gp: [N,k,chi] = [336,4,Mod(223,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.223");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,6,0,0,0,-28]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = − 3 \beta = \sqrt{-3} β = − 3 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 2 + 192 T_{5}^{2} + 192 T 5 2 + 1 9 2
T5^2 + 192
T 19 + 52 T_{19} + 52 T 1 9 + 5 2
T19 + 52
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
( T − 3 ) 2 (T - 3)^{2} ( T − 3 ) 2
(T - 3)^2
5 5 5
T 2 + 192 T^{2} + 192 T 2 + 1 9 2
T^2 + 192
7 7 7
T 2 + 28 T + 343 T^{2} + 28T + 343 T 2 + 2 8 T + 3 4 3
T^2 + 28*T + 343
11 11 1 1
T 2 + 12 T^{2} + 12 T 2 + 1 2
T^2 + 12
13 13 1 3
T 2 + 192 T^{2} + 192 T 2 + 1 9 2
T^2 + 192
17 17 1 7
T 2 + 5808 T^{2} + 5808 T 2 + 5 8 0 8
T^2 + 5808
19 19 1 9
( T + 52 ) 2 (T + 52)^{2} ( T + 5 2 ) 2
(T + 52)^2
23 23 2 3
T 2 + 13068 T^{2} + 13068 T 2 + 1 3 0 6 8
T^2 + 13068
29 29 2 9
( T + 246 ) 2 (T + 246)^{2} ( T + 2 4 6 ) 2
(T + 246)^2
31 31 3 1
( T + 116 ) 2 (T + 116)^{2} ( T + 1 1 6 ) 2
(T + 116)^2
37 37 3 7
( T + 314 ) 2 (T + 314)^{2} ( T + 3 1 4 ) 2
(T + 314)^2
41 41 4 1
T 2 + 73008 T^{2} + 73008 T 2 + 7 3 0 0 8
T^2 + 73008
43 43 4 3
T 2 + 142572 T^{2} + 142572 T 2 + 1 4 2 5 7 2
T^2 + 142572
47 47 4 7
( T − 192 ) 2 (T - 192)^{2} ( T − 1 9 2 ) 2
(T - 192)^2
53 53 5 3
( T + 150 ) 2 (T + 150)^{2} ( T + 1 5 0 ) 2
(T + 150)^2
59 59 5 9
( T − 204 ) 2 (T - 204)^{2} ( T − 2 0 4 ) 2
(T - 204)^2
61 61 6 1
T 2 + 338688 T^{2} + 338688 T 2 + 3 3 8 6 8 8
T^2 + 338688
67 67 6 7
T 2 + 259308 T^{2} + 259308 T 2 + 2 5 9 3 0 8
T^2 + 259308
71 71 7 1
T 2 + 662700 T^{2} + 662700 T 2 + 6 6 2 7 0 0
T^2 + 662700
73 73 7 3
T 2 + 15552 T^{2} + 15552 T 2 + 1 5 5 5 2
T^2 + 15552
79 79 7 9
T 2 + 1891308 T^{2} + 1891308 T 2 + 1 8 9 1 3 0 8
T^2 + 1891308
83 83 8 3
( T − 252 ) 2 (T - 252)^{2} ( T − 2 5 2 ) 2
(T - 252)^2
89 89 8 9
T 2 + 46128 T^{2} + 46128 T 2 + 4 6 1 2 8
T^2 + 46128
97 97 9 7
T 2 + 2076672 T^{2} + 2076672 T 2 + 2 0 7 6 6 7 2
T^2 + 2076672
show more
show less