gp: [N,k,chi] = [336,4,Mod(223,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.223");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,24,0,0,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 158 x 6 + 8461 x 4 + 180672 x 2 + 1232100 x^{8} + 158x^{6} + 8461x^{4} + 180672x^{2} + 1232100 x 8 + 1 5 8 x 6 + 8 4 6 1 x 4 + 1 8 0 6 7 2 x 2 + 1 2 3 2 1 0 0
x^8 + 158*x^6 + 8461*x^4 + 180672*x^2 + 1232100
:
β 1 \beta_{1} β 1 = = =
( − 2 ν 7 − 316 ν 5 − 14702 ν 3 − 185964 ν ) / 11655 ( -2\nu^{7} - 316\nu^{5} - 14702\nu^{3} - 185964\nu ) / 11655 ( − 2 ν 7 − 3 1 6 ν 5 − 1 4 7 0 2 ν 3 − 1 8 5 9 6 4 ν ) / 1 1 6 5 5
(-2*v^7 - 316*v^5 - 14702*v^3 - 185964*v) / 11655
β 2 \beta_{2} β 2 = = =
( − 169 ν 7 + 740 ν 6 − 20597 ν 5 + 88060 ν 4 − 690094 ν 3 + 2786840 ν 2 + ⋯ + 21107760 ) / 93240 ( - 169 \nu^{7} + 740 \nu^{6} - 20597 \nu^{5} + 88060 \nu^{4} - 690094 \nu^{3} + 2786840 \nu^{2} + \cdots + 21107760 ) / 93240 ( − 1 6 9 ν 7 + 7 4 0 ν 6 − 2 0 5 9 7 ν 5 + 8 8 0 6 0 ν 4 − 6 9 0 0 9 4 ν 3 + 2 7 8 6 8 4 0 ν 2 + ⋯ + 2 1 1 0 7 7 6 0 ) / 9 3 2 4 0
(-169*v^7 + 740*v^6 - 20597*v^5 + 88060*v^4 - 690094*v^3 + 2786840*v^2 - 5860488*v + 21107760) / 93240
β 3 \beta_{3} β 3 = = =
( − 169 ν 7 − 740 ν 6 − 20597 ν 5 − 88060 ν 4 − 690094 ν 3 − 2786840 ν 2 + ⋯ − 21107760 ) / 93240 ( - 169 \nu^{7} - 740 \nu^{6} - 20597 \nu^{5} - 88060 \nu^{4} - 690094 \nu^{3} - 2786840 \nu^{2} + \cdots - 21107760 ) / 93240 ( − 1 6 9 ν 7 − 7 4 0 ν 6 − 2 0 5 9 7 ν 5 − 8 8 0 6 0 ν 4 − 6 9 0 0 9 4 ν 3 − 2 7 8 6 8 4 0 ν 2 + ⋯ − 2 1 1 0 7 7 6 0 ) / 9 3 2 4 0
(-169*v^7 - 740*v^6 - 20597*v^5 - 88060*v^4 - 690094*v^3 - 2786840*v^2 - 5860488*v - 21107760) / 93240
β 4 \beta_{4} β 4 = = =
( 251 ν 7 + 31333 ν 5 + 1117496 ν 3 + 11580252 ν ) / 93240 ( 251\nu^{7} + 31333\nu^{5} + 1117496\nu^{3} + 11580252\nu ) / 93240 ( 2 5 1 ν 7 + 3 1 3 3 3 ν 5 + 1 1 1 7 4 9 6 ν 3 + 1 1 5 8 0 2 5 2 ν ) / 9 3 2 4 0
(251*v^7 + 31333*v^5 + 1117496*v^3 + 11580252*v) / 93240
β 5 \beta_{5} β 5 = = =
( − 257 ν 7 − 31171 ν 5 − 1027292 ν 3 − 8481804 ν ) / 93240 ( -257\nu^{7} - 31171\nu^{5} - 1027292\nu^{3} - 8481804\nu ) / 93240 ( − 2 5 7 ν 7 − 3 1 1 7 1 ν 5 − 1 0 2 7 2 9 2 ν 3 − 8 4 8 1 8 0 4 ν ) / 9 3 2 4 0
(-257*v^7 - 31171*v^5 - 1027292*v^3 - 8481804*v) / 93240
β 6 \beta_{6} β 6 = = =
( ν 6 + 119 ν 4 + 3892 ν 2 + 33438 ) / 21 ( \nu^{6} + 119\nu^{4} + 3892\nu^{2} + 33438 ) / 21 ( ν 6 + 1 1 9 ν 4 + 3 8 9 2 ν 2 + 3 3 4 3 8 ) / 2 1
(v^6 + 119*v^4 + 3892*v^2 + 33438) / 21
β 7 \beta_{7} β 7 = = =
( 5 ν 6 + 613 ν 4 + 20630 ν 2 + 177216 ) / 63 ( 5\nu^{6} + 613\nu^{4} + 20630\nu^{2} + 177216 ) / 63 ( 5 ν 6 + 6 1 3 ν 4 + 2 0 6 3 0 ν 2 + 1 7 7 2 1 6 ) / 6 3
(5*v^6 + 613*v^4 + 20630*v^2 + 177216) / 63
ν \nu ν = = =
( − 6 β 5 + 2 β 4 + 6 β 3 + 6 β 2 + β 1 ) / 24 ( -6\beta_{5} + 2\beta_{4} + 6\beta_{3} + 6\beta_{2} + \beta_1 ) / 24 ( − 6 β 5 + 2 β 4 + 6 β 3 + 6 β 2 + β 1 ) / 2 4
(-6*b5 + 2*b4 + 6*b3 + 6*b2 + b1) / 24
ν 2 \nu^{2} ν 2 = = =
( β 6 + 3 β 3 − 3 β 2 − 234 ) / 6 ( \beta_{6} + 3\beta_{3} - 3\beta_{2} - 234 ) / 6 ( β 6 + 3 β 3 − 3 β 2 − 2 3 4 ) / 6
(b6 + 3*b3 - 3*b2 - 234) / 6
ν 3 \nu^{3} ν 3 = = =
( 396 β 5 − 44 β 4 − 336 β 3 − 336 β 2 + 47 β 1 ) / 24 ( 396\beta_{5} - 44\beta_{4} - 336\beta_{3} - 336\beta_{2} + 47\beta_1 ) / 24 ( 3 9 6 β 5 − 4 4 β 4 − 3 3 6 β 3 − 3 3 6 β 2 + 4 7 β 1 ) / 2 4
(396*b5 - 44*b4 - 336*b3 - 336*b2 + 47*b1) / 24
ν 4 \nu^{4} ν 4 = = =
( 21 β 7 − 100 β 6 − 195 β 3 + 195 β 2 + 11868 ) / 6 ( 21\beta_{7} - 100\beta_{6} - 195\beta_{3} + 195\beta_{2} + 11868 ) / 6 ( 2 1 β 7 − 1 0 0 β 6 − 1 9 5 β 3 + 1 9 5 β 2 + 1 1 8 6 8 ) / 6
(21*b7 - 100*b6 - 195*b3 + 195*b2 + 11868) / 6
ν 5 \nu^{5} ν 5 = = =
( − 26136 β 5 + 752 β 4 + 20892 β 3 + 20892 β 2 − 9737 β 1 ) / 24 ( -26136\beta_{5} + 752\beta_{4} + 20892\beta_{3} + 20892\beta_{2} - 9737\beta_1 ) / 24 ( − 2 6 1 3 6 β 5 + 7 5 2 β 4 + 2 0 8 9 2 β 3 + 2 0 8 9 2 β 2 − 9 7 3 7 β 1 ) / 2 4
(-26136*b5 + 752*b4 + 20892*b3 + 20892*b2 - 9737*b1) / 24
ν 6 \nu^{6} ν 6 = = =
( − 2499 β 7 + 8134 β 6 + 11529 β 3 − 11529 β 2 − 702192 ) / 6 ( -2499\beta_{7} + 8134\beta_{6} + 11529\beta_{3} - 11529\beta_{2} - 702192 ) / 6 ( − 2 4 9 9 β 7 + 8 1 3 4 β 6 + 1 1 5 2 9 β 3 − 1 1 5 2 9 β 2 − 7 0 2 1 9 2 ) / 6
(-2499*b7 + 8134*b6 + 11529*b3 - 11529*b2 - 702192) / 6
ν 7 \nu^{7} ν 7 = = =
( 1776384 β 5 + 18664 β 4 − 1388892 β 3 − 1388892 β 2 + 960107 β 1 ) / 24 ( 1776384\beta_{5} + 18664\beta_{4} - 1388892\beta_{3} - 1388892\beta_{2} + 960107\beta_1 ) / 24 ( 1 7 7 6 3 8 4 β 5 + 1 8 6 6 4 β 4 − 1 3 8 8 8 9 2 β 3 − 1 3 8 8 8 9 2 β 2 + 9 6 0 1 0 7 β 1 ) / 2 4
(1776384*b5 + 18664*b4 - 1388892*b3 - 1388892*b2 + 960107*b1) / 24
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 8 + 828 T 5 6 + 195588 T 5 4 + 11183616 T 5 2 + 146313216 T_{5}^{8} + 828T_{5}^{6} + 195588T_{5}^{4} + 11183616T_{5}^{2} + 146313216 T 5 8 + 8 2 8 T 5 6 + 1 9 5 5 8 8 T 5 4 + 1 1 1 8 3 6 1 6 T 5 2 + 1 4 6 3 1 3 2 1 6
T5^8 + 828*T5^6 + 195588*T5^4 + 11183616*T5^2 + 146313216
T 19 4 − 28 T 19 3 − 10380 T 19 2 + 500320 T 19 − 5935552 T_{19}^{4} - 28T_{19}^{3} - 10380T_{19}^{2} + 500320T_{19} - 5935552 T 1 9 4 − 2 8 T 1 9 3 − 1 0 3 8 0 T 1 9 2 + 5 0 0 3 2 0 T 1 9 − 5 9 3 5 5 5 2
T19^4 - 28*T19^3 - 10380*T19^2 + 500320*T19 - 5935552
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T − 3 ) 8 (T - 3)^{8} ( T − 3 ) 8
(T - 3)^8
5 5 5
T 8 + 828 T 6 + ⋯ + 146313216 T^{8} + 828 T^{6} + \cdots + 146313216 T 8 + 8 2 8 T 6 + ⋯ + 1 4 6 3 1 3 2 1 6
T^8 + 828*T^6 + 195588*T^4 + 11183616*T^2 + 146313216
7 7 7
T 8 + ⋯ + 13841287201 T^{8} + \cdots + 13841287201 T 8 + ⋯ + 1 3 8 4 1 2 8 7 2 0 1
T^8 - 4*T^7 + 16*T^6 + 3052*T^5 - 171010*T^4 + 1046836*T^3 + 1882384*T^2 - 161414428*T + 13841287201
11 11 1 1
T 8 + ⋯ + 238089347136 T^{8} + \cdots + 238089347136 T 8 + ⋯ + 2 3 8 0 8 9 3 4 7 1 3 6
T^8 + 2964*T^6 + 3169908*T^4 + 1446701472*T^2 + 238089347136
13 13 1 3
T 8 + ⋯ + 624529833984 T^{8} + \cdots + 624529833984 T 8 + ⋯ + 6 2 4 5 2 9 8 3 3 9 8 4
T^8 + 9840*T^6 + 27819072*T^4 + 22553911296*T^2 + 624529833984
17 17 1 7
T 8 + ⋯ + 104135983727616 T^{8} + \cdots + 104135983727616 T 8 + ⋯ + 1 0 4 1 3 5 9 8 3 7 2 7 6 1 6
T^8 + 13596*T^6 + 66615300*T^4 + 138739858560*T^2 + 104135983727616
19 19 1 9
( T 4 − 28 T 3 + ⋯ − 5935552 ) 2 (T^{4} - 28 T^{3} + \cdots - 5935552)^{2} ( T 4 − 2 8 T 3 + ⋯ − 5 9 3 5 5 5 2 ) 2
(T^4 - 28*T^3 - 10380*T^2 + 500320*T - 5935552)^2
23 23 2 3
T 8 + ⋯ + 58 ⋯ 44 T^{8} + \cdots + 58\!\cdots\!44 T 8 + ⋯ + 5 8 ⋯ 4 4
T^8 + 67860*T^6 + 1320235956*T^4 + 6470457571872*T^2 + 5818468754516544
29 29 2 9
( T 4 − 120 T 3 + ⋯ + 242576208 ) 2 (T^{4} - 120 T^{3} + \cdots + 242576208)^{2} ( T 4 − 1 2 0 T 3 + ⋯ + 2 4 2 5 7 6 2 0 8 ) 2
(T^4 - 120*T^3 - 31896*T^2 + 2067552*T + 242576208)^2
31 31 3 1
( T 4 + 160 T 3 + ⋯ − 1109014528 ) 2 (T^{4} + 160 T^{3} + \cdots - 1109014528)^{2} ( T 4 + 1 6 0 T 3 + ⋯ − 1 1 0 9 0 1 4 5 2 8 ) 2
(T^4 + 160*T^3 - 82992*T^2 - 20486656*T - 1109014528)^2
37 37 3 7
( T 4 − 196 T 3 + ⋯ + 300652096 ) 2 (T^{4} - 196 T^{3} + \cdots + 300652096)^{2} ( T 4 − 1 9 6 T 3 + ⋯ + 3 0 0 6 5 2 0 9 6 ) 2
(T^4 - 196*T^3 - 131916*T^2 + 14480672*T + 300652096)^2
41 41 4 1
T 8 + ⋯ + 11 ⋯ 96 T^{8} + \cdots + 11\!\cdots\!96 T 8 + ⋯ + 1 1 ⋯ 9 6
T^8 + 313596*T^6 + 31341780036*T^4 + 1065438661373568*T^2 + 11069541602331780096
43 43 4 3
T 8 + ⋯ + 24 ⋯ 04 T^{8} + \cdots + 24\!\cdots\!04 T 8 + ⋯ + 2 4 ⋯ 0 4
T^8 + 362184*T^6 + 30124053072*T^4 + 691288901694720*T^2 + 246975952593429504
47 47 4 7
( T 4 − 408 T 3 + ⋯ − 1755758592 ) 2 (T^{4} - 408 T^{3} + \cdots - 1755758592)^{2} ( T 4 − 4 0 8 T 3 + ⋯ − 1 7 5 5 7 5 8 5 9 2 ) 2
(T^4 - 408*T^3 - 148464*T^2 + 65028096*T - 1755758592)^2
53 53 5 3
( T 4 − 144 T 3 + ⋯ − 460467504 ) 2 (T^{4} - 144 T^{3} + \cdots - 460467504)^{2} ( T 4 − 1 4 4 T 3 + ⋯ − 4 6 0 4 6 7 5 0 4 ) 2
(T^4 - 144*T^3 - 323352*T^2 - 29521152*T - 460467504)^2
59 59 5 9
( T 4 − 912 T 3 + ⋯ − 4942861056 ) 2 (T^{4} - 912 T^{3} + \cdots - 4942861056)^{2} ( T 4 − 9 1 2 T 3 + ⋯ − 4 9 4 2 8 6 1 0 5 6 ) 2
(T^4 - 912*T^3 - 68832*T^2 + 76273920*T - 4942861056)^2
61 61 6 1
T 8 + ⋯ + 999247734374400 T^{8} + \cdots + 999247734374400 T 8 + ⋯ + 9 9 9 2 4 7 7 3 4 3 7 4 4 0 0
T^8 + 120576*T^6 + 3961377792*T^4 + 37564216639488*T^2 + 999247734374400
67 67 6 7
T 8 + ⋯ + 89 ⋯ 00 T^{8} + \cdots + 89\!\cdots\!00 T 8 + ⋯ + 8 9 ⋯ 0 0
T^8 + 731928*T^6 + 156216900240*T^4 + 9293053582559232*T^2 + 89609869372701081600
71 71 7 1
T 8 + ⋯ + 72 ⋯ 04 T^{8} + \cdots + 72\!\cdots\!04 T 8 + ⋯ + 7 2 ⋯ 0 4
T^8 + 1517652*T^6 + 757865651508*T^4 + 137280907575717408*T^2 + 7239430244231298736704
73 73 7 3
T 8 + ⋯ + 86 ⋯ 36 T^{8} + \cdots + 86\!\cdots\!36 T 8 + ⋯ + 8 6 ⋯ 3 6
T^8 + 1372656*T^6 + 654236122176*T^4 + 127143686540648448*T^2 + 8630895215344502439936
79 79 7 9
T 8 + ⋯ + 38 ⋯ 04 T^{8} + \cdots + 38\!\cdots\!04 T 8 + ⋯ + 3 8 ⋯ 0 4
T^8 + 712920*T^6 + 166115326608*T^4 + 14624360187411456*T^2 + 386655070868089749504
83 83 8 3
( T 4 + 840 T 3 + ⋯ − 57542400000 ) 2 (T^{4} + 840 T^{3} + \cdots - 57542400000)^{2} ( T 4 + 8 4 0 T 3 + ⋯ − 5 7 5 4 2 4 0 0 0 0 0 ) 2
(T^4 + 840*T^3 - 284400*T^2 - 333504000*T - 57542400000)^2
89 89 8 9
T 8 + ⋯ + 38 ⋯ 00 T^{8} + \cdots + 38\!\cdots\!00 T 8 + ⋯ + 3 8 ⋯ 0 0
T^8 + 1673724*T^6 + 908640274500*T^4 + 161959725986951808*T^2 + 380534803228689638400
97 97 9 7
T 8 + ⋯ + 20 ⋯ 56 T^{8} + \cdots + 20\!\cdots\!56 T 8 + ⋯ + 2 0 ⋯ 5 6
T^8 + 4045296*T^6 + 4981287716928*T^4 + 1930242581274820608*T^2 + 20180330005970294931456
show more
show less