Properties

Label 1176.4.a.e
Level 11761176
Weight 44
Character orbit 1176.a
Self dual yes
Analytic conductor 69.38669.386
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1176,4,Mod(1,1176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1176, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1176.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1176=23372 1176 = 2^{3} \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1176.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-3,0,2,0,0,0,9,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 69.386246166869.3862461668
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 168)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q3q3+2q5+9q9+52q1186q136q15+30q17+4q19+120q23121q2527q27+246q2980q31156q33290q37+258q39+374q41++468q99+O(q100) q - 3 q^{3} + 2 q^{5} + 9 q^{9} + 52 q^{11} - 86 q^{13} - 6 q^{15} + 30 q^{17} + 4 q^{19} + 120 q^{23} - 121 q^{25} - 27 q^{27} + 246 q^{29} - 80 q^{31} - 156 q^{33} - 290 q^{37} + 258 q^{39} + 374 q^{41}+ \cdots + 468 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −3.00000 0 2.00000 0 0 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1176.4.a.e 1
4.b odd 2 1 2352.4.a.bb 1
7.b odd 2 1 168.4.a.f 1
21.c even 2 1 504.4.a.c 1
28.d even 2 1 336.4.a.c 1
56.e even 2 1 1344.4.a.v 1
56.h odd 2 1 1344.4.a.g 1
84.h odd 2 1 1008.4.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.a.f 1 7.b odd 2 1
336.4.a.c 1 28.d even 2 1
504.4.a.c 1 21.c even 2 1
1008.4.a.l 1 84.h odd 2 1
1176.4.a.e 1 1.a even 1 1 trivial
1344.4.a.g 1 56.h odd 2 1
1344.4.a.v 1 56.e even 2 1
2352.4.a.bb 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1176))S_{4}^{\mathrm{new}}(\Gamma_0(1176)):

T52 T_{5} - 2 Copy content Toggle raw display
T1152 T_{11} - 52 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+3 T + 3 Copy content Toggle raw display
55 T2 T - 2 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T52 T - 52 Copy content Toggle raw display
1313 T+86 T + 86 Copy content Toggle raw display
1717 T30 T - 30 Copy content Toggle raw display
1919 T4 T - 4 Copy content Toggle raw display
2323 T120 T - 120 Copy content Toggle raw display
2929 T246 T - 246 Copy content Toggle raw display
3131 T+80 T + 80 Copy content Toggle raw display
3737 T+290 T + 290 Copy content Toggle raw display
4141 T374 T - 374 Copy content Toggle raw display
4343 T164 T - 164 Copy content Toggle raw display
4747 T+464 T + 464 Copy content Toggle raw display
5353 T+162 T + 162 Copy content Toggle raw display
5959 T+180 T + 180 Copy content Toggle raw display
6161 T666 T - 666 Copy content Toggle raw display
6767 T+628 T + 628 Copy content Toggle raw display
7171 T296 T - 296 Copy content Toggle raw display
7373 T518 T - 518 Copy content Toggle raw display
7979 T+1184 T + 1184 Copy content Toggle raw display
8383 T+220 T + 220 Copy content Toggle raw display
8989 T774 T - 774 Copy content Toggle raw display
9797 T1086 T - 1086 Copy content Toggle raw display
show more
show less