gp: [N,k,chi] = [336,4,Mod(1,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-3,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 336 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(336)) S 4 n e w ( Γ 0 ( 3 3 6 ) ) :
T 5 + 2 T_{5} + 2 T 5 + 2
T5 + 2
T 11 + 52 T_{11} + 52 T 1 1 + 5 2
T11 + 52
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 3 T + 3 T + 3
T + 3
5 5 5
T + 2 T + 2 T + 2
T + 2
7 7 7
T − 7 T - 7 T − 7
T - 7
11 11 1 1
T + 52 T + 52 T + 5 2
T + 52
13 13 1 3
T − 86 T - 86 T − 8 6
T - 86
17 17 1 7
T + 30 T + 30 T + 3 0
T + 30
19 19 1 9
T − 4 T - 4 T − 4
T - 4
23 23 2 3
T + 120 T + 120 T + 1 2 0
T + 120
29 29 2 9
T − 246 T - 246 T − 2 4 6
T - 246
31 31 3 1
T + 80 T + 80 T + 8 0
T + 80
37 37 3 7
T + 290 T + 290 T + 2 9 0
T + 290
41 41 4 1
T + 374 T + 374 T + 3 7 4
T + 374
43 43 4 3
T + 164 T + 164 T + 1 6 4
T + 164
47 47 4 7
T + 464 T + 464 T + 4 6 4
T + 464
53 53 5 3
T + 162 T + 162 T + 1 6 2
T + 162
59 59 5 9
T + 180 T + 180 T + 1 8 0
T + 180
61 61 6 1
T + 666 T + 666 T + 6 6 6
T + 666
67 67 6 7
T − 628 T - 628 T − 6 2 8
T - 628
71 71 7 1
T + 296 T + 296 T + 2 9 6
T + 296
73 73 7 3
T + 518 T + 518 T + 5 1 8
T + 518
79 79 7 9
T − 1184 T - 1184 T − 1 1 8 4
T - 1184
83 83 8 3
T + 220 T + 220 T + 2 2 0
T + 220
89 89 8 9
T + 774 T + 774 T + 7 7 4
T + 774
97 97 9 7
T + 1086 T + 1086 T + 1 0 8 6
T + 1086
show more
show less