L(s) = 1 | + (5.04 − 1.24i)3-s + (11.5 − 6.67i)5-s + (16.4 − 8.45i)7-s + (23.9 − 12.5i)9-s + (11.6 − 20.1i)11-s − 10.0·13-s + (50.0 − 48.0i)15-s + (−11.8 − 6.83i)17-s + (−86.0 + 49.6i)19-s + (72.6 − 63.1i)21-s + (19.9 + 34.6i)23-s + (26.7 − 46.3i)25-s + (105. − 92.9i)27-s + 107. i·29-s + (−190. − 109. i)31-s + ⋯ |
L(s) = 1 | + (0.970 − 0.239i)3-s + (1.03 − 0.597i)5-s + (0.889 − 0.456i)7-s + (0.885 − 0.464i)9-s + (0.318 − 0.551i)11-s − 0.213·13-s + (0.861 − 0.827i)15-s + (−0.168 − 0.0974i)17-s + (−1.03 + 0.599i)19-s + (0.754 − 0.655i)21-s + (0.181 + 0.314i)23-s + (0.213 − 0.370i)25-s + (0.748 − 0.662i)27-s + 0.686i·29-s + (−1.10 − 0.635i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.451085034\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.451085034\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-5.04 + 1.24i)T \) |
| 7 | \( 1 + (-16.4 + 8.45i)T \) |
good | 5 | \( 1 + (-11.5 + 6.67i)T + (62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-11.6 + 20.1i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 10.0T + 2.19e3T^{2} \) |
| 17 | \( 1 + (11.8 + 6.83i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (86.0 - 49.6i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-19.9 - 34.6i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 107. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (190. + 109. i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-36.4 - 63.1i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 469. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 223. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (29.2 + 50.6i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-152. - 88.1i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-302. + 523. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-452. - 784. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (536. + 310. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 415.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (80.5 - 139. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-25.4 + 14.7i)T + (2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 1.41e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-1.16e3 + 674. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 229.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85442119734819955724660969043, −9.886915559630839513869650346017, −9.007896225823588746305840501085, −8.325720051955133677183164241999, −7.32136087098640536181558072612, −6.12522565360744777735577533765, −4.91810995997862792977511324846, −3.75280734432503269754359918764, −2.16300051779223048190078453230, −1.24061843907061468502520337379,
1.87201014790967245281563477584, 2.51519468940711060817953142548, 4.11041594829903800716884785994, 5.22287254851915601206277286217, 6.52418155223834486106489329543, 7.50604826455568500693245290961, 8.649782862938722887972343482009, 9.299981333019234135441510905480, 10.28347957436061478164753514660, 10.97629045262480672068310969699