Properties

Label 336.3.be.d.79.1
Level $336$
Weight $3$
Character 336.79
Analytic conductor $9.155$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,3,Mod(79,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.79"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.1364138928.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 35x^{4} + 364x^{2} + 972 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.1
Root \(4.07390i\) of defining polynomial
Character \(\chi\) \(=\) 336.79
Dual form 336.3.be.d.319.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 0.866025i) q^{3} +(-2.29832 + 3.98081i) q^{5} +(-4.95955 + 4.93992i) q^{7} +(1.50000 - 2.59808i) q^{9} +(-0.161228 + 0.0930852i) q^{11} +13.7090 q^{13} -7.96163i q^{15} +(-11.6528 - 20.1833i) q^{17} +(-28.5074 - 16.4587i) q^{19} +(3.16123 - 11.7050i) q^{21} +(-21.4911 - 12.4079i) q^{23} +(1.93542 + 3.35224i) q^{25} +5.19615i q^{27} +24.0641 q^{29} +(-1.08871 + 0.628570i) q^{31} +(0.161228 - 0.279256i) q^{33} +(-8.26626 - 31.0966i) q^{35} +(17.7736 - 30.7848i) q^{37} +(-20.5636 + 11.8724i) q^{39} -77.2563 q^{41} +41.9125i q^{43} +(6.89497 + 11.9424i) q^{45} +(-52.3787 - 30.2408i) q^{47} +(0.194309 - 48.9996i) q^{49} +(34.9585 + 20.1833i) q^{51} +(-17.2983 - 29.9616i) q^{53} -0.855760i q^{55} +57.0147 q^{57} +(1.78257 - 1.02917i) q^{59} +(-15.5484 + 26.9306i) q^{61} +(5.39497 + 20.2952i) q^{63} +(-31.5078 + 54.5731i) q^{65} +(65.3950 - 37.7558i) q^{67} +42.9821 q^{69} -30.7190i q^{71} +(22.7736 + 39.4451i) q^{73} +(-5.80626 - 3.35224i) q^{75} +(0.339786 - 1.25812i) q^{77} +(-0.943915 - 0.544970i) q^{79} +(-4.50000 - 7.79423i) q^{81} +39.4358i q^{83} +107.128 q^{85} +(-36.0962 + 20.8401i) q^{87} +(-76.1113 + 131.829i) q^{89} +(-67.9907 + 67.7216i) q^{91} +(1.08871 - 1.88571i) q^{93} +(131.038 - 75.6550i) q^{95} -25.9359 q^{97} +0.558511i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} + q^{5} - 11 q^{7} + 9 q^{9} + 3 q^{11} - 44 q^{13} + 8 q^{17} - 30 q^{19} + 15 q^{21} + 24 q^{23} - 14 q^{25} + 34 q^{29} - 39 q^{31} - 3 q^{33} - 90 q^{35} + 6 q^{37} + 66 q^{39} - 136 q^{41}+ \cdots - 266 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 0.866025i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) −2.29832 + 3.98081i −0.459665 + 0.796163i −0.998943 0.0459650i \(-0.985364\pi\)
0.539278 + 0.842128i \(0.318697\pi\)
\(6\) 0 0
\(7\) −4.95955 + 4.93992i −0.708507 + 0.705703i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) −0.161228 + 0.0930852i −0.0146571 + 0.00846229i −0.507311 0.861763i \(-0.669360\pi\)
0.492654 + 0.870226i \(0.336027\pi\)
\(12\) 0 0
\(13\) 13.7090 1.05454 0.527271 0.849697i \(-0.323215\pi\)
0.527271 + 0.849697i \(0.323215\pi\)
\(14\) 0 0
\(15\) 7.96163i 0.530775i
\(16\) 0 0
\(17\) −11.6528 20.1833i −0.685462 1.18725i −0.973292 0.229573i \(-0.926267\pi\)
0.287830 0.957682i \(-0.407066\pi\)
\(18\) 0 0
\(19\) −28.5074 16.4587i −1.50039 0.866249i −1.00000 0.000447947i \(-0.999857\pi\)
−0.500388 0.865801i \(-0.666809\pi\)
\(20\) 0 0
\(21\) 3.16123 11.7050i 0.150535 0.557380i
\(22\) 0 0
\(23\) −21.4911 12.4079i −0.934394 0.539472i −0.0461952 0.998932i \(-0.514710\pi\)
−0.888198 + 0.459460i \(0.848043\pi\)
\(24\) 0 0
\(25\) 1.93542 + 3.35224i 0.0774167 + 0.134090i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 24.0641 0.829798 0.414899 0.909868i \(-0.363817\pi\)
0.414899 + 0.909868i \(0.363817\pi\)
\(30\) 0 0
\(31\) −1.08871 + 0.628570i −0.0351198 + 0.0202764i −0.517457 0.855709i \(-0.673121\pi\)
0.482337 + 0.875986i \(0.339788\pi\)
\(32\) 0 0
\(33\) 0.161228 0.279256i 0.00488571 0.00846229i
\(34\) 0 0
\(35\) −8.26626 31.0966i −0.236179 0.888474i
\(36\) 0 0
\(37\) 17.7736 30.7848i 0.480368 0.832022i −0.519378 0.854545i \(-0.673836\pi\)
0.999746 + 0.0225223i \(0.00716968\pi\)
\(38\) 0 0
\(39\) −20.5636 + 11.8724i −0.527271 + 0.304420i
\(40\) 0 0
\(41\) −77.2563 −1.88430 −0.942150 0.335192i \(-0.891199\pi\)
−0.942150 + 0.335192i \(0.891199\pi\)
\(42\) 0 0
\(43\) 41.9125i 0.974710i 0.873204 + 0.487355i \(0.162038\pi\)
−0.873204 + 0.487355i \(0.837962\pi\)
\(44\) 0 0
\(45\) 6.89497 + 11.9424i 0.153222 + 0.265388i
\(46\) 0 0
\(47\) −52.3787 30.2408i −1.11444 0.643422i −0.174464 0.984664i \(-0.555819\pi\)
−0.939976 + 0.341242i \(0.889153\pi\)
\(48\) 0 0
\(49\) 0.194309 48.9996i 0.00396548 0.999992i
\(50\) 0 0
\(51\) 34.9585 + 20.1833i 0.685462 + 0.395751i
\(52\) 0 0
\(53\) −17.2983 29.9616i −0.326383 0.565313i 0.655408 0.755275i \(-0.272497\pi\)
−0.981791 + 0.189962i \(0.939163\pi\)
\(54\) 0 0
\(55\) 0.855760i 0.0155593i
\(56\) 0 0
\(57\) 57.0147 1.00026
\(58\) 0 0
\(59\) 1.78257 1.02917i 0.0302131 0.0174435i −0.484817 0.874615i \(-0.661114\pi\)
0.515030 + 0.857172i \(0.327781\pi\)
\(60\) 0 0
\(61\) −15.5484 + 26.9306i −0.254891 + 0.441485i −0.964866 0.262742i \(-0.915373\pi\)
0.709975 + 0.704227i \(0.248706\pi\)
\(62\) 0 0
\(63\) 5.39497 + 20.2952i 0.0856345 + 0.322146i
\(64\) 0 0
\(65\) −31.5078 + 54.5731i −0.484736 + 0.839587i
\(66\) 0 0
\(67\) 65.3950 37.7558i 0.976044 0.563519i 0.0749708 0.997186i \(-0.476114\pi\)
0.901074 + 0.433666i \(0.142780\pi\)
\(68\) 0 0
\(69\) 42.9821 0.622929
\(70\) 0 0
\(71\) 30.7190i 0.432662i −0.976320 0.216331i \(-0.930591\pi\)
0.976320 0.216331i \(-0.0694091\pi\)
\(72\) 0 0
\(73\) 22.7736 + 39.4451i 0.311967 + 0.540344i 0.978788 0.204875i \(-0.0656787\pi\)
−0.666821 + 0.745218i \(0.732345\pi\)
\(74\) 0 0
\(75\) −5.80626 3.35224i −0.0774167 0.0446966i
\(76\) 0 0
\(77\) 0.339786 1.25812i 0.00441281 0.0163392i
\(78\) 0 0
\(79\) −0.943915 0.544970i −0.0119483 0.00689835i 0.494014 0.869454i \(-0.335529\pi\)
−0.505962 + 0.862556i \(0.668862\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 39.4358i 0.475130i 0.971372 + 0.237565i \(0.0763493\pi\)
−0.971372 + 0.237565i \(0.923651\pi\)
\(84\) 0 0
\(85\) 107.128 1.26033
\(86\) 0 0
\(87\) −36.0962 + 20.8401i −0.414899 + 0.239542i
\(88\) 0 0
\(89\) −76.1113 + 131.829i −0.855183 + 1.48122i 0.0212925 + 0.999773i \(0.493222\pi\)
−0.876475 + 0.481447i \(0.840111\pi\)
\(90\) 0 0
\(91\) −67.9907 + 67.7216i −0.747151 + 0.744194i
\(92\) 0 0
\(93\) 1.08871 1.88571i 0.0117066 0.0202764i
\(94\) 0 0
\(95\) 131.038 75.6550i 1.37935 0.796368i
\(96\) 0 0
\(97\) −25.9359 −0.267380 −0.133690 0.991023i \(-0.542683\pi\)
−0.133690 + 0.991023i \(0.542683\pi\)
\(98\) 0 0
\(99\) 0.558511i 0.00564153i
\(100\) 0 0
\(101\) 32.6134 + 56.4881i 0.322905 + 0.559288i 0.981086 0.193572i \(-0.0620072\pi\)
−0.658181 + 0.752860i \(0.728674\pi\)
\(102\) 0 0
\(103\) 120.084 + 69.3306i 1.16586 + 0.673112i 0.952703 0.303904i \(-0.0982903\pi\)
0.213162 + 0.977017i \(0.431624\pi\)
\(104\) 0 0
\(105\) 39.3298 + 39.4861i 0.374570 + 0.376058i
\(106\) 0 0
\(107\) 75.5872 + 43.6403i 0.706423 + 0.407853i 0.809735 0.586796i \(-0.199611\pi\)
−0.103312 + 0.994649i \(0.532944\pi\)
\(108\) 0 0
\(109\) −32.3073 55.9578i −0.296397 0.513375i 0.678912 0.734220i \(-0.262452\pi\)
−0.975309 + 0.220845i \(0.929118\pi\)
\(110\) 0 0
\(111\) 61.5696i 0.554681i
\(112\) 0 0
\(113\) −187.299 −1.65752 −0.828758 0.559607i \(-0.810952\pi\)
−0.828758 + 0.559607i \(0.810952\pi\)
\(114\) 0 0
\(115\) 98.7868 57.0346i 0.859015 0.495953i
\(116\) 0 0
\(117\) 20.5636 35.6171i 0.175757 0.304420i
\(118\) 0 0
\(119\) 157.497 + 42.5361i 1.32350 + 0.357446i
\(120\) 0 0
\(121\) −60.4827 + 104.759i −0.499857 + 0.865777i
\(122\) 0 0
\(123\) 115.884 66.9059i 0.942150 0.543951i
\(124\) 0 0
\(125\) −132.709 −1.06167
\(126\) 0 0
\(127\) 153.264i 1.20680i 0.797437 + 0.603402i \(0.206189\pi\)
−0.797437 + 0.603402i \(0.793811\pi\)
\(128\) 0 0
\(129\) −36.2973 62.8688i −0.281374 0.487355i
\(130\) 0 0
\(131\) −167.531 96.7241i −1.27886 0.738352i −0.302224 0.953237i \(-0.597729\pi\)
−0.976639 + 0.214885i \(0.931062\pi\)
\(132\) 0 0
\(133\) 222.689 59.1963i 1.67435 0.445085i
\(134\) 0 0
\(135\) −20.6849 11.9424i −0.153222 0.0884625i
\(136\) 0 0
\(137\) −108.451 187.842i −0.791611 1.37111i −0.924969 0.380043i \(-0.875909\pi\)
0.133358 0.991068i \(-0.457424\pi\)
\(138\) 0 0
\(139\) 0.732659i 0.00527093i 0.999997 + 0.00263546i \(0.000838895\pi\)
−0.999997 + 0.00263546i \(0.999161\pi\)
\(140\) 0 0
\(141\) 104.757 0.742960
\(142\) 0 0
\(143\) −2.21029 + 1.27611i −0.0154566 + 0.00892384i
\(144\) 0 0
\(145\) −55.3072 + 95.7948i −0.381429 + 0.660654i
\(146\) 0 0
\(147\) 42.1434 + 73.6677i 0.286690 + 0.501141i
\(148\) 0 0
\(149\) −74.5137 + 129.062i −0.500092 + 0.866185i 0.499908 + 0.866079i \(0.333367\pi\)
−1.00000 0.000106336i \(0.999966\pi\)
\(150\) 0 0
\(151\) 35.8891 20.7206i 0.237676 0.137222i −0.376432 0.926444i \(-0.622849\pi\)
0.614108 + 0.789222i \(0.289516\pi\)
\(152\) 0 0
\(153\) −69.9171 −0.456974
\(154\) 0 0
\(155\) 5.77863i 0.0372815i
\(156\) 0 0
\(157\) 108.224 + 187.449i 0.689324 + 1.19394i 0.972057 + 0.234746i \(0.0754257\pi\)
−0.282733 + 0.959199i \(0.591241\pi\)
\(158\) 0 0
\(159\) 51.8950 + 29.9616i 0.326383 + 0.188438i
\(160\) 0 0
\(161\) 167.880 44.6267i 1.04273 0.277185i
\(162\) 0 0
\(163\) −92.1419 53.1981i −0.565288 0.326369i 0.189977 0.981788i \(-0.439159\pi\)
−0.755265 + 0.655420i \(0.772492\pi\)
\(164\) 0 0
\(165\) 0.741110 + 1.28364i 0.00449158 + 0.00777964i
\(166\) 0 0
\(167\) 266.346i 1.59489i −0.603394 0.797443i \(-0.706185\pi\)
0.603394 0.797443i \(-0.293815\pi\)
\(168\) 0 0
\(169\) 18.9379 0.112059
\(170\) 0 0
\(171\) −85.5221 + 49.3762i −0.500129 + 0.288750i
\(172\) 0 0
\(173\) 63.1981 109.462i 0.365307 0.632730i −0.623519 0.781809i \(-0.714297\pi\)
0.988825 + 0.149079i \(0.0476308\pi\)
\(174\) 0 0
\(175\) −26.1586 7.06480i −0.149478 0.0403703i
\(176\) 0 0
\(177\) −1.78257 + 3.08751i −0.0100710 + 0.0174435i
\(178\) 0 0
\(179\) −138.665 + 80.0585i −0.774667 + 0.447254i −0.834537 0.550952i \(-0.814265\pi\)
0.0598702 + 0.998206i \(0.480931\pi\)
\(180\) 0 0
\(181\) −108.709 −0.600604 −0.300302 0.953844i \(-0.597087\pi\)
−0.300302 + 0.953844i \(0.597087\pi\)
\(182\) 0 0
\(183\) 53.8612i 0.294323i
\(184\) 0 0
\(185\) 81.6991 + 141.507i 0.441617 + 0.764902i
\(186\) 0 0
\(187\) 3.75754 + 2.16942i 0.0200938 + 0.0116012i
\(188\) 0 0
\(189\) −25.6686 25.7706i −0.135813 0.136352i
\(190\) 0 0
\(191\) 19.6656 + 11.3539i 0.102961 + 0.0594446i 0.550596 0.834772i \(-0.314400\pi\)
−0.447635 + 0.894216i \(0.647734\pi\)
\(192\) 0 0
\(193\) −147.353 255.223i −0.763487 1.32240i −0.941043 0.338287i \(-0.890152\pi\)
0.177556 0.984111i \(-0.443181\pi\)
\(194\) 0 0
\(195\) 109.146i 0.559725i
\(196\) 0 0
\(197\) 296.976 1.50749 0.753746 0.657166i \(-0.228245\pi\)
0.753746 + 0.657166i \(0.228245\pi\)
\(198\) 0 0
\(199\) −223.142 + 128.831i −1.12131 + 0.647391i −0.941736 0.336352i \(-0.890807\pi\)
−0.179579 + 0.983744i \(0.557473\pi\)
\(200\) 0 0
\(201\) −65.3950 + 113.267i −0.325348 + 0.563519i
\(202\) 0 0
\(203\) −119.347 + 118.875i −0.587918 + 0.585591i
\(204\) 0 0
\(205\) 177.560 307.543i 0.866146 1.50021i
\(206\) 0 0
\(207\) −64.4732 + 37.2236i −0.311465 + 0.179824i
\(208\) 0 0
\(209\) 6.12826 0.0293218
\(210\) 0 0
\(211\) 84.2895i 0.399476i −0.979849 0.199738i \(-0.935991\pi\)
0.979849 0.199738i \(-0.0640091\pi\)
\(212\) 0 0
\(213\) 26.6035 + 46.0785i 0.124899 + 0.216331i
\(214\) 0 0
\(215\) −166.846 96.3285i −0.776027 0.448040i
\(216\) 0 0
\(217\) 2.29445 8.49559i 0.0105735 0.0391502i
\(218\) 0 0
\(219\) −68.3209 39.4451i −0.311967 0.180115i
\(220\) 0 0
\(221\) −159.749 276.694i −0.722848 1.25201i
\(222\) 0 0
\(223\) 170.727i 0.765591i −0.923833 0.382795i \(-0.874961\pi\)
0.923833 0.382795i \(-0.125039\pi\)
\(224\) 0 0
\(225\) 11.6125 0.0516112
\(226\) 0 0
\(227\) −66.4950 + 38.3909i −0.292930 + 0.169123i −0.639262 0.768989i \(-0.720760\pi\)
0.346333 + 0.938112i \(0.387427\pi\)
\(228\) 0 0
\(229\) −190.772 + 330.426i −0.833064 + 1.44291i 0.0625335 + 0.998043i \(0.480082\pi\)
−0.895597 + 0.444866i \(0.853251\pi\)
\(230\) 0 0
\(231\) 0.579882 + 2.18144i 0.00251031 + 0.00944346i
\(232\) 0 0
\(233\) 13.4090 23.2251i 0.0575495 0.0996786i −0.835815 0.549011i \(-0.815005\pi\)
0.893365 + 0.449332i \(0.148338\pi\)
\(234\) 0 0
\(235\) 240.766 139.006i 1.02454 0.591517i
\(236\) 0 0
\(237\) 1.88783 0.00796553
\(238\) 0 0
\(239\) 429.135i 1.79554i 0.440460 + 0.897772i \(0.354815\pi\)
−0.440460 + 0.897772i \(0.645185\pi\)
\(240\) 0 0
\(241\) −143.915 249.269i −0.597159 1.03431i −0.993238 0.116094i \(-0.962963\pi\)
0.396079 0.918216i \(-0.370371\pi\)
\(242\) 0 0
\(243\) 13.5000 + 7.79423i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 194.612 + 113.390i 0.794334 + 0.462818i
\(246\) 0 0
\(247\) −390.809 225.634i −1.58222 0.913496i
\(248\) 0 0
\(249\) −34.1524 59.1537i −0.137158 0.237565i
\(250\) 0 0
\(251\) 112.212i 0.447060i 0.974697 + 0.223530i \(0.0717581\pi\)
−0.974697 + 0.223530i \(0.928242\pi\)
\(252\) 0 0
\(253\) 4.61996 0.0182607
\(254\) 0 0
\(255\) −160.692 + 92.7756i −0.630165 + 0.363826i
\(256\) 0 0
\(257\) −5.42828 + 9.40205i −0.0211217 + 0.0365839i −0.876393 0.481597i \(-0.840057\pi\)
0.855271 + 0.518180i \(0.173390\pi\)
\(258\) 0 0
\(259\) 63.9255 + 240.479i 0.246816 + 0.928491i
\(260\) 0 0
\(261\) 36.0962 62.5204i 0.138300 0.239542i
\(262\) 0 0
\(263\) −32.3048 + 18.6512i −0.122832 + 0.0709170i −0.560157 0.828386i \(-0.689259\pi\)
0.437325 + 0.899303i \(0.355926\pi\)
\(264\) 0 0
\(265\) 159.029 0.600108
\(266\) 0 0
\(267\) 263.657i 0.987480i
\(268\) 0 0
\(269\) −15.3346 26.5603i −0.0570059 0.0987372i 0.836114 0.548556i \(-0.184822\pi\)
−0.893120 + 0.449818i \(0.851489\pi\)
\(270\) 0 0
\(271\) −268.261 154.881i −0.989894 0.571515i −0.0846512 0.996411i \(-0.526978\pi\)
−0.905243 + 0.424895i \(0.860311\pi\)
\(272\) 0 0
\(273\) 43.3374 160.464i 0.158745 0.587781i
\(274\) 0 0
\(275\) −0.624089 0.360318i −0.00226941 0.00131025i
\(276\) 0 0
\(277\) −145.499 252.012i −0.525269 0.909792i −0.999567 0.0294279i \(-0.990631\pi\)
0.474298 0.880364i \(-0.342702\pi\)
\(278\) 0 0
\(279\) 3.77142i 0.0135176i
\(280\) 0 0
\(281\) 433.358 1.54220 0.771100 0.636714i \(-0.219707\pi\)
0.771100 + 0.636714i \(0.219707\pi\)
\(282\) 0 0
\(283\) −93.4602 + 53.9593i −0.330248 + 0.190669i −0.655951 0.754803i \(-0.727732\pi\)
0.325703 + 0.945472i \(0.394399\pi\)
\(284\) 0 0
\(285\) −131.038 + 226.965i −0.459784 + 0.796368i
\(286\) 0 0
\(287\) 383.157 381.640i 1.33504 1.32976i
\(288\) 0 0
\(289\) −127.078 + 220.105i −0.439715 + 0.761609i
\(290\) 0 0
\(291\) 38.9038 22.4611i 0.133690 0.0771860i
\(292\) 0 0
\(293\) 134.703 0.459736 0.229868 0.973222i \(-0.426171\pi\)
0.229868 + 0.973222i \(0.426171\pi\)
\(294\) 0 0
\(295\) 9.46145i 0.0320727i
\(296\) 0 0
\(297\) −0.483685 0.837767i −0.00162857 0.00282076i
\(298\) 0 0
\(299\) −294.622 170.100i −0.985357 0.568896i
\(300\) 0 0
\(301\) −207.045 207.867i −0.687856 0.690589i
\(302\) 0 0
\(303\) −97.8402 56.4881i −0.322905 0.186429i
\(304\) 0 0
\(305\) −71.4704 123.790i −0.234329 0.405870i
\(306\) 0 0
\(307\) 532.540i 1.73466i −0.497736 0.867329i \(-0.665835\pi\)
0.497736 0.867329i \(-0.334165\pi\)
\(308\) 0 0
\(309\) −240.168 −0.777243
\(310\) 0 0
\(311\) 443.216 255.891i 1.42513 0.822799i 0.428399 0.903590i \(-0.359078\pi\)
0.996731 + 0.0807901i \(0.0257444\pi\)
\(312\) 0 0
\(313\) −43.6965 + 75.6845i −0.139605 + 0.241803i −0.927347 0.374202i \(-0.877917\pi\)
0.787742 + 0.616005i \(0.211250\pi\)
\(314\) 0 0
\(315\) −93.1907 25.1685i −0.295843 0.0799001i
\(316\) 0 0
\(317\) 71.6108 124.034i 0.225902 0.391273i −0.730688 0.682712i \(-0.760801\pi\)
0.956590 + 0.291439i \(0.0941339\pi\)
\(318\) 0 0
\(319\) −3.87982 + 2.24002i −0.0121624 + 0.00702199i
\(320\) 0 0
\(321\) −151.174 −0.470949
\(322\) 0 0
\(323\) 767.164i 2.37512i
\(324\) 0 0
\(325\) 26.5327 + 45.9561i 0.0816392 + 0.141403i
\(326\) 0 0
\(327\) 96.9218 + 55.9578i 0.296397 + 0.171125i
\(328\) 0 0
\(329\) 409.162 108.766i 1.24365 0.330595i
\(330\) 0 0
\(331\) 528.430 + 305.089i 1.59647 + 0.921720i 0.992161 + 0.124966i \(0.0398821\pi\)
0.604304 + 0.796754i \(0.293451\pi\)
\(332\) 0 0
\(333\) −53.3209 92.3545i −0.160123 0.277341i
\(334\) 0 0
\(335\) 347.100i 1.03612i
\(336\) 0 0
\(337\) 243.994 0.724018 0.362009 0.932175i \(-0.382091\pi\)
0.362009 + 0.932175i \(0.382091\pi\)
\(338\) 0 0
\(339\) 280.949 162.206i 0.828758 0.478484i
\(340\) 0 0
\(341\) 0.117021 0.202687i 0.000343170 0.000594389i
\(342\) 0 0
\(343\) 241.091 + 243.976i 0.702888 + 0.711300i
\(344\) 0 0
\(345\) −98.7868 + 171.104i −0.286338 + 0.495953i
\(346\) 0 0
\(347\) −312.604 + 180.482i −0.900875 + 0.520121i −0.877484 0.479606i \(-0.840780\pi\)
−0.0233911 + 0.999726i \(0.507446\pi\)
\(348\) 0 0
\(349\) −375.119 −1.07484 −0.537420 0.843314i \(-0.680601\pi\)
−0.537420 + 0.843314i \(0.680601\pi\)
\(350\) 0 0
\(351\) 71.2343i 0.202947i
\(352\) 0 0
\(353\) 76.8294 + 133.072i 0.217647 + 0.376976i 0.954088 0.299526i \(-0.0968285\pi\)
−0.736441 + 0.676502i \(0.763495\pi\)
\(354\) 0 0
\(355\) 122.287 + 70.6022i 0.344469 + 0.198880i
\(356\) 0 0
\(357\) −273.083 + 72.5923i −0.764938 + 0.203340i
\(358\) 0 0
\(359\) −46.9502 27.1067i −0.130780 0.0755061i 0.433182 0.901306i \(-0.357391\pi\)
−0.563963 + 0.825800i \(0.690724\pi\)
\(360\) 0 0
\(361\) 361.280 + 625.755i 1.00078 + 1.73339i
\(362\) 0 0
\(363\) 209.518i 0.577185i
\(364\) 0 0
\(365\) −209.365 −0.573602
\(366\) 0 0
\(367\) −130.929 + 75.5921i −0.356756 + 0.205973i −0.667657 0.744469i \(-0.732703\pi\)
0.310901 + 0.950442i \(0.399369\pi\)
\(368\) 0 0
\(369\) −115.884 + 200.718i −0.314050 + 0.543951i
\(370\) 0 0
\(371\) 233.800 + 63.1436i 0.630188 + 0.170198i
\(372\) 0 0
\(373\) −316.054 + 547.422i −0.847330 + 1.46762i 0.0362517 + 0.999343i \(0.488458\pi\)
−0.883582 + 0.468276i \(0.844875\pi\)
\(374\) 0 0
\(375\) 199.064 114.929i 0.530836 0.306478i
\(376\) 0 0
\(377\) 329.896 0.875056
\(378\) 0 0
\(379\) 316.045i 0.833892i −0.908931 0.416946i \(-0.863100\pi\)
0.908931 0.416946i \(-0.136900\pi\)
\(380\) 0 0
\(381\) −132.731 229.896i −0.348375 0.603402i
\(382\) 0 0
\(383\) 237.606 + 137.182i 0.620380 + 0.358177i 0.777017 0.629480i \(-0.216732\pi\)
−0.156637 + 0.987656i \(0.550065\pi\)
\(384\) 0 0
\(385\) 4.22739 + 4.24419i 0.0109802 + 0.0110239i
\(386\) 0 0
\(387\) 108.892 + 62.8688i 0.281374 + 0.162452i
\(388\) 0 0
\(389\) 117.536 + 203.579i 0.302150 + 0.523338i 0.976623 0.214961i \(-0.0689625\pi\)
−0.674473 + 0.738299i \(0.735629\pi\)
\(390\) 0 0
\(391\) 578.348i 1.47915i
\(392\) 0 0
\(393\) 335.062 0.852575
\(394\) 0 0
\(395\) 4.33884 2.50503i 0.0109844 0.00634186i
\(396\) 0 0
\(397\) −284.092 + 492.061i −0.715596 + 1.23945i 0.247133 + 0.968982i \(0.420512\pi\)
−0.962729 + 0.270468i \(0.912822\pi\)
\(398\) 0 0
\(399\) −282.768 + 281.648i −0.708691 + 0.705886i
\(400\) 0 0
\(401\) 115.696 200.391i 0.288519 0.499729i −0.684938 0.728602i \(-0.740171\pi\)
0.973456 + 0.228873i \(0.0735040\pi\)
\(402\) 0 0
\(403\) −14.9252 + 8.61709i −0.0370353 + 0.0213824i
\(404\) 0 0
\(405\) 41.3698 0.102148
\(406\) 0 0
\(407\) 6.61785i 0.0162601i
\(408\) 0 0
\(409\) −33.8249 58.5865i −0.0827016 0.143243i 0.821708 0.569909i \(-0.193021\pi\)
−0.904409 + 0.426666i \(0.859688\pi\)
\(410\) 0 0
\(411\) 325.352 + 187.842i 0.791611 + 0.457037i
\(412\) 0 0
\(413\) −3.75675 + 13.9100i −0.00909624 + 0.0336804i
\(414\) 0 0
\(415\) −156.987 90.6362i −0.378281 0.218400i
\(416\) 0 0
\(417\) −0.634501 1.09899i −0.00152159 0.00263546i
\(418\) 0 0
\(419\) 111.646i 0.266459i 0.991085 + 0.133229i \(0.0425347\pi\)
−0.991085 + 0.133229i \(0.957465\pi\)
\(420\) 0 0
\(421\) 509.147 1.20937 0.604687 0.796463i \(-0.293298\pi\)
0.604687 + 0.796463i \(0.293298\pi\)
\(422\) 0 0
\(423\) −157.136 + 90.7225i −0.371480 + 0.214474i
\(424\) 0 0
\(425\) 45.1063 78.1263i 0.106132 0.183827i
\(426\) 0 0
\(427\) −55.9220 210.371i −0.130965 0.492673i
\(428\) 0 0
\(429\) 2.21029 3.82833i 0.00515218 0.00892384i
\(430\) 0 0
\(431\) 659.682 380.868i 1.53059 0.883684i 0.531251 0.847215i \(-0.321722\pi\)
0.999335 0.0364694i \(-0.0116111\pi\)
\(432\) 0 0
\(433\) −218.413 −0.504418 −0.252209 0.967673i \(-0.581157\pi\)
−0.252209 + 0.967673i \(0.581157\pi\)
\(434\) 0 0
\(435\) 191.590i 0.440436i
\(436\) 0 0
\(437\) 408.436 + 707.431i 0.934635 + 1.61884i
\(438\) 0 0
\(439\) 562.488 + 324.753i 1.28129 + 0.739756i 0.977085 0.212849i \(-0.0682743\pi\)
0.304210 + 0.952605i \(0.401608\pi\)
\(440\) 0 0
\(441\) −127.013 74.0043i −0.288012 0.167810i
\(442\) 0 0
\(443\) 653.200 + 377.125i 1.47449 + 0.851298i 0.999587 0.0287397i \(-0.00914940\pi\)
0.474904 + 0.880038i \(0.342483\pi\)
\(444\) 0 0
\(445\) −349.857 605.969i −0.786195 1.36173i
\(446\) 0 0
\(447\) 258.123i 0.577457i
\(448\) 0 0
\(449\) −566.657 −1.26204 −0.631021 0.775766i \(-0.717364\pi\)
−0.631021 + 0.775766i \(0.717364\pi\)
\(450\) 0 0
\(451\) 12.4559 7.19142i 0.0276184 0.0159455i
\(452\) 0 0
\(453\) −35.8891 + 62.1617i −0.0792253 + 0.137222i
\(454\) 0 0
\(455\) −113.322 426.305i −0.249060 0.936933i
\(456\) 0 0
\(457\) 350.908 607.791i 0.767852 1.32996i −0.170873 0.985293i \(-0.554659\pi\)
0.938725 0.344666i \(-0.112008\pi\)
\(458\) 0 0
\(459\) 104.876 60.5500i 0.228487 0.131917i
\(460\) 0 0
\(461\) −475.670 −1.03182 −0.515911 0.856642i \(-0.672546\pi\)
−0.515911 + 0.856642i \(0.672546\pi\)
\(462\) 0 0
\(463\) 564.736i 1.21973i −0.792505 0.609866i \(-0.791223\pi\)
0.792505 0.609866i \(-0.208777\pi\)
\(464\) 0 0
\(465\) 5.00444 + 8.66794i 0.0107622 + 0.0186407i
\(466\) 0 0
\(467\) −674.760 389.573i −1.44488 0.834203i −0.446712 0.894678i \(-0.647405\pi\)
−0.998170 + 0.0604753i \(0.980738\pi\)
\(468\) 0 0
\(469\) −137.819 + 510.298i −0.293857 + 1.08806i
\(470\) 0 0
\(471\) −324.672 187.449i −0.689324 0.397981i
\(472\) 0 0
\(473\) −3.90144 6.75749i −0.00824828 0.0142864i
\(474\) 0 0
\(475\) 127.418i 0.268249i
\(476\) 0 0
\(477\) −103.790 −0.217589
\(478\) 0 0
\(479\) 204.157 117.870i 0.426214 0.246075i −0.271518 0.962433i \(-0.587526\pi\)
0.697732 + 0.716358i \(0.254192\pi\)
\(480\) 0 0
\(481\) 243.659 422.031i 0.506568 0.877402i
\(482\) 0 0
\(483\) −213.172 + 212.328i −0.441350 + 0.439603i
\(484\) 0 0
\(485\) 59.6090 103.246i 0.122905 0.212878i
\(486\) 0 0
\(487\) 304.438 175.767i 0.625129 0.360919i −0.153734 0.988112i \(-0.549130\pi\)
0.778863 + 0.627194i \(0.215797\pi\)
\(488\) 0 0
\(489\) 184.284 0.376858
\(490\) 0 0
\(491\) 586.350i 1.19420i 0.802169 + 0.597098i \(0.203680\pi\)
−0.802169 + 0.597098i \(0.796320\pi\)
\(492\) 0 0
\(493\) −280.416 485.694i −0.568794 0.985181i
\(494\) 0 0
\(495\) −2.22333 1.28364i −0.00449158 0.00259321i
\(496\) 0 0
\(497\) 151.750 + 152.353i 0.305331 + 0.306544i
\(498\) 0 0
\(499\) 253.489 + 146.352i 0.507994 + 0.293291i 0.732009 0.681295i \(-0.238583\pi\)
−0.224014 + 0.974586i \(0.571916\pi\)
\(500\) 0 0
\(501\) 230.662 + 399.519i 0.460404 + 0.797443i
\(502\) 0 0
\(503\) 577.054i 1.14722i 0.819127 + 0.573612i \(0.194458\pi\)
−0.819127 + 0.573612i \(0.805542\pi\)
\(504\) 0 0
\(505\) −299.825 −0.593712
\(506\) 0 0
\(507\) −28.4068 + 16.4007i −0.0560293 + 0.0323485i
\(508\) 0 0
\(509\) 410.890 711.683i 0.807250 1.39820i −0.107512 0.994204i \(-0.534288\pi\)
0.914762 0.403994i \(-0.132378\pi\)
\(510\) 0 0
\(511\) −307.803 83.1299i −0.602354 0.162681i
\(512\) 0 0
\(513\) 85.5221 148.129i 0.166710 0.288750i
\(514\) 0 0
\(515\) −551.984 + 318.688i −1.07181 + 0.618812i
\(516\) 0 0
\(517\) 11.2599 0.0217793
\(518\) 0 0
\(519\) 218.925i 0.421820i
\(520\) 0 0
\(521\) 45.0485 + 78.0263i 0.0864654 + 0.149763i 0.906015 0.423246i \(-0.139109\pi\)
−0.819549 + 0.573009i \(0.805776\pi\)
\(522\) 0 0
\(523\) −130.787 75.5102i −0.250072 0.144379i 0.369725 0.929141i \(-0.379452\pi\)
−0.619797 + 0.784762i \(0.712785\pi\)
\(524\) 0 0
\(525\) 45.3563 12.0568i 0.0863929 0.0229654i
\(526\) 0 0
\(527\) 25.3732 + 14.6493i 0.0481466 + 0.0277974i
\(528\) 0 0
\(529\) 43.4102 + 75.1887i 0.0820609 + 0.142134i
\(530\) 0 0
\(531\) 6.17501i 0.0116290i
\(532\) 0 0
\(533\) −1059.11 −1.98707
\(534\) 0 0
\(535\) −347.448 + 200.599i −0.649435 + 0.374952i
\(536\) 0 0
\(537\) 138.665 240.175i 0.258222 0.447254i
\(538\) 0 0
\(539\) 4.52981 + 7.91822i 0.00840411 + 0.0146906i
\(540\) 0 0
\(541\) −271.652 + 470.515i −0.502129 + 0.869714i 0.497868 + 0.867253i \(0.334117\pi\)
−0.999997 + 0.00246052i \(0.999217\pi\)
\(542\) 0 0
\(543\) 163.064 94.1450i 0.300302 0.173379i
\(544\) 0 0
\(545\) 297.010 0.544973
\(546\) 0 0
\(547\) 908.509i 1.66089i −0.557097 0.830447i \(-0.688085\pi\)
0.557097 0.830447i \(-0.311915\pi\)
\(548\) 0 0
\(549\) 46.6451 + 80.7918i 0.0849638 + 0.147162i
\(550\) 0 0
\(551\) −686.005 396.065i −1.24502 0.718812i
\(552\) 0 0
\(553\) 7.37350 1.96006i 0.0133336 0.00354442i
\(554\) 0 0
\(555\) −245.097 141.507i −0.441617 0.254967i
\(556\) 0 0
\(557\) 297.094 + 514.583i 0.533383 + 0.923847i 0.999240 + 0.0389864i \(0.0124129\pi\)
−0.465857 + 0.884860i \(0.654254\pi\)
\(558\) 0 0
\(559\) 574.581i 1.02787i
\(560\) 0 0
\(561\) −7.51508 −0.0133959
\(562\) 0 0
\(563\) 606.259 350.024i 1.07684 0.621712i 0.146796 0.989167i \(-0.453104\pi\)
0.930041 + 0.367455i \(0.119771\pi\)
\(564\) 0 0
\(565\) 430.475 745.604i 0.761902 1.31965i
\(566\) 0 0
\(567\) 60.8209 + 16.4262i 0.107268 + 0.0289704i
\(568\) 0 0
\(569\) −416.677 + 721.705i −0.732297 + 1.26837i 0.223603 + 0.974680i \(0.428218\pi\)
−0.955899 + 0.293694i \(0.905115\pi\)
\(570\) 0 0
\(571\) −796.086 + 459.621i −1.39420 + 0.804940i −0.993777 0.111392i \(-0.964469\pi\)
−0.400420 + 0.916332i \(0.631136\pi\)
\(572\) 0 0
\(573\) −39.3311 −0.0686407
\(574\) 0 0
\(575\) 96.0577i 0.167057i
\(576\) 0 0
\(577\) −5.50000 9.52628i −0.00953206 0.0165100i 0.861220 0.508232i \(-0.169701\pi\)
−0.870752 + 0.491722i \(0.836368\pi\)
\(578\) 0 0
\(579\) 442.059 + 255.223i 0.763487 + 0.440799i
\(580\) 0 0
\(581\) −194.810 195.584i −0.335301 0.336633i
\(582\) 0 0
\(583\) 5.57796 + 3.22044i 0.00956769 + 0.00552391i
\(584\) 0 0
\(585\) 94.5235 + 163.719i 0.161579 + 0.279862i
\(586\) 0 0
\(587\) 965.911i 1.64550i −0.568401 0.822752i \(-0.692438\pi\)
0.568401 0.822752i \(-0.307562\pi\)
\(588\) 0 0
\(589\) 41.3819 0.0702578
\(590\) 0 0
\(591\) −445.464 + 257.189i −0.753746 + 0.435175i
\(592\) 0 0
\(593\) 513.816 889.955i 0.866468 1.50077i 0.000886063 1.00000i \(-0.499718\pi\)
0.865582 0.500767i \(-0.166949\pi\)
\(594\) 0 0
\(595\) −531.307 + 529.204i −0.892953 + 0.889419i
\(596\) 0 0
\(597\) 223.142 386.493i 0.373772 0.647391i
\(598\) 0 0
\(599\) −695.499 + 401.547i −1.16110 + 0.670362i −0.951567 0.307440i \(-0.900528\pi\)
−0.209533 + 0.977802i \(0.567194\pi\)
\(600\) 0 0
\(601\) 702.916 1.16958 0.584789 0.811186i \(-0.301177\pi\)
0.584789 + 0.811186i \(0.301177\pi\)
\(602\) 0 0
\(603\) 226.535i 0.375680i
\(604\) 0 0
\(605\) −278.017 481.540i −0.459533 0.795935i
\(606\) 0 0
\(607\) 185.611 + 107.162i 0.305783 + 0.176544i 0.645038 0.764150i \(-0.276841\pi\)
−0.339255 + 0.940695i \(0.610175\pi\)
\(608\) 0 0
\(609\) 76.0722 281.670i 0.124913 0.462513i
\(610\) 0 0
\(611\) −718.061 414.573i −1.17522 0.678515i
\(612\) 0 0
\(613\) 369.332 + 639.701i 0.602498 + 1.04356i 0.992441 + 0.122719i \(0.0391614\pi\)
−0.389943 + 0.920839i \(0.627505\pi\)
\(614\) 0 0
\(615\) 615.086i 1.00014i
\(616\) 0 0
\(617\) 32.2398 0.0522526 0.0261263 0.999659i \(-0.491683\pi\)
0.0261263 + 0.999659i \(0.491683\pi\)
\(618\) 0 0
\(619\) −354.274 + 204.540i −0.572332 + 0.330436i −0.758080 0.652161i \(-0.773863\pi\)
0.185748 + 0.982597i \(0.440529\pi\)
\(620\) 0 0
\(621\) 64.4732 111.671i 0.103822 0.179824i
\(622\) 0 0
\(623\) −273.745 1029.79i −0.439399 1.65296i
\(624\) 0 0
\(625\) 256.623 444.484i 0.410597 0.711174i
\(626\) 0 0
\(627\) −9.19239 + 5.30723i −0.0146609 + 0.00846448i
\(628\) 0 0
\(629\) −828.453 −1.31710
\(630\) 0 0
\(631\) 428.212i 0.678625i −0.940674 0.339312i \(-0.889806\pi\)
0.940674 0.339312i \(-0.110194\pi\)
\(632\) 0 0
\(633\) 72.9968 + 126.434i 0.115319 + 0.199738i
\(634\) 0 0
\(635\) −610.116 352.251i −0.960813 0.554726i
\(636\) 0 0
\(637\) 2.66379 671.738i 0.00418177 1.05453i
\(638\) 0 0
\(639\) −79.8104 46.0785i −0.124899 0.0721104i
\(640\) 0 0
\(641\) −432.657 749.385i −0.674973 1.16909i −0.976477 0.215622i \(-0.930822\pi\)
0.301504 0.953465i \(-0.402511\pi\)
\(642\) 0 0
\(643\) 43.7834i 0.0680924i 0.999420 + 0.0340462i \(0.0108393\pi\)
−0.999420 + 0.0340462i \(0.989161\pi\)
\(644\) 0 0
\(645\) 333.692 0.517352
\(646\) 0 0
\(647\) 377.136 217.740i 0.582900 0.336538i −0.179385 0.983779i \(-0.557411\pi\)
0.762285 + 0.647241i \(0.224077\pi\)
\(648\) 0 0
\(649\) −0.191601 + 0.331862i −0.000295225 + 0.000511344i
\(650\) 0 0
\(651\) 3.91572 + 14.7304i 0.00601493 + 0.0226274i
\(652\) 0 0
\(653\) −335.432 + 580.986i −0.513679 + 0.889718i 0.486195 + 0.873850i \(0.338384\pi\)
−0.999874 + 0.0158676i \(0.994949\pi\)
\(654\) 0 0
\(655\) 770.081 444.607i 1.17570 0.678789i
\(656\) 0 0
\(657\) 136.642 0.207978
\(658\) 0 0
\(659\) 18.6391i 0.0282839i −0.999900 0.0141419i \(-0.995498\pi\)
0.999900 0.0141419i \(-0.00450167\pi\)
\(660\) 0 0
\(661\) 129.755 + 224.742i 0.196301 + 0.340003i 0.947326 0.320270i \(-0.103774\pi\)
−0.751025 + 0.660273i \(0.770440\pi\)
\(662\) 0 0
\(663\) 479.248 + 276.694i 0.722848 + 0.417336i
\(664\) 0 0
\(665\) −276.161 + 1022.53i −0.415280 + 1.53765i
\(666\) 0 0
\(667\) −517.164 298.584i −0.775358 0.447653i
\(668\) 0 0
\(669\) 147.854 + 256.090i 0.221007 + 0.382795i
\(670\) 0 0
\(671\) 5.78930i 0.00862787i
\(672\) 0 0
\(673\) −5.29772 −0.00787179 −0.00393590 0.999992i \(-0.501253\pi\)
−0.00393590 + 0.999992i \(0.501253\pi\)
\(674\) 0 0
\(675\) −17.4188 + 10.0567i −0.0258056 + 0.0148989i
\(676\) 0 0
\(677\) 312.667 541.556i 0.461843 0.799935i −0.537210 0.843448i \(-0.680522\pi\)
0.999053 + 0.0435135i \(0.0138552\pi\)
\(678\) 0 0
\(679\) 128.630 128.121i 0.189441 0.188691i
\(680\) 0 0
\(681\) 66.4950 115.173i 0.0976432 0.169123i
\(682\) 0 0
\(683\) −597.735 + 345.103i −0.875162 + 0.505275i −0.869060 0.494707i \(-0.835276\pi\)
−0.00610161 + 0.999981i \(0.501942\pi\)
\(684\) 0 0
\(685\) 997.019 1.45550
\(686\) 0 0
\(687\) 660.852i 0.961939i
\(688\) 0 0
\(689\) −237.143 410.745i −0.344185 0.596146i
\(690\) 0 0
\(691\) 909.589 + 525.151i 1.31634 + 0.759987i 0.983137 0.182869i \(-0.0585384\pi\)
0.333200 + 0.942856i \(0.391872\pi\)
\(692\) 0 0
\(693\) −2.75900 2.76997i −0.00398125 0.00399707i
\(694\) 0 0
\(695\) −2.91658 1.68389i −0.00419651 0.00242286i
\(696\) 0 0
\(697\) 900.256 + 1559.29i 1.29162 + 2.23714i
\(698\) 0 0
\(699\) 46.4502i 0.0664524i
\(700\) 0 0
\(701\) −865.251 −1.23431 −0.617155 0.786842i \(-0.711715\pi\)
−0.617155 + 0.786842i \(0.711715\pi\)
\(702\) 0 0
\(703\) −1013.36 + 585.063i −1.44148 + 0.832237i
\(704\) 0 0
\(705\) −240.766 + 417.019i −0.341512 + 0.591517i
\(706\) 0 0
\(707\) −440.795 119.048i −0.623472 0.168384i
\(708\) 0 0
\(709\) 601.050 1041.05i 0.847744 1.46834i −0.0354731 0.999371i \(-0.511294\pi\)
0.883217 0.468965i \(-0.155373\pi\)
\(710\) 0 0
\(711\) −2.83175 + 1.63491i −0.00398276 + 0.00229945i
\(712\) 0 0
\(713\) 31.1968 0.0437543
\(714\) 0 0
\(715\) 11.7317i 0.0164079i
\(716\) 0 0
\(717\) −371.642 643.703i −0.518329 0.897772i
\(718\) 0 0
\(719\) 268.331 + 154.921i 0.373200 + 0.215467i 0.674855 0.737950i \(-0.264206\pi\)
−0.301656 + 0.953417i \(0.597539\pi\)
\(720\) 0 0
\(721\) −938.051 + 249.358i −1.30104 + 0.345850i
\(722\) 0 0
\(723\) 431.746 + 249.269i 0.597159 + 0.344770i
\(724\) 0 0
\(725\) 46.5742 + 80.6688i 0.0642402 + 0.111267i
\(726\) 0 0
\(727\) 753.887i 1.03698i 0.855083 + 0.518492i \(0.173506\pi\)
−0.855083 + 0.518492i \(0.826494\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 845.934 488.400i 1.15723 0.668126i
\(732\) 0 0
\(733\) −194.286 + 336.512i −0.265055 + 0.459089i −0.967578 0.252572i \(-0.918724\pi\)
0.702523 + 0.711661i \(0.252057\pi\)
\(734\) 0 0
\(735\) −390.117 1.54701i −0.530771 0.00210478i
\(736\) 0 0
\(737\) −7.02902 + 12.1746i −0.00953734 + 0.0165191i
\(738\) 0 0
\(739\) −363.390 + 209.803i −0.491732 + 0.283902i −0.725293 0.688441i \(-0.758296\pi\)
0.233561 + 0.972342i \(0.424962\pi\)
\(740\) 0 0
\(741\) 781.618 1.05481
\(742\) 0 0
\(743\) 86.3362i 0.116199i −0.998311 0.0580997i \(-0.981496\pi\)
0.998311 0.0580997i \(-0.0185041\pi\)
\(744\) 0 0
\(745\) −342.513 593.250i −0.459749 0.796309i
\(746\) 0 0
\(747\) 102.457 + 59.1537i 0.137158 + 0.0791883i
\(748\) 0 0
\(749\) −590.459 + 156.959i −0.788329 + 0.209558i
\(750\) 0 0
\(751\) −438.068 252.919i −0.583314 0.336776i 0.179136 0.983824i \(-0.442670\pi\)
−0.762449 + 0.647048i \(0.776003\pi\)
\(752\) 0 0
\(753\) −97.1785 168.318i −0.129055 0.223530i
\(754\) 0 0
\(755\) 190.490i 0.252305i
\(756\) 0 0
\(757\) −240.329 −0.317475 −0.158737 0.987321i \(-0.550742\pi\)
−0.158737 + 0.987321i \(0.550742\pi\)
\(758\) 0 0
\(759\) −6.92993 + 4.00100i −0.00913035 + 0.00527141i
\(760\) 0 0
\(761\) −250.415 + 433.732i −0.329061 + 0.569950i −0.982326 0.187179i \(-0.940065\pi\)
0.653265 + 0.757129i \(0.273399\pi\)
\(762\) 0 0
\(763\) 436.657 + 117.930i 0.572290 + 0.154561i
\(764\) 0 0
\(765\) 160.692 278.327i 0.210055 0.363826i
\(766\) 0 0
\(767\) 24.4374 14.1089i 0.0318610 0.0183949i
\(768\) 0 0
\(769\) −713.336 −0.927615 −0.463807 0.885936i \(-0.653517\pi\)
−0.463807 + 0.885936i \(0.653517\pi\)
\(770\) 0 0
\(771\) 18.8041i 0.0243892i
\(772\) 0 0
\(773\) 105.072 + 181.990i 0.135928 + 0.235434i 0.925951 0.377643i \(-0.123265\pi\)
−0.790024 + 0.613076i \(0.789932\pi\)
\(774\) 0 0
\(775\) −4.21424 2.43309i −0.00543773 0.00313947i
\(776\) 0 0
\(777\) −304.149 305.358i −0.391441 0.392996i
\(778\) 0 0
\(779\) 2202.37 + 1271.54i 2.82718 + 1.63227i
\(780\) 0 0
\(781\) 2.85949 + 4.95278i 0.00366132 + 0.00634158i
\(782\) 0 0
\(783\) 125.041i 0.159695i
\(784\) 0 0
\(785\) −994.934 −1.26743
\(786\) 0 0
\(787\) 1284.22 741.445i 1.63179 0.942116i 0.648253 0.761425i \(-0.275500\pi\)
0.983540 0.180691i \(-0.0578334\pi\)
\(788\) 0 0
\(789\) 32.3048 55.9535i 0.0409440 0.0709170i
\(790\) 0 0
\(791\) 928.921 925.245i 1.17436 1.16972i
\(792\) 0 0
\(793\) −213.153 + 369.193i −0.268794 + 0.465564i
\(794\) 0 0
\(795\) −238.543 + 137.723i −0.300054 + 0.173236i
\(796\) 0 0
\(797\) 445.840 0.559398 0.279699 0.960088i \(-0.409765\pi\)
0.279699 + 0.960088i \(0.409765\pi\)
\(798\) 0 0
\(799\) 1409.57i 1.76416i
\(800\) 0 0
\(801\) 228.334 + 395.486i 0.285061 + 0.493740i
\(802\) 0 0
\(803\) −7.34351 4.23978i −0.00914509 0.00527992i
\(804\) 0 0
\(805\) −208.192 + 770.865i −0.258623 + 0.957596i
\(806\) 0 0
\(807\) 46.0038 + 26.5603i 0.0570059 + 0.0329124i
\(808\) 0 0
\(809\) 84.1885 + 145.819i 0.104065 + 0.180246i 0.913356 0.407162i \(-0.133482\pi\)
−0.809291 + 0.587408i \(0.800148\pi\)
\(810\) 0 0
\(811\) 1142.96i 1.40932i −0.709545 0.704660i \(-0.751100\pi\)
0.709545 0.704660i \(-0.248900\pi\)
\(812\) 0 0
\(813\) 536.522 0.659929
\(814\) 0 0
\(815\) 423.544 244.533i 0.519685 0.300041i
\(816\) 0 0
\(817\) 689.827 1194.82i 0.844342 1.46244i
\(818\) 0 0
\(819\) 73.9599 + 278.228i 0.0903051 + 0.339716i
\(820\) 0 0
\(821\) −72.4494 + 125.486i −0.0882454 + 0.152845i −0.906770 0.421627i \(-0.861459\pi\)
0.818524 + 0.574472i \(0.194793\pi\)
\(822\) 0 0
\(823\) 7.54995 4.35897i 0.00917370 0.00529644i −0.495406 0.868661i \(-0.664981\pi\)
0.504580 + 0.863365i \(0.331647\pi\)
\(824\) 0 0
\(825\) 1.24818 0.00151294
\(826\) 0 0
\(827\) 227.873i 0.275541i −0.990464 0.137771i \(-0.956006\pi\)
0.990464 0.137771i \(-0.0439937\pi\)
\(828\) 0 0
\(829\) 27.2629 + 47.2207i 0.0328865 + 0.0569611i 0.882000 0.471249i \(-0.156197\pi\)
−0.849114 + 0.528210i \(0.822863\pi\)
\(830\) 0 0
\(831\) 436.498 + 252.012i 0.525269 + 0.303264i
\(832\) 0 0
\(833\) −991.239 + 567.063i −1.18996 + 0.680748i
\(834\) 0 0
\(835\) 1060.27 + 612.149i 1.26979 + 0.733113i
\(836\) 0 0
\(837\) −3.26614 5.65713i −0.00390220 0.00675881i
\(838\) 0 0
\(839\) 1009.63i 1.20337i 0.798732 + 0.601687i \(0.205504\pi\)
−0.798732 + 0.601687i \(0.794496\pi\)
\(840\) 0 0
\(841\) −261.918 −0.311436
\(842\) 0 0
\(843\) −650.037 + 375.299i −0.771100 + 0.445195i
\(844\) 0 0
\(845\) −43.5254 + 75.3882i −0.0515094 + 0.0892168i
\(846\) 0 0
\(847\) −217.535 818.338i −0.256830 0.966160i
\(848\) 0 0
\(849\) 93.4602 161.878i 0.110083 0.190669i
\(850\) 0 0
\(851\) −763.948 + 441.066i −0.897706 + 0.518291i
\(852\) 0 0
\(853\) 1153.22 1.35196 0.675978 0.736921i \(-0.263721\pi\)
0.675978 + 0.736921i \(0.263721\pi\)
\(854\) 0 0
\(855\) 453.930i 0.530912i
\(856\) 0 0
\(857\) 255.480 + 442.503i 0.298109 + 0.516340i 0.975703 0.219096i \(-0.0703107\pi\)
−0.677594 + 0.735436i \(0.736977\pi\)
\(858\) 0 0
\(859\) 500.132 + 288.751i 0.582226 + 0.336148i 0.762017 0.647557i \(-0.224209\pi\)
−0.179792 + 0.983705i \(0.557542\pi\)
\(860\) 0 0
\(861\) −244.225 + 904.284i −0.283652 + 1.05027i
\(862\) 0 0
\(863\) −645.308 372.569i −0.747750 0.431714i 0.0771303 0.997021i \(-0.475424\pi\)
−0.824880 + 0.565307i \(0.808758\pi\)
\(864\) 0 0
\(865\) 290.499 + 503.159i 0.335837 + 0.581687i
\(866\) 0 0
\(867\) 440.210i 0.507739i
\(868\) 0 0
\(869\) 0.202915 0.000233503
\(870\) 0 0
\(871\) 896.503 517.596i 1.02928 0.594255i
\(872\) 0 0
\(873\) −38.9038 + 67.3834i −0.0445633 + 0.0771860i
\(874\) 0 0
\(875\) 658.177 655.573i 0.752203 0.749226i
\(876\) 0 0
\(877\) 282.403 489.137i 0.322011 0.557739i −0.658892 0.752237i \(-0.728975\pi\)
0.980903 + 0.194499i \(0.0623080\pi\)
\(878\) 0 0
\(879\) −202.054 + 116.656i −0.229868 + 0.132714i
\(880\) 0 0
\(881\) −743.531 −0.843963 −0.421981 0.906605i \(-0.638665\pi\)
−0.421981 + 0.906605i \(0.638665\pi\)
\(882\) 0 0
\(883\) 715.022i 0.809764i 0.914369 + 0.404882i \(0.132687\pi\)
−0.914369 + 0.404882i \(0.867313\pi\)
\(884\) 0 0
\(885\) −8.19386 14.1922i −0.00925860 0.0160364i
\(886\) 0 0
\(887\) −1278.48 738.131i −1.44135 0.832166i −0.443414 0.896317i \(-0.646233\pi\)
−0.997940 + 0.0641509i \(0.979566\pi\)
\(888\) 0 0
\(889\) −757.113 760.122i −0.851646 0.855030i
\(890\) 0 0
\(891\) 1.45106 + 0.837767i 0.00162857 + 0.000940255i
\(892\) 0 0
\(893\) 995.452 + 1724.17i 1.11473 + 1.93076i
\(894\) 0 0
\(895\) 736.001i 0.822347i
\(896\) 0 0
\(897\) 589.244 0.656905
\(898\) 0 0
\(899\) −26.1990 + 15.1260i −0.0291424 + 0.0168253i
\(900\) 0 0
\(901\) −403.149 + 698.275i −0.447447 + 0.775000i
\(902\) 0 0
\(903\) 490.585 + 132.495i 0.543284 + 0.146728i
\(904\) 0 0
\(905\) 249.849 432.751i 0.276076 0.478178i
\(906\) 0 0
\(907\) −1.66164 + 0.959350i −0.00183202 + 0.00105772i −0.500916 0.865496i \(-0.667003\pi\)
0.499084 + 0.866554i \(0.333670\pi\)
\(908\) 0 0
\(909\) 195.680 0.215270
\(910\) 0 0
\(911\) 1568.49i 1.72172i 0.508840 + 0.860861i \(0.330074\pi\)
−0.508840 + 0.860861i \(0.669926\pi\)
\(912\) 0 0
\(913\) −3.67089 6.35817i −0.00402069 0.00696404i
\(914\) 0 0
\(915\) 214.411 + 123.790i 0.234329 + 0.135290i
\(916\) 0 0
\(917\) 1308.69 347.882i 1.42714 0.379370i
\(918\) 0 0
\(919\) −366.523 211.612i −0.398828 0.230264i 0.287150 0.957886i \(-0.407292\pi\)
−0.685978 + 0.727622i \(0.740626\pi\)
\(920\) 0 0
\(921\) 461.193 + 798.810i 0.500753 + 0.867329i
\(922\) 0 0
\(923\) 421.128i 0.456260i
\(924\) 0 0
\(925\) 137.598 0.148754
\(926\) 0 0
\(927\) 360.252 207.992i 0.388622 0.224371i
\(928\) 0 0
\(929\) −141.536 + 245.148i −0.152353 + 0.263884i −0.932092 0.362221i \(-0.882018\pi\)
0.779739 + 0.626105i \(0.215352\pi\)
\(930\) 0 0
\(931\) −812.011 + 1393.65i −0.872192 + 1.49694i
\(932\) 0 0
\(933\) −443.216 + 767.672i −0.475043 + 0.822799i
\(934\) 0 0
\(935\) −17.2721 + 9.97204i −0.0184728 + 0.0106653i
\(936\) 0 0
\(937\) −480.799 −0.513126 −0.256563 0.966528i \(-0.582590\pi\)
−0.256563 + 0.966528i \(0.582590\pi\)
\(938\) 0 0
\(939\) 151.369i 0.161202i
\(940\) 0 0
\(941\) −240.048 415.776i −0.255099 0.441844i 0.709823 0.704380i \(-0.248775\pi\)
−0.964922 + 0.262535i \(0.915441\pi\)
\(942\) 0 0
\(943\) 1660.32 + 958.586i 1.76068 + 1.01653i
\(944\) 0 0
\(945\) 161.583 42.9527i 0.170987 0.0454526i
\(946\) 0 0
\(947\) −284.108 164.030i −0.300008 0.173210i 0.342439 0.939540i \(-0.388747\pi\)
−0.642446 + 0.766331i \(0.722080\pi\)
\(948\) 0 0
\(949\) 312.205 + 540.754i 0.328983 + 0.569815i
\(950\) 0 0
\(951\) 248.067i 0.260849i
\(952\) 0 0
\(953\) −882.514 −0.926038 −0.463019 0.886348i \(-0.653234\pi\)
−0.463019 + 0.886348i \(0.653234\pi\)
\(954\) 0 0
\(955\) −90.3956 + 52.1899i −0.0946551 + 0.0546491i
\(956\) 0 0
\(957\) 3.87982 6.72005i 0.00405415 0.00702199i
\(958\) 0 0
\(959\) 1465.79 + 395.875i 1.52846 + 0.412799i
\(960\) 0 0
\(961\) −479.710 + 830.882i −0.499178 + 0.864601i
\(962\) 0 0
\(963\) 226.762 130.921i 0.235474 0.135951i
\(964\) 0 0
\(965\) 1354.66 1.40379
\(966\) 0 0
\(967\) 1428.30i 1.47704i −0.674231 0.738520i \(-0.735525\pi\)
0.674231 0.738520i \(-0.264475\pi\)
\(968\) 0 0
\(969\) −664.384 1150.75i −0.685639 1.18756i
\(970\) 0 0
\(971\) 959.579 + 554.013i 0.988238 + 0.570560i 0.904747 0.425949i \(-0.140060\pi\)
0.0834910 + 0.996509i \(0.473393\pi\)
\(972\) 0 0
\(973\) −3.61928 3.63366i −0.00371971 0.00373449i
\(974\) 0 0
\(975\) −79.5982 45.9561i −0.0816392 0.0471344i
\(976\) 0 0
\(977\) 181.175 + 313.804i 0.185440 + 0.321191i 0.943725 0.330732i \(-0.107296\pi\)
−0.758285 + 0.651923i \(0.773962\pi\)
\(978\) 0 0
\(979\) 28.3393i 0.0289472i
\(980\) 0 0
\(981\) −193.844 −0.197598
\(982\) 0 0
\(983\) −1139.99 + 658.175i −1.15971 + 0.669558i −0.951234 0.308470i \(-0.900183\pi\)
−0.208474 + 0.978028i \(0.566850\pi\)
\(984\) 0 0
\(985\) −682.546 + 1182.21i −0.692941 + 1.20021i
\(986\) 0 0
\(987\) −519.549 + 517.493i −0.526392 + 0.524309i
\(988\) 0 0
\(989\) 520.045 900.744i 0.525829 0.910763i
\(990\) 0 0
\(991\) −1231.66 + 711.100i −1.24285 + 0.717558i −0.969673 0.244407i \(-0.921407\pi\)
−0.273174 + 0.961965i \(0.588073\pi\)
\(992\) 0 0
\(993\) −1056.86 −1.06431
\(994\) 0 0
\(995\) 1184.38i 1.19033i
\(996\) 0 0
\(997\) −660.969 1144.83i −0.662958 1.14828i −0.979835 0.199811i \(-0.935967\pi\)
0.316876 0.948467i \(-0.397366\pi\)
\(998\) 0 0
\(999\) 159.963 + 92.3545i 0.160123 + 0.0924469i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.3.be.d.79.1 6
3.2 odd 2 1008.3.cd.h.415.3 6
4.3 odd 2 336.3.be.f.79.1 yes 6
7.2 even 3 2352.3.m.n.1471.3 6
7.4 even 3 336.3.be.f.319.1 yes 6
7.5 odd 6 2352.3.m.o.1471.4 6
12.11 even 2 1008.3.cd.i.415.3 6
21.11 odd 6 1008.3.cd.i.991.3 6
28.11 odd 6 inner 336.3.be.d.319.1 yes 6
28.19 even 6 2352.3.m.o.1471.1 6
28.23 odd 6 2352.3.m.n.1471.6 6
84.11 even 6 1008.3.cd.h.991.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.be.d.79.1 6 1.1 even 1 trivial
336.3.be.d.319.1 yes 6 28.11 odd 6 inner
336.3.be.f.79.1 yes 6 4.3 odd 2
336.3.be.f.319.1 yes 6 7.4 even 3
1008.3.cd.h.415.3 6 3.2 odd 2
1008.3.cd.h.991.3 6 84.11 even 6
1008.3.cd.i.415.3 6 12.11 even 2
1008.3.cd.i.991.3 6 21.11 odd 6
2352.3.m.n.1471.3 6 7.2 even 3
2352.3.m.n.1471.6 6 28.23 odd 6
2352.3.m.o.1471.1 6 28.19 even 6
2352.3.m.o.1471.4 6 7.5 odd 6