156i
\(760\) 0 0
\(761\) 12760.1 7367.04i 0.607823 0.350927i −0.164290 0.986412i \(-0.552533\pi\)
0.772113 + 0.635485i \(0.219200\pi\)
\(762\) 0 0
\(763\) −1143.97 + 23001.9i −0.0542786 + 1.09138i
\(764\) 0 0
\(765\) −4365.04 + 2289.45i −0.206298 + 0.108203i
\(766\) 0 0
\(767\) −3025.06 + 5239.55i −0.142410 + 0.246661i
\(768\) 0 0
\(769\) 31479.3 1.47617 0.738084 0.674709i \(-0.235731\pi\)
0.738084 + 0.674709i \(0.235731\pi\)
\(770\) 0 0
\(771\) −9625.43 + 9242.87i −0.449613 + 0.431743i
\(772\) 0 0
\(773\) −1236.84 714.087i −0.0575497 0.0332263i 0.470949 0.882160i \(-0.343912\pi\)
−0.528499 + 0.848934i \(0.677245\pi\)
\(774\) 0 0
\(775\) −10168.0 + 5870.51i −0.471285 + 0.272097i
\(776\) 0 0
\(777\) 6638.24 + 2286.86i 0.306494 + 0.105586i
\(778\) 0 0
\(779\) −23327.6 40404.5i −1.07291 1.85833i
\(780\) 0 0
\(781\) −4829.61 + 8365.13i −0.221277 + 0.383262i
\(782\) 0 0
\(783\) 9972.88 + 11266.2i 0.455175 + 0.514203i
\(784\) 0 0
\(785\) 42405.3i 1.92804i
\(786\) 0 0
\(787\) 19331.3 + 11160.9i 0.875585 + 0.505519i 0.869200 0.494461i \(-0.164634\pi\)
0.00638468 + 0.999980i \(0.497968\pi\)
\(788\) 0 0
\(789\) 10225.6 35285.0i 0.461394 1.59212i
\(790\) 0 0
\(791\) −14189.9 27666.7i −0.637846 1.24363i
\(792\) 0 0
\(793\) −4535.57 7855.84i −0.203106 0.351790i
\(794\) 0 0
\(795\) 11880.4 2926.56i 0.530005 0.130559i
\(796\) 0 0
\(797\) 22722.5i 1.00988i 0.863155 + 0.504940i \(0.168485\pi\)
−0.863155 + 0.504940i \(0.831515\pi\)
\(798\) 0 0
\(799\) 798.865i 0.0353715i
\(800\) 0 0
\(801\) 19462.5 30759.2i 0.858519 1.35683i
\(802\) 0 0
\(803\) 1871.03 + 3240.73i 0.0822259 + 0.142419i
\(804\) 0 0
\(805\) 9884.41 + 491.590i 0.432770 + 0.0215233i
\(806\) 0 0
\(807\) 31257.3 + 9058.34i 1.36346 + 0.395129i
\(808\) 0 0
\(809\) −27700.9 15993.1i −1.20385 0.695042i −0.242439 0.970167i \(-0.577947\pi\)
−0.961408 + 0.275125i \(0.911281\pi\)
\(810\) 0 0
\(811\) 18662.5i 0.808052i −0.914747 0.404026i \(-0.867610\pi\)
0.914747 0.404026i \(-0.132390\pi\)
\(812\) 0 0
\(813\) −18762.5 + 18016.8i −0.809385 + 0.777216i
\(814\) 0 0
\(815\) −14087.0 + 24399.5i −0.605457 + 1.04868i
\(816\) 0 0
\(817\) 11078.3 + 19188.1i 0.474393 + 0.821672i
\(818\) 0 0
\(819\) −2884.34 + 4093.32i −0.123061 + 0.174642i
\(820\) 0 0
\(821\) −9947.69 + 5743.30i −0.422871 + 0.244145i −0.696305 0.717746i \(-0.745174\pi\)
0.273434 + 0.961891i \(0.411840\pi\)
\(822\) 0 0
\(823\) −25767.3 14876.7i −1.09136 0.630098i −0.157423 0.987531i \(-0.550319\pi\)
−0.933939 + 0.357433i \(0.883652\pi\)
\(824\) 0 0
\(825\) −4471.20 4656.26i −0.188688 0.196497i
\(826\) 0 0
\(827\) −11379.7 −0.478490 −0.239245 0.970959i \(-0.576900\pi\)
−0.239245 + 0.970959i \(0.576900\pi\)
\(828\) 0 0
\(829\) −12294.6 + 21294.8i −0.515088 + 0.892159i 0.484758 + 0.874648i \(0.338908\pi\)
−0.999847 + 0.0175109i \(0.994426\pi\)
\(830\) 0 0
\(831\) 9417.13 32495.4i 0.393113 1.35650i
\(832\) 0 0
\(833\) −4271.45 + 1929.14i −0.177667 + 0.0802408i
\(834\) 0 0
\(835\) −11527.8 + 6655.58i −0.477768 + 0.275839i
\(836\) 0 0
\(837\) −30175.3 + 6147.69i −1.24613 + 0.253877i
\(838\) 0 0
\(839\) −20586.7 −0.847119 −0.423560 0.905868i \(-0.639220\pi\)
−0.423560 + 0.905868i \(0.639220\pi\)
\(840\) 0 0
\(841\) 12887.4 0.528411
\(842\) 0 0
\(843\) −4747.16 19271.1i −0.193951 0.787345i
\(844\) 0 0
\(845\) −24259.3 + 14006.1i −0.987626 + 0.570206i
\(846\) 0 0
\(847\) 12316.0 + 7951.47i 0.499624 + 0.322569i
\(848\) 0 0
\(849\) −17390.5 5039.75i −0.702992 0.203726i
\(850\) 0 0
\(851\) −1459.09 + 2527.21i −0.0587742 + 0.101800i
\(852\) 0 0
\(853\) −35278.5 −1.41608 −0.708039 0.706173i \(-0.750420\pi\)
−0.708039 + 0.706173i \(0.750420\pi\)
\(854\) 0 0
\(855\) −1452.62 + 35807.6i −0.0581037 + 1.43228i
\(856\) 0 0
\(857\) 10111.6 + 5837.95i 0.403041 + 0.232696i 0.687795 0.725905i \(-0.258579\pi\)
−0.284754 + 0.958601i \(0.591912\pi\)
\(858\) 0 0
\(859\) −37200.2 + 21477.6i −1.47760 + 0.853091i −0.999680 0.0253141i \(-0.991941\pi\)
−0.477917 + 0.878405i \(0.658608\pi\)
\(860\) 0 0
\(861\) 29643.7 + 34111.7i 1.17335 + 1.35020i
\(862\) 0 0
\(863\) −5736.03 9935.10i −0.226254 0.391883i 0.730441 0.682976i \(-0.239314\pi\)
−0.956695 + 0.291093i \(0.905981\pi\)
\(864\) 0 0
\(865\) −27959.1 + 48426.5i −1.09900 + 1.90353i
\(866\) 0 0
\(867\) −17009.9 17713.9i −0.666305 0.693883i
\(868\) 0 0
\(869\) 683.394i 0.0266773i
\(870\) 0 0
\(871\) 5376.95 + 3104.38i 0.209175 + 0.120767i
\(872\) 0 0
\(873\) 5496.59 2882.95i 0.213094 0.111768i
\(874\) 0 0
\(875\) 8074.88 + 15743.9i 0.311978 + 0.608275i
\(876\) 0 0
\(877\) 12866.6 + 22285.6i 0.495409 + 0.858074i 0.999986 0.00529264i \(-0.00168471\pi\)
−0.504577 + 0.863367i \(0.668351\pi\)
\(878\) 0 0
\(879\) −603.116 2448.35i −0.0231429 0.0939486i
\(880\) 0 0
\(881\) 19839.4i 0.758692i −0.925255 0.379346i \(-0.876149\pi\)
0.925255 0.379346i \(-0.123851\pi\)
\(882\) 0 0
\(883\) 13843.4i 0.527595i −0.964578 0.263798i \(-0.915025\pi\)
0.964578 0.263798i \(-0.0849751\pi\)
\(884\) 0 0
\(885\) −10031.8 40724.2i −0.381035 1.54681i
\(886\) 0 0
\(887\) 21827.5 + 37806.4i 0.826265 + 1.43113i 0.900949 + 0.433925i \(0.142872\pi\)
−0.0746845 + 0.997207i \(0.523795\pi\)
\(888\) 0 0
\(889\) 439.486 + 856.883i 0.0165803 + 0.0323273i
\(890\) 0 0
\(891\) −7250.30 15300.9i −0.272609 0.575307i
\(892\) 0 0
\(893\) 5030.10 + 2904.13i 0.188495 + 0.108828i
\(894\) 0 0
\(895\) 46826.3i 1.74886i
\(896\) 0 0
\(897\) −1441.53 1501.19i −0.0536579 0.0558788i
\(898\) 0 0
\(899\) 11770.3 20386.7i 0.436663 0.756323i
\(900\) 0 0
\(901\) −1204.19 2085.71i −0.0445253 0.0771201i
\(902\) 0 0
\(903\) −14077.8 16199.6i −0.518803 0.596998i
\(904\) 0 0
\(905\) 20489.1 11829.4i 0.752576 0.434500i
\(906\) 0 0
\(907\) 25970.7 + 14994.2i 0.950765 + 0.548924i 0.893318 0.449424i \(-0.148371\pi\)
0.0574465 + 0.998349i \(0.481704\pi\)
\(908\) 0 0
\(909\) −26672.2 1082.02i −0.973224 0.0394812i
\(910\) 0 0
\(911\) −38084.0 −1.38505 −0.692525 0.721394i \(-0.743502\pi\)
−0.692525 + 0.721394i \(0.743502\pi\)
\(912\) 0 0
\(913\) 16490.2 28561.9i 0.597752 1.03534i
\(914\) 0 0
\(915\) 60399.4 + 17503.7i 2.18223 + 0.632408i
\(916\) 0 0
\(917\) −39416.6 25448.2i −1.41946 0.916438i
\(918\) 0 0
\(919\) −3703.12 + 2138.00i −0.132921 + 0.0767421i −0.564986 0.825100i \(-0.691118\pi\)
0.432065 + 0.901843i \(0.357785\pi\)
\(920\) 0 0
\(921\) 2003.04 + 8131.35i 0.0716639 + 0.290920i
\(922\) 0 0
\(923\) 4164.61 0.148515
\(924\) 0 0
\(925\) 3902.52 0.138718
\(926\) 0 0
\(927\) −20828.3 + 32917.7i −0.737962 + 1.16630i
\(928\) 0 0
\(929\) 42898.6 24767.5i 1.51502 0.874700i 0.515179 0.857082i \(-0.327725\pi\)
0.999845 0.0176172i \(-0.00560802\pi\)
\(930\) 0 0
\(931\) −3381.16 + 33908.5i −0.119026 + 1.19367i
\(932\) 0 0
\(933\) 10130.5 34957.1i 0.355476 1.22663i
\(934\) 0 0
\(935\) −2120.02 + 3671.98i −0.0741520 + 0.128435i
\(936\) 0 0
\(937\) −36318.1 −1.26623 −0.633116 0.774057i \(-0.718224\pi\)
−0.633116 + 0.774057i \(0.718224\pi\)
\(938\) 0 0
\(939\) 518.412 + 539.869i 0.0180167 + 0.0187625i
\(940\) 0 0
\(941\) 1766.52 + 1019.90i 0.0611974 + 0.0353323i 0.530287 0.847819i \(-0.322084\pi\)
−0.469089 + 0.883151i \(0.655418\pi\)
\(942\) 0 0
\(943\) −16266.8 + 9391.62i −0.561738 + 0.324320i
\(944\) 0 0
\(945\) −5231.76 34317.0i −0.180094 1.18131i
\(946\) 0 0
\(947\) 17814.9 + 30856.3i 0.611305 + 1.05881i 0.991021 + 0.133708i \(0.0426884\pi\)
−0.379716 + 0.925103i \(0.623978\pi\)
\(948\) 0 0
\(949\) 806.704 1397.25i 0.0275940 0.0477942i
\(950\) 0 0
\(951\) −33338.3 + 32013.3i −1.13677 + 1.09159i
\(952\) 0 0
\(953\) 7559.30i 0.256946i 0.991713 + 0.128473i \(0.0410076\pi\)
−0.991713 + 0.128473i \(0.958992\pi\)
\(954\) 0 0
\(955\) 16560.0 + 9560.93i 0.561120 + 0.323963i
\(956\) 0 0
\(957\) 12431.5 + 3602.63i 0.419909 + 0.121689i
\(958\) 0 0
\(959\) 14357.0 + 714.028i 0.483432 + 0.0240429i
\(960\) 0 0
\(961\) 9194.96 + 15926.1i 0.308649 + 0.534596i
\(962\) 0 0
\(963\) 30564.6 + 19339.4i 1.02277 + 0.647146i
\(964\) 0 0
\(965\) 54754.7i 1.82654i
\(966\) 0 0
\(967\) 379.123i 0.0126078i 0.999980 + 0.00630392i \(0.00200661\pi\)
−0.999980 + 0.00630392i \(0.997993\pi\)
\(968\) 0 0
\(969\) 6849.23 1687.21i 0.227068 0.0559350i
\(970\) 0 0
\(971\) 17749.5 + 30743.1i 0.586622 + 1.01606i 0.994671 + 0.103099i \(0.0328758\pi\)
−0.408049 + 0.912960i \(0.633791\pi\)
\(972\) 0 0
\(973\) 18919.5 + 36888.0i 0.623361 + 1.21539i
\(974\) 0 0
\(975\) −774.715 + 2673.29i −0.0254469 + 0.0878089i
\(976\) 0 0
\(977\) −40699.3 23497.8i −1.33274 0.769458i −0.347022 0.937857i \(-0.612807\pi\)
−0.985719 + 0.168399i \(0.946140\pi\)
\(978\) 0 0
\(979\) 31311.6i 1.02219i
\(980\) 0 0
\(981\) −1360.93 + 33547.5i −0.0442928 + 1.09183i
\(982\) 0 0
\(983\) −9799.29 + 16972.9i −0.317954 + 0.550712i −0.980061 0.198697i \(-0.936329\pi\)
0.662107 + 0.749409i \(0.269662\pi\)
\(984\) 0 0
\(985\) −26678.0 46207.7i −0.862978 1.49472i
\(986\) 0 0
\(987\) −5319.37 1832.51i −0.171547 0.0590977i
\(988\) 0 0
\(989\) 7725.08 4460.08i 0.248375 0.143400i
\(990\) 0 0
\(991\) −29849.0 17233.3i −0.956796 0.552406i −0.0616102 0.998100i \(-0.519624\pi\)
−0.895185 + 0.445694i \(0.852957\pi\)
\(992\) 0 0
\(993\) −12544.8 + 12046.2i −0.400904 + 0.384970i
\(994\) 0 0
\(995\) −25131.3 −0.800720
\(996\) 0 0
\(997\) −20728.6 + 35903.0i −0.658456 + 1.14048i 0.322559 + 0.946549i \(0.395457\pi\)
−0.981015 + 0.193930i \(0.937876\pi\)
\(998\) 0 0
\(999\) 9707.74 + 3245.26i 0.307447 + 0.102778i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bj.e.95.13 yes 28
3.2 odd 2 inner 336.4.bj.e.95.9 28
4.3 odd 2 336.4.bj.f.95.2 yes 28
7.2 even 3 336.4.bj.f.191.6 yes 28
12.11 even 2 336.4.bj.f.95.6 yes 28
21.2 odd 6 336.4.bj.f.191.2 yes 28
28.23 odd 6 inner 336.4.bj.e.191.9 yes 28
84.23 even 6 inner 336.4.bj.e.191.13 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bj.e.95.9 28 3.2 odd 2 inner
336.4.bj.e.95.13 yes 28 1.1 even 1 trivial
336.4.bj.e.191.9 yes 28 28.23 odd 6 inner
336.4.bj.e.191.13 yes 28 84.23 even 6 inner
336.4.bj.f.95.2 yes 28 4.3 odd 2
336.4.bj.f.95.6 yes 28 12.11 even 2
336.4.bj.f.191.2 yes 28 21.2 odd 6
336.4.bj.f.191.6 yes 28 7.2 even 3