gp: [N,k,chi] = [336,4,Mod(1,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [1,0,3,0,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 336 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(336)) S 4 n e w ( Γ 0 ( 3 3 6 ) ) :
T 5 − 6 T_{5} - 6 T 5 − 6
T5 - 6
T 11 + 36 T_{11} + 36 T 1 1 + 3 6
T11 + 36
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T − 6 T - 6 T − 6
T - 6
7 7 7
T + 7 T + 7 T + 7
T + 7
11 11 1 1
T + 36 T + 36 T + 3 6
T + 36
13 13 1 3
T − 62 T - 62 T − 6 2
T - 62
17 17 1 7
T − 114 T - 114 T − 1 1 4
T - 114
19 19 1 9
T − 76 T - 76 T − 7 6
T - 76
23 23 2 3
T − 24 T - 24 T − 2 4
T - 24
29 29 2 9
T − 54 T - 54 T − 5 4
T - 54
31 31 3 1
T − 112 T - 112 T − 1 1 2
T - 112
37 37 3 7
T + 178 T + 178 T + 1 7 8
T + 178
41 41 4 1
T − 378 T - 378 T − 3 7 8
T - 378
43 43 4 3
T − 172 T - 172 T − 1 7 2
T - 172
47 47 4 7
T − 192 T - 192 T − 1 9 2
T - 192
53 53 5 3
T + 402 T + 402 T + 4 0 2
T + 402
59 59 5 9
T + 396 T + 396 T + 3 9 6
T + 396
61 61 6 1
T − 254 T - 254 T − 2 5 4
T - 254
67 67 6 7
T − 1012 T - 1012 T − 1 0 1 2
T - 1012
71 71 7 1
T + 840 T + 840 T + 8 4 0
T + 840
73 73 7 3
T − 890 T - 890 T − 8 9 0
T - 890
79 79 7 9
T + 80 T + 80 T + 8 0
T + 80
83 83 8 3
T − 108 T - 108 T − 1 0 8
T - 108
89 89 8 9
T + 1638 T + 1638 T + 1 6 3 8
T + 1638
97 97 9 7
T − 1010 T - 1010 T − 1 0 1 0
T - 1010
show more
show less