Properties

Label 336.4.b.c
Level 336336
Weight 44
Character orbit 336.b
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(223,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.223"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.b (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{-3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q38βq5+(7β14)q7+9q92βq118βq1324βq1544βq1752q19+(21β42)q2166βq2367q25+27q27+18βq99+O(q100) q + 3 q^{3} - 8 \beta q^{5} + (7 \beta - 14) q^{7} + 9 q^{9} - 2 \beta q^{11} - 8 \beta q^{13} - 24 \beta q^{15} - 44 \beta q^{17} - 52 q^{19} + (21 \beta - 42) q^{21} - 66 \beta q^{23} - 67 q^{25} + 27 q^{27} + \cdots - 18 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q328q7+18q9104q1984q21134q25+54q27492q29232q31+336q35628q37+384q47+98q49300q5396q55312q57+408q59+696q93+O(q100) 2 q + 6 q^{3} - 28 q^{7} + 18 q^{9} - 104 q^{19} - 84 q^{21} - 134 q^{25} + 54 q^{27} - 492 q^{29} - 232 q^{31} + 336 q^{35} - 628 q^{37} + 384 q^{47} + 98 q^{49} - 300 q^{53} - 96 q^{55} - 312 q^{57} + 408 q^{59}+ \cdots - 696 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
223.1
0.500000 + 0.866025i
0.500000 0.866025i
0 3.00000 0 13.8564i 0 −14.0000 + 12.1244i 0 9.00000 0
223.2 0 3.00000 0 13.8564i 0 −14.0000 12.1244i 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.b.c yes 2
3.b odd 2 1 1008.4.b.b 2
4.b odd 2 1 336.4.b.b 2
7.b odd 2 1 336.4.b.b 2
8.b even 2 1 1344.4.b.a 2
8.d odd 2 1 1344.4.b.d 2
12.b even 2 1 1008.4.b.e 2
21.c even 2 1 1008.4.b.e 2
28.d even 2 1 inner 336.4.b.c yes 2
56.e even 2 1 1344.4.b.a 2
56.h odd 2 1 1344.4.b.d 2
84.h odd 2 1 1008.4.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.b.b 2 4.b odd 2 1
336.4.b.b 2 7.b odd 2 1
336.4.b.c yes 2 1.a even 1 1 trivial
336.4.b.c yes 2 28.d even 2 1 inner
1008.4.b.b 2 3.b odd 2 1
1008.4.b.b 2 84.h odd 2 1
1008.4.b.e 2 12.b even 2 1
1008.4.b.e 2 21.c even 2 1
1344.4.b.a 2 8.b even 2 1
1344.4.b.a 2 56.e even 2 1
1344.4.b.d 2 8.d odd 2 1
1344.4.b.d 2 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T52+192 T_{5}^{2} + 192 Copy content Toggle raw display
T19+52 T_{19} + 52 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 T2+192 T^{2} + 192 Copy content Toggle raw display
77 T2+28T+343 T^{2} + 28T + 343 Copy content Toggle raw display
1111 T2+12 T^{2} + 12 Copy content Toggle raw display
1313 T2+192 T^{2} + 192 Copy content Toggle raw display
1717 T2+5808 T^{2} + 5808 Copy content Toggle raw display
1919 (T+52)2 (T + 52)^{2} Copy content Toggle raw display
2323 T2+13068 T^{2} + 13068 Copy content Toggle raw display
2929 (T+246)2 (T + 246)^{2} Copy content Toggle raw display
3131 (T+116)2 (T + 116)^{2} Copy content Toggle raw display
3737 (T+314)2 (T + 314)^{2} Copy content Toggle raw display
4141 T2+73008 T^{2} + 73008 Copy content Toggle raw display
4343 T2+142572 T^{2} + 142572 Copy content Toggle raw display
4747 (T192)2 (T - 192)^{2} Copy content Toggle raw display
5353 (T+150)2 (T + 150)^{2} Copy content Toggle raw display
5959 (T204)2 (T - 204)^{2} Copy content Toggle raw display
6161 T2+338688 T^{2} + 338688 Copy content Toggle raw display
6767 T2+259308 T^{2} + 259308 Copy content Toggle raw display
7171 T2+662700 T^{2} + 662700 Copy content Toggle raw display
7373 T2+15552 T^{2} + 15552 Copy content Toggle raw display
7979 T2+1891308 T^{2} + 1891308 Copy content Toggle raw display
8383 (T252)2 (T - 252)^{2} Copy content Toggle raw display
8989 T2+46128 T^{2} + 46128 Copy content Toggle raw display
9797 T2+2076672 T^{2} + 2076672 Copy content Toggle raw display
show more
show less