L(s) = 1 | + (−1.5 + 0.866i)3-s + (−2.29 + 3.98i)5-s + (−4.95 + 4.93i)7-s + (1.5 − 2.59i)9-s + (−0.161 + 0.0930i)11-s + 13.7·13-s − 7.96i·15-s + (−11.6 − 20.1i)17-s + (−28.5 − 16.4i)19-s + (3.16 − 11.7i)21-s + (−21.4 − 12.4i)23-s + (1.93 + 3.35i)25-s + 5.19i·27-s + 24.0·29-s + (−1.08 + 0.628i)31-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.288i)3-s + (−0.459 + 0.796i)5-s + (−0.708 + 0.705i)7-s + (0.166 − 0.288i)9-s + (−0.0146 + 0.00846i)11-s + 1.05·13-s − 0.530i·15-s + (−0.685 − 1.18i)17-s + (−1.50 − 0.866i)19-s + (0.150 − 0.557i)21-s + (−0.934 − 0.539i)23-s + (0.0774 + 0.134i)25-s + 0.192i·27-s + 0.829·29-s + (−0.0351 + 0.0202i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0216626 - 0.0480697i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0216626 - 0.0480697i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.5 - 0.866i)T \) |
| 7 | \( 1 + (4.95 - 4.93i)T \) |
good | 5 | \( 1 + (2.29 - 3.98i)T + (-12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (0.161 - 0.0930i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 13.7T + 169T^{2} \) |
| 17 | \( 1 + (11.6 + 20.1i)T + (-144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (28.5 + 16.4i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (21.4 + 12.4i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 24.0T + 841T^{2} \) |
| 31 | \( 1 + (1.08 - 0.628i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-17.7 + 30.7i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + 77.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 41.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (52.3 + 30.2i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (17.2 + 29.9i)T + (-1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-1.78 + 1.02i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (15.5 - 26.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-65.3 + 37.7i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 30.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-22.7 - 39.4i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (0.943 + 0.544i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 39.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (76.1 - 131. i)T + (-3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 25.9T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09446189482885137417946433071, −10.22624626605414073010512394824, −9.164499164140963889514480765038, −8.282954221485162741673993585930, −6.71273390636618543430693573085, −6.41136587752478199735036368684, −4.97614621715309420963890014277, −3.72506609792636441053483513675, −2.53390569806915778612501926800, −0.02606434856725724641082274982,
1.54561915131039726440472573081, 3.70791905963022292277053633091, 4.50840313480849940043044990632, 6.05721014910654792724684183137, 6.62659155835684986420577977600, 8.101348574955213086417120025598, 8.590254237515451416471079943621, 10.06250789387830523124593620337, 10.70046726258293748309551857480, 11.75541631640869048948685693106