Properties

Label 336.4.b.f
Level 336336
Weight 44
Character orbit 336.b
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(223,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.223"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.b (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8+158x6+8461x4+180672x2+1232100 x^{8} + 158x^{6} + 8461x^{4} + 180672x^{2} + 1232100 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 21533 2^{15}\cdot 3^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q3+β5q5+β2q7+9q9+(β5+β3++β1)q11+(β5β4+2β1)q13+3β5q15+(3β5+2β3++2β1)q17++(9β5+9β3++9β1)q99+O(q100) q + 3 q^{3} + \beta_{5} q^{5} + \beta_{2} q^{7} + 9 q^{9} + ( - \beta_{5} + \beta_{3} + \cdots + \beta_1) q^{11} + (\beta_{5} - \beta_{4} + \cdots - 2 \beta_1) q^{13} + 3 \beta_{5} q^{15} + ( - 3 \beta_{5} + 2 \beta_{3} + \cdots + 2 \beta_1) q^{17}+ \cdots + ( - 9 \beta_{5} + 9 \beta_{3} + \cdots + 9 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+24q3+4q7+72q9+56q19+12q21656q25+216q27+240q29320q31600q35+392q37+816q4716q49+288q53+456q55+168q57+960q93+O(q100) 8 q + 24 q^{3} + 4 q^{7} + 72 q^{9} + 56 q^{19} + 12 q^{21} - 656 q^{25} + 216 q^{27} + 240 q^{29} - 320 q^{31} - 600 q^{35} + 392 q^{37} + 816 q^{47} - 16 q^{49} + 288 q^{53} + 456 q^{55} + 168 q^{57}+ \cdots - 960 q^{93}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+158x6+8461x4+180672x2+1232100 x^{8} + 158x^{6} + 8461x^{4} + 180672x^{2} + 1232100 : Copy content Toggle raw display

β1\beta_{1}== (2ν7316ν514702ν3185964ν)/11655 ( -2\nu^{7} - 316\nu^{5} - 14702\nu^{3} - 185964\nu ) / 11655 Copy content Toggle raw display
β2\beta_{2}== (169ν7+740ν620597ν5+88060ν4690094ν3+2786840ν2++21107760)/93240 ( - 169 \nu^{7} + 740 \nu^{6} - 20597 \nu^{5} + 88060 \nu^{4} - 690094 \nu^{3} + 2786840 \nu^{2} + \cdots + 21107760 ) / 93240 Copy content Toggle raw display
β3\beta_{3}== (169ν7740ν620597ν588060ν4690094ν32786840ν2+21107760)/93240 ( - 169 \nu^{7} - 740 \nu^{6} - 20597 \nu^{5} - 88060 \nu^{4} - 690094 \nu^{3} - 2786840 \nu^{2} + \cdots - 21107760 ) / 93240 Copy content Toggle raw display
β4\beta_{4}== (251ν7+31333ν5+1117496ν3+11580252ν)/93240 ( 251\nu^{7} + 31333\nu^{5} + 1117496\nu^{3} + 11580252\nu ) / 93240 Copy content Toggle raw display
β5\beta_{5}== (257ν731171ν51027292ν38481804ν)/93240 ( -257\nu^{7} - 31171\nu^{5} - 1027292\nu^{3} - 8481804\nu ) / 93240 Copy content Toggle raw display
β6\beta_{6}== (ν6+119ν4+3892ν2+33438)/21 ( \nu^{6} + 119\nu^{4} + 3892\nu^{2} + 33438 ) / 21 Copy content Toggle raw display
β7\beta_{7}== (5ν6+613ν4+20630ν2+177216)/63 ( 5\nu^{6} + 613\nu^{4} + 20630\nu^{2} + 177216 ) / 63 Copy content Toggle raw display
ν\nu== (6β5+2β4+6β3+6β2+β1)/24 ( -6\beta_{5} + 2\beta_{4} + 6\beta_{3} + 6\beta_{2} + \beta_1 ) / 24 Copy content Toggle raw display
ν2\nu^{2}== (β6+3β33β2234)/6 ( \beta_{6} + 3\beta_{3} - 3\beta_{2} - 234 ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (396β544β4336β3336β2+47β1)/24 ( 396\beta_{5} - 44\beta_{4} - 336\beta_{3} - 336\beta_{2} + 47\beta_1 ) / 24 Copy content Toggle raw display
ν4\nu^{4}== (21β7100β6195β3+195β2+11868)/6 ( 21\beta_{7} - 100\beta_{6} - 195\beta_{3} + 195\beta_{2} + 11868 ) / 6 Copy content Toggle raw display
ν5\nu^{5}== (26136β5+752β4+20892β3+20892β29737β1)/24 ( -26136\beta_{5} + 752\beta_{4} + 20892\beta_{3} + 20892\beta_{2} - 9737\beta_1 ) / 24 Copy content Toggle raw display
ν6\nu^{6}== (2499β7+8134β6+11529β311529β2702192)/6 ( -2499\beta_{7} + 8134\beta_{6} + 11529\beta_{3} - 11529\beta_{2} - 702192 ) / 6 Copy content Toggle raw display
ν7\nu^{7}== (1776384β5+18664β41388892β31388892β2+960107β1)/24 ( 1776384\beta_{5} + 18664\beta_{4} - 1388892\beta_{3} - 1388892\beta_{2} + 960107\beta_1 ) / 24 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
223.1
6.15149i
5.92762i
8.49618i
3.58293i
3.58293i
8.49618i
5.92762i
6.15149i
0 3.00000 0 20.9291i 0 17.6950 5.46693i 0 9.00000 0
223.2 0 3.00000 0 17.7376i 0 −2.09706 18.4011i 0 9.00000 0
223.3 0 3.00000 0 7.52281i 0 4.86375 + 17.8702i 0 9.00000 0
223.4 0 3.00000 0 4.33129i 0 −18.4617 + 1.47188i 0 9.00000 0
223.5 0 3.00000 0 4.33129i 0 −18.4617 1.47188i 0 9.00000 0
223.6 0 3.00000 0 7.52281i 0 4.86375 17.8702i 0 9.00000 0
223.7 0 3.00000 0 17.7376i 0 −2.09706 + 18.4011i 0 9.00000 0
223.8 0 3.00000 0 20.9291i 0 17.6950 + 5.46693i 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 223.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.b.f yes 8
3.b odd 2 1 1008.4.b.k 8
4.b odd 2 1 336.4.b.e 8
7.b odd 2 1 336.4.b.e 8
8.b even 2 1 1344.4.b.e 8
8.d odd 2 1 1344.4.b.f 8
12.b even 2 1 1008.4.b.i 8
21.c even 2 1 1008.4.b.i 8
28.d even 2 1 inner 336.4.b.f yes 8
56.e even 2 1 1344.4.b.e 8
56.h odd 2 1 1344.4.b.f 8
84.h odd 2 1 1008.4.b.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.b.e 8 4.b odd 2 1
336.4.b.e 8 7.b odd 2 1
336.4.b.f yes 8 1.a even 1 1 trivial
336.4.b.f yes 8 28.d even 2 1 inner
1008.4.b.i 8 12.b even 2 1
1008.4.b.i 8 21.c even 2 1
1008.4.b.k 8 3.b odd 2 1
1008.4.b.k 8 84.h odd 2 1
1344.4.b.e 8 8.b even 2 1
1344.4.b.e 8 56.e even 2 1
1344.4.b.f 8 8.d odd 2 1
1344.4.b.f 8 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T58+828T56+195588T54+11183616T52+146313216 T_{5}^{8} + 828T_{5}^{6} + 195588T_{5}^{4} + 11183616T_{5}^{2} + 146313216 Copy content Toggle raw display
T19428T19310380T192+500320T195935552 T_{19}^{4} - 28T_{19}^{3} - 10380T_{19}^{2} + 500320T_{19} - 5935552 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T3)8 (T - 3)^{8} Copy content Toggle raw display
55 T8+828T6++146313216 T^{8} + 828 T^{6} + \cdots + 146313216 Copy content Toggle raw display
77 T8++13841287201 T^{8} + \cdots + 13841287201 Copy content Toggle raw display
1111 T8++238089347136 T^{8} + \cdots + 238089347136 Copy content Toggle raw display
1313 T8++624529833984 T^{8} + \cdots + 624529833984 Copy content Toggle raw display
1717 T8++104135983727616 T^{8} + \cdots + 104135983727616 Copy content Toggle raw display
1919 (T428T3+5935552)2 (T^{4} - 28 T^{3} + \cdots - 5935552)^{2} Copy content Toggle raw display
2323 T8++58 ⁣ ⁣44 T^{8} + \cdots + 58\!\cdots\!44 Copy content Toggle raw display
2929 (T4120T3++242576208)2 (T^{4} - 120 T^{3} + \cdots + 242576208)^{2} Copy content Toggle raw display
3131 (T4+160T3+1109014528)2 (T^{4} + 160 T^{3} + \cdots - 1109014528)^{2} Copy content Toggle raw display
3737 (T4196T3++300652096)2 (T^{4} - 196 T^{3} + \cdots + 300652096)^{2} Copy content Toggle raw display
4141 T8++11 ⁣ ⁣96 T^{8} + \cdots + 11\!\cdots\!96 Copy content Toggle raw display
4343 T8++24 ⁣ ⁣04 T^{8} + \cdots + 24\!\cdots\!04 Copy content Toggle raw display
4747 (T4408T3+1755758592)2 (T^{4} - 408 T^{3} + \cdots - 1755758592)^{2} Copy content Toggle raw display
5353 (T4144T3+460467504)2 (T^{4} - 144 T^{3} + \cdots - 460467504)^{2} Copy content Toggle raw display
5959 (T4912T3+4942861056)2 (T^{4} - 912 T^{3} + \cdots - 4942861056)^{2} Copy content Toggle raw display
6161 T8++999247734374400 T^{8} + \cdots + 999247734374400 Copy content Toggle raw display
6767 T8++89 ⁣ ⁣00 T^{8} + \cdots + 89\!\cdots\!00 Copy content Toggle raw display
7171 T8++72 ⁣ ⁣04 T^{8} + \cdots + 72\!\cdots\!04 Copy content Toggle raw display
7373 T8++86 ⁣ ⁣36 T^{8} + \cdots + 86\!\cdots\!36 Copy content Toggle raw display
7979 T8++38 ⁣ ⁣04 T^{8} + \cdots + 38\!\cdots\!04 Copy content Toggle raw display
8383 (T4+840T3+57542400000)2 (T^{4} + 840 T^{3} + \cdots - 57542400000)^{2} Copy content Toggle raw display
8989 T8++38 ⁣ ⁣00 T^{8} + \cdots + 38\!\cdots\!00 Copy content Toggle raw display
9797 T8++20 ⁣ ⁣56 T^{8} + \cdots + 20\!\cdots\!56 Copy content Toggle raw display
show more
show less