Properties

Label 84.4.a.a
Level $84$
Weight $4$
Character orbit 84.a
Self dual yes
Analytic conductor $4.956$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 84.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.95616044048\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 3q^{3} + 6q^{5} + 7q^{7} + 9q^{9} + O(q^{10}) \) \( q - 3q^{3} + 6q^{5} + 7q^{7} + 9q^{9} + 36q^{11} + 62q^{13} - 18q^{15} + 114q^{17} - 76q^{19} - 21q^{21} - 24q^{23} - 89q^{25} - 27q^{27} + 54q^{29} - 112q^{31} - 108q^{33} + 42q^{35} - 178q^{37} - 186q^{39} + 378q^{41} - 172q^{43} + 54q^{45} - 192q^{47} + 49q^{49} - 342q^{51} - 402q^{53} + 216q^{55} + 228q^{57} + 396q^{59} + 254q^{61} + 63q^{63} + 372q^{65} - 1012q^{67} + 72q^{69} + 840q^{71} + 890q^{73} + 267q^{75} + 252q^{77} + 80q^{79} + 81q^{81} - 108q^{83} + 684q^{85} - 162q^{87} - 1638q^{89} + 434q^{91} + 336q^{93} - 456q^{95} + 1010q^{97} + 324q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 6.00000 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.4.a.a 1
3.b odd 2 1 252.4.a.b 1
4.b odd 2 1 336.4.a.k 1
5.b even 2 1 2100.4.a.l 1
5.c odd 4 2 2100.4.k.j 2
7.b odd 2 1 588.4.a.d 1
7.c even 3 2 588.4.i.f 2
7.d odd 6 2 588.4.i.c 2
8.b even 2 1 1344.4.a.q 1
8.d odd 2 1 1344.4.a.d 1
12.b even 2 1 1008.4.a.h 1
21.c even 2 1 1764.4.a.j 1
21.g even 6 2 1764.4.k.f 2
21.h odd 6 2 1764.4.k.l 2
28.d even 2 1 2352.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.a.a 1 1.a even 1 1 trivial
252.4.a.b 1 3.b odd 2 1
336.4.a.k 1 4.b odd 2 1
588.4.a.d 1 7.b odd 2 1
588.4.i.c 2 7.d odd 6 2
588.4.i.f 2 7.c even 3 2
1008.4.a.h 1 12.b even 2 1
1344.4.a.d 1 8.d odd 2 1
1344.4.a.q 1 8.b even 2 1
1764.4.a.j 1 21.c even 2 1
1764.4.k.f 2 21.g even 6 2
1764.4.k.l 2 21.h odd 6 2
2100.4.a.l 1 5.b even 2 1
2100.4.k.j 2 5.c odd 4 2
2352.4.a.d 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 6 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(84))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 3 + T \)
$5$ \( -6 + T \)
$7$ \( -7 + T \)
$11$ \( -36 + T \)
$13$ \( -62 + T \)
$17$ \( -114 + T \)
$19$ \( 76 + T \)
$23$ \( 24 + T \)
$29$ \( -54 + T \)
$31$ \( 112 + T \)
$37$ \( 178 + T \)
$41$ \( -378 + T \)
$43$ \( 172 + T \)
$47$ \( 192 + T \)
$53$ \( 402 + T \)
$59$ \( -396 + T \)
$61$ \( -254 + T \)
$67$ \( 1012 + T \)
$71$ \( -840 + T \)
$73$ \( -890 + T \)
$79$ \( -80 + T \)
$83$ \( 108 + T \)
$89$ \( 1638 + T \)
$97$ \( -1010 + T \)
show more
show less