Properties

Label 1008.3.cd.i.415.3
Level $1008$
Weight $3$
Character 1008.415
Analytic conductor $27.466$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(415,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.415"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.cd (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-1,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.1364138928.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 35x^{4} + 364x^{2} + 972 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.3
Root \(4.07390i\) of defining polynomial
Character \(\chi\) \(=\) 1008.415
Dual form 1008.3.cd.i.991.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29832 - 3.98081i) q^{5} +(4.95955 - 4.93992i) q^{7} +(-0.161228 + 0.0930852i) q^{11} +13.7090 q^{13} +(11.6528 + 20.1833i) q^{17} +(28.5074 + 16.4587i) q^{19} +(-21.4911 - 12.4079i) q^{23} +(1.93542 + 3.35224i) q^{25} -24.0641 q^{29} +(1.08871 - 0.628570i) q^{31} +(-8.26626 - 31.0966i) q^{35} +(17.7736 - 30.7848i) q^{37} +77.2563 q^{41} -41.9125i q^{43} +(-52.3787 - 30.2408i) q^{47} +(0.194309 - 48.9996i) q^{49} +(17.2983 + 29.9616i) q^{53} +0.855760i q^{55} +(1.78257 - 1.02917i) q^{59} +(-15.5484 + 26.9306i) q^{61} +(31.5078 - 54.5731i) q^{65} +(-65.3950 + 37.7558i) q^{67} -30.7190i q^{71} +(22.7736 + 39.4451i) q^{73} +(-0.339786 + 1.25812i) q^{77} +(0.943915 + 0.544970i) q^{79} +39.4358i q^{83} +107.128 q^{85} +(76.1113 - 131.829i) q^{89} +(67.9907 - 67.7216i) q^{91} +(131.038 - 75.6550i) q^{95} -25.9359 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{5} + 11 q^{7} + 3 q^{11} - 44 q^{13} - 8 q^{17} + 30 q^{19} + 24 q^{23} - 14 q^{25} - 34 q^{29} + 39 q^{31} - 90 q^{35} + 6 q^{37} + 136 q^{41} - 258 q^{47} + 157 q^{49} + 89 q^{53} + 63 q^{59}+ \cdots - 266 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.29832 3.98081i 0.459665 0.796163i −0.539278 0.842128i \(-0.681303\pi\)
0.998943 + 0.0459650i \(0.0146363\pi\)
\(6\) 0 0
\(7\) 4.95955 4.93992i 0.708507 0.705703i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.161228 + 0.0930852i −0.0146571 + 0.00846229i −0.507311 0.861763i \(-0.669360\pi\)
0.492654 + 0.870226i \(0.336027\pi\)
\(12\) 0 0
\(13\) 13.7090 1.05454 0.527271 0.849697i \(-0.323215\pi\)
0.527271 + 0.849697i \(0.323215\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 11.6528 + 20.1833i 0.685462 + 1.18725i 0.973292 + 0.229573i \(0.0737329\pi\)
−0.287830 + 0.957682i \(0.592934\pi\)
\(18\) 0 0
\(19\) 28.5074 + 16.4587i 1.50039 + 0.866249i 1.00000 0.000447947i \(0.000142586\pi\)
0.500388 + 0.865801i \(0.333191\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −21.4911 12.4079i −0.934394 0.539472i −0.0461952 0.998932i \(-0.514710\pi\)
−0.888198 + 0.459460i \(0.848043\pi\)
\(24\) 0 0
\(25\) 1.93542 + 3.35224i 0.0774167 + 0.134090i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −24.0641 −0.829798 −0.414899 0.909868i \(-0.636183\pi\)
−0.414899 + 0.909868i \(0.636183\pi\)
\(30\) 0 0
\(31\) 1.08871 0.628570i 0.0351198 0.0202764i −0.482337 0.875986i \(-0.660212\pi\)
0.517457 + 0.855709i \(0.326879\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.26626 31.0966i −0.236179 0.888474i
\(36\) 0 0
\(37\) 17.7736 30.7848i 0.480368 0.832022i −0.519378 0.854545i \(-0.673836\pi\)
0.999746 + 0.0225223i \(0.00716968\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 77.2563 1.88430 0.942150 0.335192i \(-0.108801\pi\)
0.942150 + 0.335192i \(0.108801\pi\)
\(42\) 0 0
\(43\) 41.9125i 0.974710i −0.873204 0.487355i \(-0.837962\pi\)
0.873204 0.487355i \(-0.162038\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −52.3787 30.2408i −1.11444 0.643422i −0.174464 0.984664i \(-0.555819\pi\)
−0.939976 + 0.341242i \(0.889153\pi\)
\(48\) 0 0
\(49\) 0.194309 48.9996i 0.00396548 0.999992i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 17.2983 + 29.9616i 0.326383 + 0.565313i 0.981791 0.189962i \(-0.0608366\pi\)
−0.655408 + 0.755275i \(0.727503\pi\)
\(54\) 0 0
\(55\) 0.855760i 0.0155593i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.78257 1.02917i 0.0302131 0.0174435i −0.484817 0.874615i \(-0.661114\pi\)
0.515030 + 0.857172i \(0.327781\pi\)
\(60\) 0 0
\(61\) −15.5484 + 26.9306i −0.254891 + 0.441485i −0.964866 0.262742i \(-0.915373\pi\)
0.709975 + 0.704227i \(0.248706\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 31.5078 54.5731i 0.484736 0.839587i
\(66\) 0 0
\(67\) −65.3950 + 37.7558i −0.976044 + 0.563519i −0.901074 0.433666i \(-0.857220\pi\)
−0.0749708 + 0.997186i \(0.523886\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 30.7190i 0.432662i −0.976320 0.216331i \(-0.930591\pi\)
0.976320 0.216331i \(-0.0694091\pi\)
\(72\) 0 0
\(73\) 22.7736 + 39.4451i 0.311967 + 0.540344i 0.978788 0.204875i \(-0.0656787\pi\)
−0.666821 + 0.745218i \(0.732345\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.339786 + 1.25812i −0.00441281 + 0.0163392i
\(78\) 0 0
\(79\) 0.943915 + 0.544970i 0.0119483 + 0.00689835i 0.505962 0.862556i \(-0.331138\pi\)
−0.494014 + 0.869454i \(0.664471\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 39.4358i 0.475130i 0.971372 + 0.237565i \(0.0763493\pi\)
−0.971372 + 0.237565i \(0.923651\pi\)
\(84\) 0 0
\(85\) 107.128 1.26033
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 76.1113 131.829i 0.855183 1.48122i −0.0212925 0.999773i \(-0.506778\pi\)
0.876475 0.481447i \(-0.159889\pi\)
\(90\) 0 0
\(91\) 67.9907 67.7216i 0.747151 0.744194i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 131.038 75.6550i 1.37935 0.796368i
\(96\) 0 0
\(97\) −25.9359 −0.267380 −0.133690 0.991023i \(-0.542683\pi\)
−0.133690 + 0.991023i \(0.542683\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −32.6134 56.4881i −0.322905 0.559288i 0.658181 0.752860i \(-0.271326\pi\)
−0.981086 + 0.193572i \(0.937993\pi\)
\(102\) 0 0
\(103\) −120.084 69.3306i −1.16586 0.673112i −0.213162 0.977017i \(-0.568376\pi\)
−0.952703 + 0.303904i \(0.901710\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 75.5872 + 43.6403i 0.706423 + 0.407853i 0.809735 0.586796i \(-0.199611\pi\)
−0.103312 + 0.994649i \(0.532944\pi\)
\(108\) 0 0
\(109\) −32.3073 55.9578i −0.296397 0.513375i 0.678912 0.734220i \(-0.262452\pi\)
−0.975309 + 0.220845i \(0.929118\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 187.299 1.65752 0.828758 0.559607i \(-0.189048\pi\)
0.828758 + 0.559607i \(0.189048\pi\)
\(114\) 0 0
\(115\) −98.7868 + 57.0346i −0.859015 + 0.495953i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 157.497 + 42.5361i 1.32350 + 0.357446i
\(120\) 0 0
\(121\) −60.4827 + 104.759i −0.499857 + 0.865777i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 132.709 1.06167
\(126\) 0 0
\(127\) 153.264i 1.20680i −0.797437 0.603402i \(-0.793811\pi\)
0.797437 0.603402i \(-0.206189\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −167.531 96.7241i −1.27886 0.738352i −0.302224 0.953237i \(-0.597729\pi\)
−0.976639 + 0.214885i \(0.931062\pi\)
\(132\) 0 0
\(133\) 222.689 59.1963i 1.67435 0.445085i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 108.451 + 187.842i 0.791611 + 1.37111i 0.924969 + 0.380043i \(0.124091\pi\)
−0.133358 + 0.991068i \(0.542576\pi\)
\(138\) 0 0
\(139\) 0.732659i 0.00527093i −0.999997 0.00263546i \(-0.999161\pi\)
0.999997 0.00263546i \(-0.000838895\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.21029 + 1.27611i −0.0154566 + 0.00892384i
\(144\) 0 0
\(145\) −55.3072 + 95.7948i −0.381429 + 0.660654i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 74.5137 129.062i 0.500092 0.866185i −0.499908 0.866079i \(-0.666633\pi\)
1.00000 0.000106336i \(-3.38477e-5\pi\)
\(150\) 0 0
\(151\) −35.8891 + 20.7206i −0.237676 + 0.137222i −0.614108 0.789222i \(-0.710484\pi\)
0.376432 + 0.926444i \(0.377151\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.77863i 0.0372815i
\(156\) 0 0
\(157\) 108.224 + 187.449i 0.689324 + 1.19394i 0.972057 + 0.234746i \(0.0754257\pi\)
−0.282733 + 0.959199i \(0.591241\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −167.880 + 44.6267i −1.04273 + 0.277185i
\(162\) 0 0
\(163\) 92.1419 + 53.1981i 0.565288 + 0.326369i 0.755265 0.655420i \(-0.227508\pi\)
−0.189977 + 0.981788i \(0.560841\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 266.346i 1.59489i −0.603394 0.797443i \(-0.706185\pi\)
0.603394 0.797443i \(-0.293815\pi\)
\(168\) 0 0
\(169\) 18.9379 0.112059
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −63.1981 + 109.462i −0.365307 + 0.632730i −0.988825 0.149079i \(-0.952369\pi\)
0.623519 + 0.781809i \(0.285703\pi\)
\(174\) 0 0
\(175\) 26.1586 + 7.06480i 0.149478 + 0.0403703i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −138.665 + 80.0585i −0.774667 + 0.447254i −0.834537 0.550952i \(-0.814265\pi\)
0.0598702 + 0.998206i \(0.480931\pi\)
\(180\) 0 0
\(181\) −108.709 −0.600604 −0.300302 0.953844i \(-0.597087\pi\)
−0.300302 + 0.953844i \(0.597087\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −81.6991 141.507i −0.441617 0.764902i
\(186\) 0 0
\(187\) −3.75754 2.16942i −0.0200938 0.0116012i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.6656 + 11.3539i 0.102961 + 0.0594446i 0.550596 0.834772i \(-0.314400\pi\)
−0.447635 + 0.894216i \(0.647734\pi\)
\(192\) 0 0
\(193\) −147.353 255.223i −0.763487 1.32240i −0.941043 0.338287i \(-0.890152\pi\)
0.177556 0.984111i \(-0.443181\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −296.976 −1.50749 −0.753746 0.657166i \(-0.771755\pi\)
−0.753746 + 0.657166i \(0.771755\pi\)
\(198\) 0 0
\(199\) 223.142 128.831i 1.12131 0.647391i 0.179579 0.983744i \(-0.442527\pi\)
0.941736 + 0.336352i \(0.109193\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −119.347 + 118.875i −0.587918 + 0.585591i
\(204\) 0 0
\(205\) 177.560 307.543i 0.866146 1.50021i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.12826 −0.0293218
\(210\) 0 0
\(211\) 84.2895i 0.399476i 0.979849 + 0.199738i \(0.0640091\pi\)
−0.979849 + 0.199738i \(0.935991\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −166.846 96.3285i −0.776027 0.448040i
\(216\) 0 0
\(217\) 2.29445 8.49559i 0.0105735 0.0391502i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 159.749 + 276.694i 0.722848 + 1.25201i
\(222\) 0 0
\(223\) 170.727i 0.765591i 0.923833 + 0.382795i \(0.125039\pi\)
−0.923833 + 0.382795i \(0.874961\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −66.4950 + 38.3909i −0.292930 + 0.169123i −0.639262 0.768989i \(-0.720760\pi\)
0.346333 + 0.938112i \(0.387427\pi\)
\(228\) 0 0
\(229\) −190.772 + 330.426i −0.833064 + 1.44291i 0.0625335 + 0.998043i \(0.480082\pi\)
−0.895597 + 0.444866i \(0.853251\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.4090 + 23.2251i −0.0575495 + 0.0996786i −0.893365 0.449332i \(-0.851662\pi\)
0.835815 + 0.549011i \(0.184995\pi\)
\(234\) 0 0
\(235\) −240.766 + 139.006i −1.02454 + 0.591517i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 429.135i 1.79554i 0.440460 + 0.897772i \(0.354815\pi\)
−0.440460 + 0.897772i \(0.645185\pi\)
\(240\) 0 0
\(241\) −143.915 249.269i −0.597159 1.03431i −0.993238 0.116094i \(-0.962963\pi\)
0.396079 0.918216i \(-0.370371\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −194.612 113.390i −0.794334 0.462818i
\(246\) 0 0
\(247\) 390.809 + 225.634i 1.58222 + 0.913496i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 112.212i 0.447060i 0.974697 + 0.223530i \(0.0717581\pi\)
−0.974697 + 0.223530i \(0.928242\pi\)
\(252\) 0 0
\(253\) 4.61996 0.0182607
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.42828 9.40205i 0.0211217 0.0365839i −0.855271 0.518180i \(-0.826610\pi\)
0.876393 + 0.481597i \(0.159943\pi\)
\(258\) 0 0
\(259\) −63.9255 240.479i −0.246816 0.928491i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −32.3048 + 18.6512i −0.122832 + 0.0709170i −0.560157 0.828386i \(-0.689259\pi\)
0.437325 + 0.899303i \(0.355926\pi\)
\(264\) 0 0
\(265\) 159.029 0.600108
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.3346 + 26.5603i 0.0570059 + 0.0987372i 0.893120 0.449818i \(-0.148511\pi\)
−0.836114 + 0.548556i \(0.815178\pi\)
\(270\) 0 0
\(271\) 268.261 + 154.881i 0.989894 + 0.571515i 0.905243 0.424895i \(-0.139689\pi\)
0.0846512 + 0.996411i \(0.473022\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.624089 0.360318i −0.00226941 0.00131025i
\(276\) 0 0
\(277\) −145.499 252.012i −0.525269 0.909792i −0.999567 0.0294279i \(-0.990631\pi\)
0.474298 0.880364i \(-0.342702\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −433.358 −1.54220 −0.771100 0.636714i \(-0.780293\pi\)
−0.771100 + 0.636714i \(0.780293\pi\)
\(282\) 0 0
\(283\) 93.4602 53.9593i 0.330248 0.190669i −0.325703 0.945472i \(-0.605601\pi\)
0.655951 + 0.754803i \(0.272268\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 383.157 381.640i 1.33504 1.32976i
\(288\) 0 0
\(289\) −127.078 + 220.105i −0.439715 + 0.761609i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −134.703 −0.459736 −0.229868 0.973222i \(-0.573829\pi\)
−0.229868 + 0.973222i \(0.573829\pi\)
\(294\) 0 0
\(295\) 9.46145i 0.0320727i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −294.622 170.100i −0.985357 0.568896i
\(300\) 0 0
\(301\) −207.045 207.867i −0.687856 0.690589i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 71.4704 + 123.790i 0.234329 + 0.405870i
\(306\) 0 0
\(307\) 532.540i 1.73466i 0.497736 + 0.867329i \(0.334165\pi\)
−0.497736 + 0.867329i \(0.665835\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 443.216 255.891i 1.42513 0.822799i 0.428399 0.903590i \(-0.359078\pi\)
0.996731 + 0.0807901i \(0.0257444\pi\)
\(312\) 0 0
\(313\) −43.6965 + 75.6845i −0.139605 + 0.241803i −0.927347 0.374202i \(-0.877917\pi\)
0.787742 + 0.616005i \(0.211250\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −71.6108 + 124.034i −0.225902 + 0.391273i −0.956590 0.291439i \(-0.905866\pi\)
0.730688 + 0.682712i \(0.239199\pi\)
\(318\) 0 0
\(319\) 3.87982 2.24002i 0.0121624 0.00702199i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 767.164i 2.37512i
\(324\) 0 0
\(325\) 26.5327 + 45.9561i 0.0816392 + 0.141403i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −409.162 + 108.766i −1.24365 + 0.330595i
\(330\) 0 0
\(331\) −528.430 305.089i −1.59647 0.921720i −0.992161 0.124966i \(-0.960118\pi\)
−0.604304 0.796754i \(-0.706549\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 347.100i 1.03612i
\(336\) 0 0
\(337\) 243.994 0.724018 0.362009 0.932175i \(-0.382091\pi\)
0.362009 + 0.932175i \(0.382091\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.117021 + 0.202687i −0.000343170 + 0.000594389i
\(342\) 0 0
\(343\) −241.091 243.976i −0.702888 0.711300i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −312.604 + 180.482i −0.900875 + 0.520121i −0.877484 0.479606i \(-0.840780\pi\)
−0.0233911 + 0.999726i \(0.507446\pi\)
\(348\) 0 0
\(349\) −375.119 −1.07484 −0.537420 0.843314i \(-0.680601\pi\)
−0.537420 + 0.843314i \(0.680601\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −76.8294 133.072i −0.217647 0.376976i 0.736441 0.676502i \(-0.236505\pi\)
−0.954088 + 0.299526i \(0.903171\pi\)
\(354\) 0 0
\(355\) −122.287 70.6022i −0.344469 0.198880i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −46.9502 27.1067i −0.130780 0.0755061i 0.433182 0.901306i \(-0.357391\pi\)
−0.563963 + 0.825800i \(0.690724\pi\)
\(360\) 0 0
\(361\) 361.280 + 625.755i 1.00078 + 1.73339i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 209.365 0.573602
\(366\) 0 0
\(367\) 130.929 75.5921i 0.356756 0.205973i −0.310901 0.950442i \(-0.600631\pi\)
0.667657 + 0.744469i \(0.267297\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 233.800 + 63.1436i 0.630188 + 0.170198i
\(372\) 0 0
\(373\) −316.054 + 547.422i −0.847330 + 1.46762i 0.0362517 + 0.999343i \(0.488458\pi\)
−0.883582 + 0.468276i \(0.844875\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −329.896 −0.875056
\(378\) 0 0
\(379\) 316.045i 0.833892i 0.908931 + 0.416946i \(0.136900\pi\)
−0.908931 + 0.416946i \(0.863100\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 237.606 + 137.182i 0.620380 + 0.358177i 0.777017 0.629480i \(-0.216732\pi\)
−0.156637 + 0.987656i \(0.550065\pi\)
\(384\) 0 0
\(385\) 4.22739 + 4.24419i 0.0109802 + 0.0110239i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −117.536 203.579i −0.302150 0.523338i 0.674473 0.738299i \(-0.264371\pi\)
−0.976623 + 0.214961i \(0.931038\pi\)
\(390\) 0 0
\(391\) 578.348i 1.47915i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.33884 2.50503i 0.0109844 0.00634186i
\(396\) 0 0
\(397\) −284.092 + 492.061i −0.715596 + 1.23945i 0.247133 + 0.968982i \(0.420512\pi\)
−0.962729 + 0.270468i \(0.912822\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −115.696 + 200.391i −0.288519 + 0.499729i −0.973456 0.228873i \(-0.926496\pi\)
0.684938 + 0.728602i \(0.259829\pi\)
\(402\) 0 0
\(403\) 14.9252 8.61709i 0.0370353 0.0213824i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.61785i 0.0162601i
\(408\) 0 0
\(409\) −33.8249 58.5865i −0.0827016 0.143243i 0.821708 0.569909i \(-0.193021\pi\)
−0.904409 + 0.426666i \(0.859688\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.75675 13.9100i 0.00909624 0.0336804i
\(414\) 0 0
\(415\) 156.987 + 90.6362i 0.378281 + 0.218400i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 111.646i 0.266459i 0.991085 + 0.133229i \(0.0425347\pi\)
−0.991085 + 0.133229i \(0.957465\pi\)
\(420\) 0 0
\(421\) 509.147 1.20937 0.604687 0.796463i \(-0.293298\pi\)
0.604687 + 0.796463i \(0.293298\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −45.1063 + 78.1263i −0.106132 + 0.183827i
\(426\) 0 0
\(427\) 55.9220 + 210.371i 0.130965 + 0.492673i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 659.682 380.868i 1.53059 0.883684i 0.531251 0.847215i \(-0.321722\pi\)
0.999335 0.0364694i \(-0.0116111\pi\)
\(432\) 0 0
\(433\) −218.413 −0.504418 −0.252209 0.967673i \(-0.581157\pi\)
−0.252209 + 0.967673i \(0.581157\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −408.436 707.431i −0.934635 1.61884i
\(438\) 0 0
\(439\) −562.488 324.753i −1.28129 0.739756i −0.304210 0.952605i \(-0.598392\pi\)
−0.977085 + 0.212849i \(0.931726\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 653.200 + 377.125i 1.47449 + 0.851298i 0.999587 0.0287397i \(-0.00914940\pi\)
0.474904 + 0.880038i \(0.342483\pi\)
\(444\) 0 0
\(445\) −349.857 605.969i −0.786195 1.36173i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 566.657 1.26204 0.631021 0.775766i \(-0.282636\pi\)
0.631021 + 0.775766i \(0.282636\pi\)
\(450\) 0 0
\(451\) −12.4559 + 7.19142i −0.0276184 + 0.0159455i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −113.322 426.305i −0.249060 0.936933i
\(456\) 0 0
\(457\) 350.908 607.791i 0.767852 1.32996i −0.170873 0.985293i \(-0.554659\pi\)
0.938725 0.344666i \(-0.112008\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 475.670 1.03182 0.515911 0.856642i \(-0.327454\pi\)
0.515911 + 0.856642i \(0.327454\pi\)
\(462\) 0 0
\(463\) 564.736i 1.21973i 0.792505 + 0.609866i \(0.208777\pi\)
−0.792505 + 0.609866i \(0.791223\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −674.760 389.573i −1.44488 0.834203i −0.446712 0.894678i \(-0.647405\pi\)
−0.998170 + 0.0604753i \(0.980738\pi\)
\(468\) 0 0
\(469\) −137.819 + 510.298i −0.293857 + 1.08806i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.90144 + 6.75749i 0.00824828 + 0.0142864i
\(474\) 0 0
\(475\) 127.418i 0.268249i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 204.157 117.870i 0.426214 0.246075i −0.271518 0.962433i \(-0.587526\pi\)
0.697732 + 0.716358i \(0.254192\pi\)
\(480\) 0 0
\(481\) 243.659 422.031i 0.506568 0.877402i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −59.6090 + 103.246i −0.122905 + 0.212878i
\(486\) 0 0
\(487\) −304.438 + 175.767i −0.625129 + 0.360919i −0.778863 0.627194i \(-0.784203\pi\)
0.153734 + 0.988112i \(0.450870\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 586.350i 1.19420i 0.802169 + 0.597098i \(0.203680\pi\)
−0.802169 + 0.597098i \(0.796320\pi\)
\(492\) 0 0
\(493\) −280.416 485.694i −0.568794 0.985181i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −151.750 152.353i −0.305331 0.306544i
\(498\) 0 0
\(499\) −253.489 146.352i −0.507994 0.293291i 0.224014 0.974586i \(-0.428084\pi\)
−0.732009 + 0.681295i \(0.761417\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 577.054i 1.14722i 0.819127 + 0.573612i \(0.194458\pi\)
−0.819127 + 0.573612i \(0.805542\pi\)
\(504\) 0 0
\(505\) −299.825 −0.593712
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −410.890 + 711.683i −0.807250 + 1.39820i 0.107512 + 0.994204i \(0.465712\pi\)
−0.914762 + 0.403994i \(0.867622\pi\)
\(510\) 0 0
\(511\) 307.803 + 83.1299i 0.602354 + 0.162681i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −551.984 + 318.688i −1.07181 + 0.618812i
\(516\) 0 0
\(517\) 11.2599 0.0217793
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −45.0485 78.0263i −0.0864654 0.149763i 0.819549 0.573009i \(-0.194224\pi\)
−0.906015 + 0.423246i \(0.860891\pi\)
\(522\) 0 0
\(523\) 130.787 + 75.5102i 0.250072 + 0.144379i 0.619797 0.784762i \(-0.287215\pi\)
−0.369725 + 0.929141i \(0.620548\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.3732 + 14.6493i 0.0481466 + 0.0277974i
\(528\) 0 0
\(529\) 43.4102 + 75.1887i 0.0820609 + 0.142134i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1059.11 1.98707
\(534\) 0 0
\(535\) 347.448 200.599i 0.649435 0.374952i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.52981 + 7.91822i 0.00840411 + 0.0146906i
\(540\) 0 0
\(541\) −271.652 + 470.515i −0.502129 + 0.869714i 0.497868 + 0.867253i \(0.334117\pi\)
−0.999997 + 0.00246052i \(0.999217\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −297.010 −0.544973
\(546\) 0 0
\(547\) 908.509i 1.66089i 0.557097 + 0.830447i \(0.311915\pi\)
−0.557097 + 0.830447i \(0.688085\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −686.005 396.065i −1.24502 0.718812i
\(552\) 0 0
\(553\) 7.37350 1.96006i 0.0133336 0.00354442i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −297.094 514.583i −0.533383 0.923847i −0.999240 0.0389864i \(-0.987587\pi\)
0.465857 0.884860i \(-0.345746\pi\)
\(558\) 0 0
\(559\) 574.581i 1.02787i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 606.259 350.024i 1.07684 0.621712i 0.146796 0.989167i \(-0.453104\pi\)
0.930041 + 0.367455i \(0.119771\pi\)
\(564\) 0 0
\(565\) 430.475 745.604i 0.761902 1.31965i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 416.677 721.705i 0.732297 1.26837i −0.223603 0.974680i \(-0.571782\pi\)
0.955899 0.293694i \(-0.0948848\pi\)
\(570\) 0 0
\(571\) 796.086 459.621i 1.39420 0.804940i 0.400420 0.916332i \(-0.368864\pi\)
0.993777 + 0.111392i \(0.0355309\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 96.0577i 0.167057i
\(576\) 0 0
\(577\) −5.50000 9.52628i −0.00953206 0.0165100i 0.861220 0.508232i \(-0.169701\pi\)
−0.870752 + 0.491722i \(0.836368\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 194.810 + 195.584i 0.335301 + 0.336633i
\(582\) 0 0
\(583\) −5.57796 3.22044i −0.00956769 0.00552391i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 965.911i 1.64550i −0.568401 0.822752i \(-0.692438\pi\)
0.568401 0.822752i \(-0.307562\pi\)
\(588\) 0 0
\(589\) 41.3819 0.0702578
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −513.816 + 889.955i −0.866468 + 1.50077i −0.000886063 1.00000i \(0.500282\pi\)
−0.865582 + 0.500767i \(0.833051\pi\)
\(594\) 0 0
\(595\) 531.307 529.204i 0.892953 0.889419i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −695.499 + 401.547i −1.16110 + 0.670362i −0.951567 0.307440i \(-0.900528\pi\)
−0.209533 + 0.977802i \(0.567194\pi\)
\(600\) 0 0
\(601\) 702.916 1.16958 0.584789 0.811186i \(-0.301177\pi\)
0.584789 + 0.811186i \(0.301177\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 278.017 + 481.540i 0.459533 + 0.795935i
\(606\) 0 0
\(607\) −185.611 107.162i −0.305783 0.176544i 0.339255 0.940695i \(-0.389825\pi\)
−0.645038 + 0.764150i \(0.723159\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −718.061 414.573i −1.17522 0.678515i
\(612\) 0 0
\(613\) 369.332 + 639.701i 0.602498 + 1.04356i 0.992441 + 0.122719i \(0.0391614\pi\)
−0.389943 + 0.920839i \(0.627505\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.2398 −0.0522526 −0.0261263 0.999659i \(-0.508317\pi\)
−0.0261263 + 0.999659i \(0.508317\pi\)
\(618\) 0 0
\(619\) 354.274 204.540i 0.572332 0.330436i −0.185748 0.982597i \(-0.559471\pi\)
0.758080 + 0.652161i \(0.226137\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −273.745 1029.79i −0.439399 1.65296i
\(624\) 0 0
\(625\) 256.623 444.484i 0.410597 0.711174i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 828.453 1.31710
\(630\) 0 0
\(631\) 428.212i 0.678625i 0.940674 + 0.339312i \(0.110194\pi\)
−0.940674 + 0.339312i \(0.889806\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −610.116 352.251i −0.960813 0.554726i
\(636\) 0 0
\(637\) 2.66379 671.738i 0.00418177 1.05453i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 432.657 + 749.385i 0.674973 + 1.16909i 0.976477 + 0.215622i \(0.0691779\pi\)
−0.301504 + 0.953465i \(0.597489\pi\)
\(642\) 0 0
\(643\) 43.7834i 0.0680924i −0.999420 0.0340462i \(-0.989161\pi\)
0.999420 0.0340462i \(-0.0108393\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 377.136 217.740i 0.582900 0.336538i −0.179385 0.983779i \(-0.557411\pi\)
0.762285 + 0.647241i \(0.224077\pi\)
\(648\) 0 0
\(649\) −0.191601 + 0.331862i −0.000295225 + 0.000511344i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 335.432 580.986i 0.513679 0.889718i −0.486195 0.873850i \(-0.661616\pi\)
0.999874 0.0158676i \(-0.00505103\pi\)
\(654\) 0 0
\(655\) −770.081 + 444.607i −1.17570 + 0.678789i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.6391i 0.0282839i −0.999900 0.0141419i \(-0.995498\pi\)
0.999900 0.0141419i \(-0.00450167\pi\)
\(660\) 0 0
\(661\) 129.755 + 224.742i 0.196301 + 0.340003i 0.947326 0.320270i \(-0.103774\pi\)
−0.751025 + 0.660273i \(0.770440\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 276.161 1022.53i 0.415280 1.53765i
\(666\) 0 0
\(667\) 517.164 + 298.584i 0.775358 + 0.447653i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.78930i 0.00862787i
\(672\) 0 0
\(673\) −5.29772 −0.00787179 −0.00393590 0.999992i \(-0.501253\pi\)
−0.00393590 + 0.999992i \(0.501253\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −312.667 + 541.556i −0.461843 + 0.799935i −0.999053 0.0435135i \(-0.986145\pi\)
0.537210 + 0.843448i \(0.319478\pi\)
\(678\) 0 0
\(679\) −128.630 + 128.121i −0.189441 + 0.188691i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −597.735 + 345.103i −0.875162 + 0.505275i −0.869060 0.494707i \(-0.835276\pi\)
−0.00610161 + 0.999981i \(0.501942\pi\)
\(684\) 0 0
\(685\) 997.019 1.45550
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 237.143 + 410.745i 0.344185 + 0.596146i
\(690\) 0 0
\(691\) −909.589 525.151i −1.31634 0.759987i −0.333200 0.942856i \(-0.608128\pi\)
−0.983137 + 0.182869i \(0.941462\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.91658 1.68389i −0.00419651 0.00242286i
\(696\) 0 0
\(697\) 900.256 + 1559.29i 1.29162 + 2.23714i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 865.251 1.23431 0.617155 0.786842i \(-0.288285\pi\)
0.617155 + 0.786842i \(0.288285\pi\)
\(702\) 0 0
\(703\) 1013.36 585.063i 1.44148 0.832237i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −440.795 119.048i −0.623472 0.168384i
\(708\) 0 0
\(709\) 601.050 1041.05i 0.847744 1.46834i −0.0354731 0.999371i \(-0.511294\pi\)
0.883217 0.468965i \(-0.155373\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.1968 −0.0437543
\(714\) 0 0
\(715\) 11.7317i 0.0164079i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 268.331 + 154.921i 0.373200 + 0.215467i 0.674855 0.737950i \(-0.264206\pi\)
−0.301656 + 0.953417i \(0.597539\pi\)
\(720\) 0 0
\(721\) −938.051 + 249.358i −1.30104 + 0.345850i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −46.5742 80.6688i −0.0642402 0.111267i
\(726\) 0 0
\(727\) 753.887i 1.03698i −0.855083 0.518492i \(-0.826494\pi\)
0.855083 0.518492i \(-0.173506\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 845.934 488.400i 1.15723 0.668126i
\(732\) 0 0
\(733\) −194.286 + 336.512i −0.265055 + 0.459089i −0.967578 0.252572i \(-0.918724\pi\)
0.702523 + 0.711661i \(0.252057\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.02902 12.1746i 0.00953734 0.0165191i
\(738\) 0 0
\(739\) 363.390 209.803i 0.491732 0.283902i −0.233561 0.972342i \(-0.575038\pi\)
0.725293 + 0.688441i \(0.241704\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 86.3362i 0.116199i −0.998311 0.0580997i \(-0.981496\pi\)
0.998311 0.0580997i \(-0.0185041\pi\)
\(744\) 0 0
\(745\) −342.513 593.250i −0.459749 0.796309i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 590.459 156.959i 0.788329 0.209558i
\(750\) 0 0
\(751\) 438.068 + 252.919i 0.583314 + 0.336776i 0.762449 0.647048i \(-0.223997\pi\)
−0.179136 + 0.983824i \(0.557330\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 190.490i 0.252305i
\(756\) 0 0
\(757\) −240.329 −0.317475 −0.158737 0.987321i \(-0.550742\pi\)
−0.158737 + 0.987321i \(0.550742\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 250.415 433.732i 0.329061 0.569950i −0.653265 0.757129i \(-0.726601\pi\)
0.982326 + 0.187179i \(0.0599346\pi\)
\(762\) 0 0
\(763\) −436.657 117.930i −0.572290 0.154561i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.4374 14.1089i 0.0318610 0.0183949i
\(768\) 0 0
\(769\) −713.336 −0.927615 −0.463807 0.885936i \(-0.653517\pi\)
−0.463807 + 0.885936i \(0.653517\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −105.072 181.990i −0.135928 0.235434i 0.790024 0.613076i \(-0.210068\pi\)
−0.925951 + 0.377643i \(0.876735\pi\)
\(774\) 0 0
\(775\) 4.21424 + 2.43309i 0.00543773 + 0.00313947i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2202.37 + 1271.54i 2.82718 + 1.63227i
\(780\) 0 0
\(781\) 2.85949 + 4.95278i 0.00366132 + 0.00634158i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 994.934 1.26743
\(786\) 0 0
\(787\) −1284.22 + 741.445i −1.63179 + 0.942116i −0.648253 + 0.761425i \(0.724500\pi\)
−0.983540 + 0.180691i \(0.942167\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 928.921 925.245i 1.17436 1.16972i
\(792\) 0 0
\(793\) −213.153 + 369.193i −0.268794 + 0.465564i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −445.840 −0.559398 −0.279699 0.960088i \(-0.590235\pi\)
−0.279699 + 0.960088i \(0.590235\pi\)
\(798\) 0 0
\(799\) 1409.57i 1.76416i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.34351 4.23978i −0.00914509 0.00527992i
\(804\) 0 0
\(805\) −208.192 + 770.865i −0.258623 + 0.957596i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −84.1885 145.819i −0.104065 0.180246i 0.809291 0.587408i \(-0.199852\pi\)
−0.913356 + 0.407162i \(0.866518\pi\)
\(810\) 0 0
\(811\) 1142.96i 1.40932i 0.709545 + 0.704660i \(0.248900\pi\)
−0.709545 + 0.704660i \(0.751100\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 423.544 244.533i 0.519685 0.300041i
\(816\) 0 0
\(817\) 689.827 1194.82i 0.844342 1.46244i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 72.4494 125.486i 0.0882454 0.152845i −0.818524 0.574472i \(-0.805207\pi\)
0.906770 + 0.421627i \(0.138541\pi\)
\(822\) 0 0
\(823\) −7.54995 + 4.35897i −0.00917370 + 0.00529644i −0.504580 0.863365i \(-0.668353\pi\)
0.495406 + 0.868661i \(0.335019\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 227.873i 0.275541i −0.990464 0.137771i \(-0.956006\pi\)
0.990464 0.137771i \(-0.0439937\pi\)
\(828\) 0 0
\(829\) 27.2629 + 47.2207i 0.0328865 + 0.0569611i 0.882000 0.471249i \(-0.156197\pi\)
−0.849114 + 0.528210i \(0.822863\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 991.239 567.063i 1.18996 0.680748i
\(834\) 0 0
\(835\) −1060.27 612.149i −1.26979 0.733113i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1009.63i 1.20337i 0.798732 + 0.601687i \(0.205504\pi\)
−0.798732 + 0.601687i \(0.794496\pi\)
\(840\) 0 0
\(841\) −261.918 −0.311436
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 43.5254 75.3882i 0.0515094 0.0892168i
\(846\) 0 0
\(847\) 217.535 + 818.338i 0.256830 + 0.966160i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −763.948 + 441.066i −0.897706 + 0.518291i
\(852\) 0 0
\(853\) 1153.22 1.35196 0.675978 0.736921i \(-0.263721\pi\)
0.675978 + 0.736921i \(0.263721\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −255.480 442.503i −0.298109 0.516340i 0.677594 0.735436i \(-0.263023\pi\)
−0.975703 + 0.219096i \(0.929689\pi\)
\(858\) 0 0
\(859\) −500.132 288.751i −0.582226 0.336148i 0.179792 0.983705i \(-0.442458\pi\)
−0.762017 + 0.647557i \(0.775791\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −645.308 372.569i −0.747750 0.431714i 0.0771303 0.997021i \(-0.475424\pi\)
−0.824880 + 0.565307i \(0.808758\pi\)
\(864\) 0 0
\(865\) 290.499 + 503.159i 0.335837 + 0.581687i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.202915 −0.000233503
\(870\) 0 0
\(871\) −896.503 + 517.596i −1.02928 + 0.594255i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 658.177 655.573i 0.752203 0.749226i
\(876\) 0 0
\(877\) 282.403 489.137i 0.322011 0.557739i −0.658892 0.752237i \(-0.728975\pi\)
0.980903 + 0.194499i \(0.0623080\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 743.531 0.843963 0.421981 0.906605i \(-0.361335\pi\)
0.421981 + 0.906605i \(0.361335\pi\)
\(882\) 0 0
\(883\) 715.022i 0.809764i −0.914369 0.404882i \(-0.867313\pi\)
0.914369 0.404882i \(-0.132687\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1278.48 738.131i −1.44135 0.832166i −0.443414 0.896317i \(-0.646233\pi\)
−0.997940 + 0.0641509i \(0.979566\pi\)
\(888\) 0 0
\(889\) −757.113 760.122i −0.851646 0.855030i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −995.452 1724.17i −1.11473 1.93076i
\(894\) 0 0
\(895\) 736.001i 0.822347i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −26.1990 + 15.1260i −0.0291424 + 0.0168253i
\(900\) 0 0
\(901\) −403.149 + 698.275i −0.447447 + 0.775000i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −249.849 + 432.751i −0.276076 + 0.478178i
\(906\) 0 0
\(907\) 1.66164 0.959350i 0.00183202 0.00105772i −0.499084 0.866554i \(-0.666330\pi\)
0.500916 + 0.865496i \(0.332997\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1568.49i 1.72172i 0.508840 + 0.860861i \(0.330074\pi\)
−0.508840 + 0.860861i \(0.669926\pi\)
\(912\) 0 0
\(913\) −3.67089 6.35817i −0.00402069 0.00696404i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1308.69 + 347.882i −1.42714 + 0.379370i
\(918\) 0 0
\(919\) 366.523 + 211.612i 0.398828 + 0.230264i 0.685978 0.727622i \(-0.259374\pi\)
−0.287150 + 0.957886i \(0.592708\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 421.128i 0.456260i
\(924\) 0 0
\(925\) 137.598 0.148754
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 141.536 245.148i 0.152353 0.263884i −0.779739 0.626105i \(-0.784648\pi\)
0.932092 + 0.362221i \(0.117982\pi\)
\(930\) 0 0
\(931\) 812.011 1393.65i 0.872192 1.49694i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.2721 + 9.97204i −0.0184728 + 0.0106653i
\(936\) 0 0
\(937\) −480.799 −0.513126 −0.256563 0.966528i \(-0.582590\pi\)
−0.256563 + 0.966528i \(0.582590\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 240.048 + 415.776i 0.255099 + 0.441844i 0.964922 0.262535i \(-0.0845586\pi\)
−0.709823 + 0.704380i \(0.751225\pi\)
\(942\) 0 0
\(943\) −1660.32 958.586i −1.76068 1.01653i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −284.108 164.030i −0.300008 0.173210i 0.342439 0.939540i \(-0.388747\pi\)
−0.642446 + 0.766331i \(0.722080\pi\)
\(948\) 0 0
\(949\) 312.205 + 540.754i 0.328983 + 0.569815i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 882.514 0.926038 0.463019 0.886348i \(-0.346766\pi\)
0.463019 + 0.886348i \(0.346766\pi\)
\(954\) 0 0
\(955\) 90.3956 52.1899i 0.0946551 0.0546491i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1465.79 + 395.875i 1.52846 + 0.412799i
\(960\) 0 0
\(961\) −479.710 + 830.882i −0.499178 + 0.864601i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1354.66 −1.40379
\(966\) 0 0
\(967\) 1428.30i 1.47704i 0.674231 + 0.738520i \(0.264475\pi\)
−0.674231 + 0.738520i \(0.735525\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 959.579 + 554.013i 0.988238 + 0.570560i 0.904747 0.425949i \(-0.140060\pi\)
0.0834910 + 0.996509i \(0.473393\pi\)
\(972\) 0 0
\(973\) −3.61928 3.63366i −0.00371971 0.00373449i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −181.175 313.804i −0.185440 0.321191i 0.758285 0.651923i \(-0.226038\pi\)
−0.943725 + 0.330732i \(0.892704\pi\)
\(978\) 0 0
\(979\) 28.3393i 0.0289472i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1139.99 + 658.175i −1.15971 + 0.669558i −0.951234 0.308470i \(-0.900183\pi\)
−0.208474 + 0.978028i \(0.566850\pi\)
\(984\) 0 0
\(985\) −682.546 + 1182.21i −0.692941 + 1.20021i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −520.045 + 900.744i −0.525829 + 0.910763i
\(990\) 0 0
\(991\) 1231.66 711.100i 1.24285 0.717558i 0.273174 0.961965i \(-0.411927\pi\)
0.969673 + 0.244407i \(0.0785933\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1184.38i 1.19033i
\(996\) 0 0
\(997\) −660.969 1144.83i −0.662958 1.14828i −0.979835 0.199811i \(-0.935967\pi\)
0.316876 0.948467i \(-0.397366\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.cd.i.415.3 6
3.2 odd 2 336.3.be.f.79.1 yes 6
4.3 odd 2 1008.3.cd.h.415.3 6
7.4 even 3 1008.3.cd.h.991.3 6
12.11 even 2 336.3.be.d.79.1 6
21.2 odd 6 2352.3.m.n.1471.6 6
21.5 even 6 2352.3.m.o.1471.1 6
21.11 odd 6 336.3.be.d.319.1 yes 6
28.11 odd 6 inner 1008.3.cd.i.991.3 6
84.11 even 6 336.3.be.f.319.1 yes 6
84.23 even 6 2352.3.m.n.1471.3 6
84.47 odd 6 2352.3.m.o.1471.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.be.d.79.1 6 12.11 even 2
336.3.be.d.319.1 yes 6 21.11 odd 6
336.3.be.f.79.1 yes 6 3.2 odd 2
336.3.be.f.319.1 yes 6 84.11 even 6
1008.3.cd.h.415.3 6 4.3 odd 2
1008.3.cd.h.991.3 6 7.4 even 3
1008.3.cd.i.415.3 6 1.1 even 1 trivial
1008.3.cd.i.991.3 6 28.11 odd 6 inner
2352.3.m.n.1471.3 6 84.23 even 6
2352.3.m.n.1471.6 6 21.2 odd 6
2352.3.m.o.1471.1 6 21.5 even 6
2352.3.m.o.1471.4 6 84.47 odd 6