Defining parameters
Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1008.cd (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1008, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 816 | 80 | 736 |
Cusp forms | 720 | 80 | 640 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1008, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(1008, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1008, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)