Properties

Label 3330.2.d.r.1999.6
Level $3330$
Weight $2$
Character 3330.1999
Analytic conductor $26.590$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3330,2,Mod(1999,3330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3330.1999"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3330.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,4,0,0,0,0,-6,-12,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5901838731\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 20x^{12} + 154x^{10} + 580x^{8} + 1105x^{6} + 960x^{4} + 256x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1999.6
Root \(0.299503i\) of defining polynomial
Character \(\chi\) \(=\) 3330.1999
Dual form 3330.2.d.r.1999.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(1.89211 + 1.19161i) q^{5} -1.91030i q^{7} +1.00000i q^{8} +(1.19161 - 1.89211i) q^{10} -6.34148 q^{11} +1.16014i q^{13} -1.91030 q^{14} +1.00000 q^{16} +0.561130i q^{17} -0.439651 q^{19} +(-1.89211 - 1.19161i) q^{20} +6.34148i q^{22} +1.39252i q^{23} +(2.16014 + 4.50930i) q^{25} +1.16014 q^{26} +1.91030i q^{28} +5.86153 q^{29} +6.09391 q^{31} -1.00000i q^{32} +0.561130 q^{34} +(2.27633 - 3.61449i) q^{35} +1.00000i q^{37} +0.439651i q^{38} +(-1.19161 + 1.89211i) q^{40} +4.97226 q^{41} -4.94129i q^{43} +6.34148 q^{44} +1.39252 q^{46} +6.69678i q^{47} +3.35076 q^{49} +(4.50930 - 2.16014i) q^{50} -1.16014i q^{52} -9.13473i q^{53} +(-11.9988 - 7.55656i) q^{55} +1.91030 q^{56} -5.86153i q^{58} +5.51090 q^{59} +13.3222 q^{61} -6.09391i q^{62} -1.00000 q^{64} +(-1.38243 + 2.19510i) q^{65} -5.03975i q^{67} -0.561130i q^{68} +(-3.61449 - 2.27633i) q^{70} +3.59783 q^{71} -5.07193i q^{73} +1.00000 q^{74} +0.439651 q^{76} +12.1141i q^{77} +0.343246 q^{79} +(1.89211 + 1.19161i) q^{80} -4.97226i q^{82} +12.8462i q^{83} +(-0.668647 + 1.06172i) q^{85} -4.94129 q^{86} -6.34148i q^{88} +4.77883 q^{89} +2.21620 q^{91} -1.39252i q^{92} +6.69678 q^{94} +(-0.831867 - 0.523892i) q^{95} +10.8281i q^{97} -3.35076i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} + 4 q^{5} - 6 q^{10} - 12 q^{11} + 12 q^{14} + 14 q^{16} + 4 q^{19} - 4 q^{20} + 10 q^{25} - 4 q^{26} + 16 q^{29} + 12 q^{31} - 12 q^{34} + 8 q^{35} + 6 q^{40} - 56 q^{41} + 12 q^{44} - 8 q^{46}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3330\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.89211 + 1.19161i 0.846176 + 0.532904i
\(6\) 0 0
\(7\) 1.91030i 0.722025i −0.932561 0.361012i \(-0.882431\pi\)
0.932561 0.361012i \(-0.117569\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.19161 1.89211i 0.376820 0.598337i
\(11\) −6.34148 −1.91203 −0.956014 0.293322i \(-0.905239\pi\)
−0.956014 + 0.293322i \(0.905239\pi\)
\(12\) 0 0
\(13\) 1.16014i 0.321764i 0.986974 + 0.160882i \(0.0514338\pi\)
−0.986974 + 0.160882i \(0.948566\pi\)
\(14\) −1.91030 −0.510549
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.561130i 0.136094i 0.997682 + 0.0680470i \(0.0216768\pi\)
−0.997682 + 0.0680470i \(0.978323\pi\)
\(18\) 0 0
\(19\) −0.439651 −0.100863 −0.0504315 0.998728i \(-0.516060\pi\)
−0.0504315 + 0.998728i \(0.516060\pi\)
\(20\) −1.89211 1.19161i −0.423088 0.266452i
\(21\) 0 0
\(22\) 6.34148i 1.35201i
\(23\) 1.39252i 0.290361i 0.989405 + 0.145181i \(0.0463763\pi\)
−0.989405 + 0.145181i \(0.953624\pi\)
\(24\) 0 0
\(25\) 2.16014 + 4.50930i 0.432027 + 0.901861i
\(26\) 1.16014 0.227521
\(27\) 0 0
\(28\) 1.91030i 0.361012i
\(29\) 5.86153 1.08846 0.544229 0.838937i \(-0.316822\pi\)
0.544229 + 0.838937i \(0.316822\pi\)
\(30\) 0 0
\(31\) 6.09391 1.09450 0.547250 0.836969i \(-0.315675\pi\)
0.547250 + 0.836969i \(0.315675\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0.561130 0.0962330
\(35\) 2.27633 3.61449i 0.384770 0.610960i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0.439651i 0.0713209i
\(39\) 0 0
\(40\) −1.19161 + 1.89211i −0.188410 + 0.299168i
\(41\) 4.97226 0.776536 0.388268 0.921546i \(-0.373073\pi\)
0.388268 + 0.921546i \(0.373073\pi\)
\(42\) 0 0
\(43\) 4.94129i 0.753540i −0.926307 0.376770i \(-0.877035\pi\)
0.926307 0.376770i \(-0.122965\pi\)
\(44\) 6.34148 0.956014
\(45\) 0 0
\(46\) 1.39252 0.205316
\(47\) 6.69678i 0.976826i 0.872612 + 0.488413i \(0.162424\pi\)
−0.872612 + 0.488413i \(0.837576\pi\)
\(48\) 0 0
\(49\) 3.35076 0.478680
\(50\) 4.50930 2.16014i 0.637712 0.305489i
\(51\) 0 0
\(52\) 1.16014i 0.160882i
\(53\) 9.13473i 1.25475i −0.778717 0.627376i \(-0.784129\pi\)
0.778717 0.627376i \(-0.215871\pi\)
\(54\) 0 0
\(55\) −11.9988 7.55656i −1.61791 1.01893i
\(56\) 1.91030 0.255274
\(57\) 0 0
\(58\) 5.86153i 0.769656i
\(59\) 5.51090 0.717458 0.358729 0.933442i \(-0.383210\pi\)
0.358729 + 0.933442i \(0.383210\pi\)
\(60\) 0 0
\(61\) 13.3222 1.70573 0.852867 0.522128i \(-0.174862\pi\)
0.852867 + 0.522128i \(0.174862\pi\)
\(62\) 6.09391i 0.773928i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.38243 + 2.19510i −0.171469 + 0.272269i
\(66\) 0 0
\(67\) 5.03975i 0.615704i −0.951434 0.307852i \(-0.900390\pi\)
0.951434 0.307852i \(-0.0996102\pi\)
\(68\) 0.561130i 0.0680470i
\(69\) 0 0
\(70\) −3.61449 2.27633i −0.432014 0.272073i
\(71\) 3.59783 0.426984 0.213492 0.976945i \(-0.431516\pi\)
0.213492 + 0.976945i \(0.431516\pi\)
\(72\) 0 0
\(73\) 5.07193i 0.593624i −0.954936 0.296812i \(-0.904077\pi\)
0.954936 0.296812i \(-0.0959235\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) 0.439651 0.0504315
\(77\) 12.1141i 1.38053i
\(78\) 0 0
\(79\) 0.343246 0.0386182 0.0193091 0.999814i \(-0.493853\pi\)
0.0193091 + 0.999814i \(0.493853\pi\)
\(80\) 1.89211 + 1.19161i 0.211544 + 0.133226i
\(81\) 0 0
\(82\) 4.97226i 0.549094i
\(83\) 12.8462i 1.41005i 0.709182 + 0.705025i \(0.249064\pi\)
−0.709182 + 0.705025i \(0.750936\pi\)
\(84\) 0 0
\(85\) −0.668647 + 1.06172i −0.0725250 + 0.115159i
\(86\) −4.94129 −0.532833
\(87\) 0 0
\(88\) 6.34148i 0.676004i
\(89\) 4.77883 0.506555 0.253277 0.967394i \(-0.418492\pi\)
0.253277 + 0.967394i \(0.418492\pi\)
\(90\) 0 0
\(91\) 2.21620 0.232321
\(92\) 1.39252i 0.145181i
\(93\) 0 0
\(94\) 6.69678 0.690721
\(95\) −0.831867 0.523892i −0.0853478 0.0537502i
\(96\) 0 0
\(97\) 10.8281i 1.09943i 0.835352 + 0.549715i \(0.185264\pi\)
−0.835352 + 0.549715i \(0.814736\pi\)
\(98\) 3.35076i 0.338478i
\(99\) 0 0
\(100\) −2.16014 4.50930i −0.216014 0.450930i
\(101\) 3.94778 0.392819 0.196409 0.980522i \(-0.437072\pi\)
0.196409 + 0.980522i \(0.437072\pi\)
\(102\) 0 0
\(103\) 8.24163i 0.812072i −0.913857 0.406036i \(-0.866911\pi\)
0.913857 0.406036i \(-0.133089\pi\)
\(104\) −1.16014 −0.113761
\(105\) 0 0
\(106\) −9.13473 −0.887243
\(107\) 11.3883i 1.10094i 0.834853 + 0.550472i \(0.185552\pi\)
−0.834853 + 0.550472i \(0.814448\pi\)
\(108\) 0 0
\(109\) 7.24702 0.694138 0.347069 0.937840i \(-0.387177\pi\)
0.347069 + 0.937840i \(0.387177\pi\)
\(110\) −7.55656 + 11.9988i −0.720490 + 1.14404i
\(111\) 0 0
\(112\) 1.91030i 0.180506i
\(113\) 3.74166i 0.351986i −0.984391 0.175993i \(-0.943686\pi\)
0.984391 0.175993i \(-0.0563136\pi\)
\(114\) 0 0
\(115\) −1.65934 + 2.63480i −0.154735 + 0.245697i
\(116\) −5.86153 −0.544229
\(117\) 0 0
\(118\) 5.51090i 0.507319i
\(119\) 1.07193 0.0982632
\(120\) 0 0
\(121\) 29.2143 2.65585
\(122\) 13.3222i 1.20614i
\(123\) 0 0
\(124\) −6.09391 −0.547250
\(125\) −1.28612 + 11.1061i −0.115034 + 0.993362i
\(126\) 0 0
\(127\) 4.72570i 0.419338i −0.977772 0.209669i \(-0.932761\pi\)
0.977772 0.209669i \(-0.0672386\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 2.19510 + 1.38243i 0.192523 + 0.121247i
\(131\) −17.1887 −1.50178 −0.750890 0.660428i \(-0.770375\pi\)
−0.750890 + 0.660428i \(0.770375\pi\)
\(132\) 0 0
\(133\) 0.839865i 0.0728255i
\(134\) −5.03975 −0.435368
\(135\) 0 0
\(136\) −0.561130 −0.0481165
\(137\) 22.2907i 1.90442i 0.305443 + 0.952210i \(0.401195\pi\)
−0.305443 + 0.952210i \(0.598805\pi\)
\(138\) 0 0
\(139\) 6.19400 0.525368 0.262684 0.964882i \(-0.415392\pi\)
0.262684 + 0.964882i \(0.415392\pi\)
\(140\) −2.27633 + 3.61449i −0.192385 + 0.305480i
\(141\) 0 0
\(142\) 3.59783i 0.301923i
\(143\) 7.35697i 0.615221i
\(144\) 0 0
\(145\) 11.0906 + 6.98465i 0.921027 + 0.580043i
\(146\) −5.07193 −0.419756
\(147\) 0 0
\(148\) 1.00000i 0.0821995i
\(149\) 1.52154 0.124649 0.0623247 0.998056i \(-0.480149\pi\)
0.0623247 + 0.998056i \(0.480149\pi\)
\(150\) 0 0
\(151\) 2.53077 0.205951 0.102976 0.994684i \(-0.467164\pi\)
0.102976 + 0.994684i \(0.467164\pi\)
\(152\) 0.439651i 0.0356604i
\(153\) 0 0
\(154\) 12.1141 0.976183
\(155\) 11.5303 + 7.26156i 0.926139 + 0.583263i
\(156\) 0 0
\(157\) 10.5701i 0.843585i −0.906692 0.421792i \(-0.861401\pi\)
0.906692 0.421792i \(-0.138599\pi\)
\(158\) 0.343246i 0.0273072i
\(159\) 0 0
\(160\) 1.19161 1.89211i 0.0942050 0.149584i
\(161\) 2.66013 0.209648
\(162\) 0 0
\(163\) 4.37570i 0.342732i −0.985207 0.171366i \(-0.945182\pi\)
0.985207 0.171366i \(-0.0548180\pi\)
\(164\) −4.97226 −0.388268
\(165\) 0 0
\(166\) 12.8462 0.997057
\(167\) 14.7422i 1.14078i 0.821373 + 0.570392i \(0.193209\pi\)
−0.821373 + 0.570392i \(0.806791\pi\)
\(168\) 0 0
\(169\) 11.6541 0.896468
\(170\) 1.06172 + 0.668647i 0.0814300 + 0.0512829i
\(171\) 0 0
\(172\) 4.94129i 0.376770i
\(173\) 13.1708i 1.00136i 0.865633 + 0.500679i \(0.166916\pi\)
−0.865633 + 0.500679i \(0.833084\pi\)
\(174\) 0 0
\(175\) 8.61411 4.12650i 0.651166 0.311934i
\(176\) −6.34148 −0.478007
\(177\) 0 0
\(178\) 4.77883i 0.358188i
\(179\) 2.72305 0.203531 0.101765 0.994808i \(-0.467551\pi\)
0.101765 + 0.994808i \(0.467551\pi\)
\(180\) 0 0
\(181\) −10.9553 −0.814302 −0.407151 0.913361i \(-0.633478\pi\)
−0.407151 + 0.913361i \(0.633478\pi\)
\(182\) 2.21620i 0.164276i
\(183\) 0 0
\(184\) −1.39252 −0.102658
\(185\) −1.19161 + 1.89211i −0.0876089 + 0.139110i
\(186\) 0 0
\(187\) 3.55839i 0.260215i
\(188\) 6.69678i 0.488413i
\(189\) 0 0
\(190\) −0.523892 + 0.831867i −0.0380072 + 0.0603500i
\(191\) −19.1443 −1.38524 −0.692618 0.721304i \(-0.743543\pi\)
−0.692618 + 0.721304i \(0.743543\pi\)
\(192\) 0 0
\(193\) 2.79550i 0.201225i −0.994926 0.100612i \(-0.967920\pi\)
0.994926 0.100612i \(-0.0320802\pi\)
\(194\) 10.8281 0.777415
\(195\) 0 0
\(196\) −3.35076 −0.239340
\(197\) 19.5186i 1.39064i −0.718701 0.695320i \(-0.755263\pi\)
0.718701 0.695320i \(-0.244737\pi\)
\(198\) 0 0
\(199\) 2.19757 0.155781 0.0778907 0.996962i \(-0.475181\pi\)
0.0778907 + 0.996962i \(0.475181\pi\)
\(200\) −4.50930 + 2.16014i −0.318856 + 0.152745i
\(201\) 0 0
\(202\) 3.94778i 0.277765i
\(203\) 11.1973i 0.785894i
\(204\) 0 0
\(205\) 9.40805 + 5.92499i 0.657086 + 0.413819i
\(206\) −8.24163 −0.574222
\(207\) 0 0
\(208\) 1.16014i 0.0804409i
\(209\) 2.78804 0.192853
\(210\) 0 0
\(211\) 12.0625 0.830417 0.415208 0.909726i \(-0.363709\pi\)
0.415208 + 0.909726i \(0.363709\pi\)
\(212\) 9.13473i 0.627376i
\(213\) 0 0
\(214\) 11.3883 0.778486
\(215\) 5.88809 9.34945i 0.401564 0.637628i
\(216\) 0 0
\(217\) 11.6412i 0.790256i
\(218\) 7.24702i 0.490830i
\(219\) 0 0
\(220\) 11.9988 + 7.55656i 0.808956 + 0.509463i
\(221\) −0.650986 −0.0437901
\(222\) 0 0
\(223\) 16.4112i 1.09898i −0.835502 0.549488i \(-0.814823\pi\)
0.835502 0.549488i \(-0.185177\pi\)
\(224\) −1.91030 −0.127637
\(225\) 0 0
\(226\) −3.74166 −0.248892
\(227\) 17.2720i 1.14638i −0.819422 0.573191i \(-0.805705\pi\)
0.819422 0.573191i \(-0.194295\pi\)
\(228\) 0 0
\(229\) −16.6738 −1.10184 −0.550919 0.834559i \(-0.685723\pi\)
−0.550919 + 0.834559i \(0.685723\pi\)
\(230\) 2.63480 + 1.65934i 0.173734 + 0.109414i
\(231\) 0 0
\(232\) 5.86153i 0.384828i
\(233\) 7.78278i 0.509867i −0.966959 0.254933i \(-0.917946\pi\)
0.966959 0.254933i \(-0.0820536\pi\)
\(234\) 0 0
\(235\) −7.97995 + 12.6710i −0.520555 + 0.826567i
\(236\) −5.51090 −0.358729
\(237\) 0 0
\(238\) 1.07193i 0.0694826i
\(239\) 1.24406 0.0804713 0.0402356 0.999190i \(-0.487189\pi\)
0.0402356 + 0.999190i \(0.487189\pi\)
\(240\) 0 0
\(241\) −1.63717 −0.105459 −0.0527297 0.998609i \(-0.516792\pi\)
−0.0527297 + 0.998609i \(0.516792\pi\)
\(242\) 29.2143i 1.87797i
\(243\) 0 0
\(244\) −13.3222 −0.852867
\(245\) 6.34000 + 3.99280i 0.405048 + 0.255090i
\(246\) 0 0
\(247\) 0.510055i 0.0324540i
\(248\) 6.09391i 0.386964i
\(249\) 0 0
\(250\) 11.1061 + 1.28612i 0.702413 + 0.0813415i
\(251\) 4.88816 0.308538 0.154269 0.988029i \(-0.450698\pi\)
0.154269 + 0.988029i \(0.450698\pi\)
\(252\) 0 0
\(253\) 8.83065i 0.555178i
\(254\) −4.72570 −0.296516
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.2278i 1.51129i 0.654982 + 0.755644i \(0.272676\pi\)
−0.654982 + 0.755644i \(0.727324\pi\)
\(258\) 0 0
\(259\) 1.91030 0.118700
\(260\) 1.38243 2.19510i 0.0857345 0.136134i
\(261\) 0 0
\(262\) 17.1887i 1.06192i
\(263\) 13.0441i 0.804337i 0.915566 + 0.402168i \(0.131743\pi\)
−0.915566 + 0.402168i \(0.868257\pi\)
\(264\) 0 0
\(265\) 10.8850 17.2839i 0.668662 1.06174i
\(266\) 0.839865 0.0514954
\(267\) 0 0
\(268\) 5.03975i 0.307852i
\(269\) 26.9155 1.64107 0.820533 0.571598i \(-0.193676\pi\)
0.820533 + 0.571598i \(0.193676\pi\)
\(270\) 0 0
\(271\) −12.2502 −0.744144 −0.372072 0.928204i \(-0.621353\pi\)
−0.372072 + 0.928204i \(0.621353\pi\)
\(272\) 0.561130i 0.0340235i
\(273\) 0 0
\(274\) 22.2907 1.34663
\(275\) −13.6984 28.5956i −0.826047 1.72438i
\(276\) 0 0
\(277\) 11.1047i 0.667214i 0.942712 + 0.333607i \(0.108266\pi\)
−0.942712 + 0.333607i \(0.891734\pi\)
\(278\) 6.19400i 0.371491i
\(279\) 0 0
\(280\) 3.61449 + 2.27633i 0.216007 + 0.136037i
\(281\) 8.83875 0.527276 0.263638 0.964622i \(-0.415078\pi\)
0.263638 + 0.964622i \(0.415078\pi\)
\(282\) 0 0
\(283\) 14.7442i 0.876452i −0.898865 0.438226i \(-0.855607\pi\)
0.898865 0.438226i \(-0.144393\pi\)
\(284\) −3.59783 −0.213492
\(285\) 0 0
\(286\) −7.35697 −0.435027
\(287\) 9.49850i 0.560679i
\(288\) 0 0
\(289\) 16.6851 0.981478
\(290\) 6.98465 11.0906i 0.410153 0.651264i
\(291\) 0 0
\(292\) 5.07193i 0.296812i
\(293\) 5.57403i 0.325638i 0.986656 + 0.162819i \(0.0520587\pi\)
−0.986656 + 0.162819i \(0.947941\pi\)
\(294\) 0 0
\(295\) 10.4272 + 6.56683i 0.607095 + 0.382336i
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 1.52154i 0.0881405i
\(299\) −1.61551 −0.0934276
\(300\) 0 0
\(301\) −9.43934 −0.544075
\(302\) 2.53077i 0.145629i
\(303\) 0 0
\(304\) −0.439651 −0.0252157
\(305\) 25.2070 + 15.8749i 1.44335 + 0.908992i
\(306\) 0 0
\(307\) 16.4137i 0.936777i 0.883523 + 0.468389i \(0.155165\pi\)
−0.883523 + 0.468389i \(0.844835\pi\)
\(308\) 12.1141i 0.690266i
\(309\) 0 0
\(310\) 7.26156 11.5303i 0.412429 0.654879i
\(311\) 3.72790 0.211390 0.105695 0.994399i \(-0.466293\pi\)
0.105695 + 0.994399i \(0.466293\pi\)
\(312\) 0 0
\(313\) 21.3300i 1.20564i 0.797876 + 0.602822i \(0.205957\pi\)
−0.797876 + 0.602822i \(0.794043\pi\)
\(314\) −10.5701 −0.596505
\(315\) 0 0
\(316\) −0.343246 −0.0193091
\(317\) 16.7437i 0.940418i −0.882555 0.470209i \(-0.844179\pi\)
0.882555 0.470209i \(-0.155821\pi\)
\(318\) 0 0
\(319\) −37.1707 −2.08116
\(320\) −1.89211 1.19161i −0.105772 0.0666130i
\(321\) 0 0
\(322\) 2.66013i 0.148243i
\(323\) 0.246701i 0.0137268i
\(324\) 0 0
\(325\) −5.23140 + 2.50605i −0.290186 + 0.139011i
\(326\) −4.37570 −0.242348
\(327\) 0 0
\(328\) 4.97226i 0.274547i
\(329\) 12.7929 0.705293
\(330\) 0 0
\(331\) −13.8978 −0.763895 −0.381947 0.924184i \(-0.624746\pi\)
−0.381947 + 0.924184i \(0.624746\pi\)
\(332\) 12.8462i 0.705025i
\(333\) 0 0
\(334\) 14.7422 0.806656
\(335\) 6.00542 9.53575i 0.328111 0.520994i
\(336\) 0 0
\(337\) 1.64957i 0.0898576i 0.998990 + 0.0449288i \(0.0143061\pi\)
−0.998990 + 0.0449288i \(0.985694\pi\)
\(338\) 11.6541i 0.633899i
\(339\) 0 0
\(340\) 0.668647 1.06172i 0.0362625 0.0575797i
\(341\) −38.6444 −2.09271
\(342\) 0 0
\(343\) 19.7730i 1.06764i
\(344\) 4.94129 0.266417
\(345\) 0 0
\(346\) 13.1708 0.708067
\(347\) 13.9455i 0.748632i −0.927301 0.374316i \(-0.877877\pi\)
0.927301 0.374316i \(-0.122123\pi\)
\(348\) 0 0
\(349\) −2.06031 −0.110286 −0.0551429 0.998478i \(-0.517561\pi\)
−0.0551429 + 0.998478i \(0.517561\pi\)
\(350\) −4.12650 8.61411i −0.220571 0.460444i
\(351\) 0 0
\(352\) 6.34148i 0.338002i
\(353\) 19.3839i 1.03170i −0.856678 0.515851i \(-0.827476\pi\)
0.856678 0.515851i \(-0.172524\pi\)
\(354\) 0 0
\(355\) 6.80748 + 4.28721i 0.361303 + 0.227541i
\(356\) −4.77883 −0.253277
\(357\) 0 0
\(358\) 2.72305i 0.143918i
\(359\) 34.3855 1.81480 0.907398 0.420273i \(-0.138066\pi\)
0.907398 + 0.420273i \(0.138066\pi\)
\(360\) 0 0
\(361\) −18.8067 −0.989827
\(362\) 10.9553i 0.575799i
\(363\) 0 0
\(364\) −2.21620 −0.116161
\(365\) 6.04375 9.59662i 0.316344 0.502310i
\(366\) 0 0
\(367\) 21.4179i 1.11800i −0.829167 0.559002i \(-0.811185\pi\)
0.829167 0.559002i \(-0.188815\pi\)
\(368\) 1.39252i 0.0725903i
\(369\) 0 0
\(370\) 1.89211 + 1.19161i 0.0983659 + 0.0619488i
\(371\) −17.4501 −0.905962
\(372\) 0 0
\(373\) 35.1439i 1.81968i −0.414956 0.909841i \(-0.636203\pi\)
0.414956 0.909841i \(-0.363797\pi\)
\(374\) −3.55839 −0.184000
\(375\) 0 0
\(376\) −6.69678 −0.345360
\(377\) 6.80016i 0.350226i
\(378\) 0 0
\(379\) 21.8115 1.12038 0.560190 0.828364i \(-0.310728\pi\)
0.560190 + 0.828364i \(0.310728\pi\)
\(380\) 0.831867 + 0.523892i 0.0426739 + 0.0268751i
\(381\) 0 0
\(382\) 19.1443i 0.979510i
\(383\) 25.0363i 1.27929i 0.768669 + 0.639647i \(0.220920\pi\)
−0.768669 + 0.639647i \(0.779080\pi\)
\(384\) 0 0
\(385\) −14.4353 + 22.9212i −0.735690 + 1.16817i
\(386\) −2.79550 −0.142287
\(387\) 0 0
\(388\) 10.8281i 0.549715i
\(389\) 34.4660 1.74750 0.873748 0.486380i \(-0.161683\pi\)
0.873748 + 0.486380i \(0.161683\pi\)
\(390\) 0 0
\(391\) −0.781386 −0.0395164
\(392\) 3.35076i 0.169239i
\(393\) 0 0
\(394\) −19.5186 −0.983330
\(395\) 0.649458 + 0.409015i 0.0326778 + 0.0205798i
\(396\) 0 0
\(397\) 36.3469i 1.82420i −0.409972 0.912098i \(-0.634461\pi\)
0.409972 0.912098i \(-0.365539\pi\)
\(398\) 2.19757i 0.110154i
\(399\) 0 0
\(400\) 2.16014 + 4.50930i 0.108007 + 0.225465i
\(401\) −34.9811 −1.74687 −0.873436 0.486938i \(-0.838114\pi\)
−0.873436 + 0.486938i \(0.838114\pi\)
\(402\) 0 0
\(403\) 7.06976i 0.352170i
\(404\) −3.94778 −0.196409
\(405\) 0 0
\(406\) −11.1973 −0.555711
\(407\) 6.34148i 0.314335i
\(408\) 0 0
\(409\) −10.6254 −0.525393 −0.262697 0.964878i \(-0.584612\pi\)
−0.262697 + 0.964878i \(0.584612\pi\)
\(410\) 5.92499 9.40805i 0.292614 0.464630i
\(411\) 0 0
\(412\) 8.24163i 0.406036i
\(413\) 10.5275i 0.518022i
\(414\) 0 0
\(415\) −15.3076 + 24.3063i −0.751422 + 1.19315i
\(416\) 1.16014 0.0568803
\(417\) 0 0
\(418\) 2.78804i 0.136367i
\(419\) −38.0309 −1.85793 −0.928967 0.370164i \(-0.879302\pi\)
−0.928967 + 0.370164i \(0.879302\pi\)
\(420\) 0 0
\(421\) −4.85797 −0.236763 −0.118381 0.992968i \(-0.537771\pi\)
−0.118381 + 0.992968i \(0.537771\pi\)
\(422\) 12.0625i 0.587193i
\(423\) 0 0
\(424\) 9.13473 0.443622
\(425\) −2.53030 + 1.21212i −0.122738 + 0.0587963i
\(426\) 0 0
\(427\) 25.4494i 1.23158i
\(428\) 11.3883i 0.550472i
\(429\) 0 0
\(430\) −9.34945 5.88809i −0.450871 0.283949i
\(431\) −18.4965 −0.890945 −0.445473 0.895296i \(-0.646964\pi\)
−0.445473 + 0.895296i \(0.646964\pi\)
\(432\) 0 0
\(433\) 8.29687i 0.398722i 0.979926 + 0.199361i \(0.0638866\pi\)
−0.979926 + 0.199361i \(0.936113\pi\)
\(434\) −11.6412 −0.558795
\(435\) 0 0
\(436\) −7.24702 −0.347069
\(437\) 0.612224i 0.0292867i
\(438\) 0 0
\(439\) −11.2675 −0.537767 −0.268884 0.963173i \(-0.586655\pi\)
−0.268884 + 0.963173i \(0.586655\pi\)
\(440\) 7.55656 11.9988i 0.360245 0.572018i
\(441\) 0 0
\(442\) 0.650986i 0.0309643i
\(443\) 35.1510i 1.67007i 0.550195 + 0.835036i \(0.314553\pi\)
−0.550195 + 0.835036i \(0.685447\pi\)
\(444\) 0 0
\(445\) 9.04205 + 5.69449i 0.428634 + 0.269945i
\(446\) −16.4112 −0.777093
\(447\) 0 0
\(448\) 1.91030i 0.0902531i
\(449\) −21.0162 −0.991818 −0.495909 0.868374i \(-0.665165\pi\)
−0.495909 + 0.868374i \(0.665165\pi\)
\(450\) 0 0
\(451\) −31.5315 −1.48476
\(452\) 3.74166i 0.175993i
\(453\) 0 0
\(454\) −17.2720 −0.810615
\(455\) 4.19329 + 2.64085i 0.196585 + 0.123805i
\(456\) 0 0
\(457\) 33.7686i 1.57963i 0.613347 + 0.789813i \(0.289823\pi\)
−0.613347 + 0.789813i \(0.710177\pi\)
\(458\) 16.6738i 0.779116i
\(459\) 0 0
\(460\) 1.65934 2.63480i 0.0773673 0.122848i
\(461\) −0.263532 −0.0122739 −0.00613694 0.999981i \(-0.501953\pi\)
−0.00613694 + 0.999981i \(0.501953\pi\)
\(462\) 0 0
\(463\) 4.73741i 0.220166i 0.993922 + 0.110083i \(0.0351117\pi\)
−0.993922 + 0.110083i \(0.964888\pi\)
\(464\) 5.86153 0.272115
\(465\) 0 0
\(466\) −7.78278 −0.360530
\(467\) 2.52474i 0.116831i −0.998292 0.0584155i \(-0.981395\pi\)
0.998292 0.0584155i \(-0.0186048\pi\)
\(468\) 0 0
\(469\) −9.62743 −0.444554
\(470\) 12.6710 + 7.97995i 0.584471 + 0.368088i
\(471\) 0 0
\(472\) 5.51090i 0.253660i
\(473\) 31.3351i 1.44079i
\(474\) 0 0
\(475\) −0.949706 1.98252i −0.0435755 0.0909643i
\(476\) −1.07193 −0.0491316
\(477\) 0 0
\(478\) 1.24406i 0.0569018i
\(479\) 11.9387 0.545493 0.272746 0.962086i \(-0.412068\pi\)
0.272746 + 0.962086i \(0.412068\pi\)
\(480\) 0 0
\(481\) −1.16014 −0.0528976
\(482\) 1.63717i 0.0745710i
\(483\) 0 0
\(484\) −29.2143 −1.32792
\(485\) −12.9029 + 20.4880i −0.585891 + 0.930311i
\(486\) 0 0
\(487\) 9.65874i 0.437679i 0.975761 + 0.218840i \(0.0702271\pi\)
−0.975761 + 0.218840i \(0.929773\pi\)
\(488\) 13.3222i 0.603068i
\(489\) 0 0
\(490\) 3.99280 6.34000i 0.180376 0.286412i
\(491\) 24.9302 1.12508 0.562542 0.826769i \(-0.309823\pi\)
0.562542 + 0.826769i \(0.309823\pi\)
\(492\) 0 0
\(493\) 3.28908i 0.148133i
\(494\) −0.510055 −0.0229485
\(495\) 0 0
\(496\) 6.09391 0.273625
\(497\) 6.87293i 0.308293i
\(498\) 0 0
\(499\) 27.4315 1.22800 0.614001 0.789305i \(-0.289559\pi\)
0.614001 + 0.789305i \(0.289559\pi\)
\(500\) 1.28612 11.1061i 0.0575171 0.496681i
\(501\) 0 0
\(502\) 4.88816i 0.218169i
\(503\) 17.8719i 0.796867i 0.917197 + 0.398434i \(0.130446\pi\)
−0.917197 + 0.398434i \(0.869554\pi\)
\(504\) 0 0
\(505\) 7.46962 + 4.70421i 0.332394 + 0.209335i
\(506\) −8.83065 −0.392570
\(507\) 0 0
\(508\) 4.72570i 0.209669i
\(509\) −25.0765 −1.11150 −0.555749 0.831350i \(-0.687568\pi\)
−0.555749 + 0.831350i \(0.687568\pi\)
\(510\) 0 0
\(511\) −9.68889 −0.428611
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 24.2278 1.06864
\(515\) 9.82080 15.5940i 0.432756 0.687156i
\(516\) 0 0
\(517\) 42.4675i 1.86772i
\(518\) 1.91030i 0.0839337i
\(519\) 0 0
\(520\) −2.19510 1.38243i −0.0962615 0.0606235i
\(521\) −25.4597 −1.11541 −0.557704 0.830040i \(-0.688318\pi\)
−0.557704 + 0.830040i \(0.688318\pi\)
\(522\) 0 0
\(523\) 34.0240i 1.48777i 0.668309 + 0.743883i \(0.267018\pi\)
−0.668309 + 0.743883i \(0.732982\pi\)
\(524\) 17.1887 0.750890
\(525\) 0 0
\(526\) 13.0441 0.568752
\(527\) 3.41948i 0.148955i
\(528\) 0 0
\(529\) 21.0609 0.915690
\(530\) −17.2839 10.8850i −0.750764 0.472815i
\(531\) 0 0
\(532\) 0.839865i 0.0364128i
\(533\) 5.76849i 0.249861i
\(534\) 0 0
\(535\) −13.5704 + 21.5478i −0.586698 + 0.931593i
\(536\) 5.03975 0.217684
\(537\) 0 0
\(538\) 26.9155i 1.16041i
\(539\) −21.2488 −0.915249
\(540\) 0 0
\(541\) −13.4605 −0.578713 −0.289357 0.957221i \(-0.593441\pi\)
−0.289357 + 0.957221i \(0.593441\pi\)
\(542\) 12.2502i 0.526190i
\(543\) 0 0
\(544\) 0.561130 0.0240582
\(545\) 13.7121 + 8.63561i 0.587363 + 0.369909i
\(546\) 0 0
\(547\) 36.8248i 1.57451i 0.616625 + 0.787257i \(0.288499\pi\)
−0.616625 + 0.787257i \(0.711501\pi\)
\(548\) 22.2907i 0.952210i
\(549\) 0 0
\(550\) −28.5956 + 13.6984i −1.21932 + 0.584104i
\(551\) −2.57703 −0.109785
\(552\) 0 0
\(553\) 0.655702i 0.0278833i
\(554\) 11.1047 0.471792
\(555\) 0 0
\(556\) −6.19400 −0.262684
\(557\) 13.0767i 0.554076i −0.960859 0.277038i \(-0.910647\pi\)
0.960859 0.277038i \(-0.0893528\pi\)
\(558\) 0 0
\(559\) 5.73257 0.242462
\(560\) 2.27633 3.61449i 0.0961925 0.152740i
\(561\) 0 0
\(562\) 8.83875i 0.372840i
\(563\) 15.2034i 0.640746i −0.947292 0.320373i \(-0.896192\pi\)
0.947292 0.320373i \(-0.103808\pi\)
\(564\) 0 0
\(565\) 4.45860 7.07962i 0.187575 0.297842i
\(566\) −14.7442 −0.619745
\(567\) 0 0
\(568\) 3.59783i 0.150962i
\(569\) −5.54918 −0.232634 −0.116317 0.993212i \(-0.537109\pi\)
−0.116317 + 0.993212i \(0.537109\pi\)
\(570\) 0 0
\(571\) 29.2853 1.22555 0.612776 0.790256i \(-0.290053\pi\)
0.612776 + 0.790256i \(0.290053\pi\)
\(572\) 7.35697i 0.307610i
\(573\) 0 0
\(574\) −9.49850 −0.396460
\(575\) −6.27931 + 3.00804i −0.261865 + 0.125444i
\(576\) 0 0
\(577\) 24.8613i 1.03499i 0.855686 + 0.517495i \(0.173135\pi\)
−0.855686 + 0.517495i \(0.826865\pi\)
\(578\) 16.6851i 0.694010i
\(579\) 0 0
\(580\) −11.0906 6.98465i −0.460513 0.290022i
\(581\) 24.5400 1.01809
\(582\) 0 0
\(583\) 57.9277i 2.39912i
\(584\) 5.07193 0.209878
\(585\) 0 0
\(586\) 5.57403 0.230261
\(587\) 39.7598i 1.64106i −0.571602 0.820531i \(-0.693678\pi\)
0.571602 0.820531i \(-0.306322\pi\)
\(588\) 0 0
\(589\) −2.67920 −0.110394
\(590\) 6.56683 10.4272i 0.270352 0.429281i
\(591\) 0 0
\(592\) 1.00000i 0.0410997i
\(593\) 2.63964i 0.108397i −0.998530 0.0541985i \(-0.982740\pi\)
0.998530 0.0541985i \(-0.0172604\pi\)
\(594\) 0 0
\(595\) 2.02820 + 1.27732i 0.0831480 + 0.0523649i
\(596\) −1.52154 −0.0623247
\(597\) 0 0
\(598\) 1.61551i 0.0660633i
\(599\) 5.65888 0.231216 0.115608 0.993295i \(-0.463118\pi\)
0.115608 + 0.993295i \(0.463118\pi\)
\(600\) 0 0
\(601\) −0.689606 −0.0281296 −0.0140648 0.999901i \(-0.504477\pi\)
−0.0140648 + 0.999901i \(0.504477\pi\)
\(602\) 9.43934i 0.384719i
\(603\) 0 0
\(604\) −2.53077 −0.102976
\(605\) 55.2766 + 34.8121i 2.24731 + 1.41531i
\(606\) 0 0
\(607\) 13.1141i 0.532287i 0.963933 + 0.266143i \(0.0857495\pi\)
−0.963933 + 0.266143i \(0.914251\pi\)
\(608\) 0.439651i 0.0178302i
\(609\) 0 0
\(610\) 15.8749 25.2070i 0.642755 1.02060i
\(611\) −7.76917 −0.314307
\(612\) 0 0
\(613\) 17.3742i 0.701738i −0.936425 0.350869i \(-0.885886\pi\)
0.936425 0.350869i \(-0.114114\pi\)
\(614\) 16.4137 0.662401
\(615\) 0 0
\(616\) −12.1141 −0.488092
\(617\) 43.5176i 1.75195i 0.482354 + 0.875976i \(0.339782\pi\)
−0.482354 + 0.875976i \(0.660218\pi\)
\(618\) 0 0
\(619\) −18.9790 −0.762830 −0.381415 0.924404i \(-0.624563\pi\)
−0.381415 + 0.924404i \(0.624563\pi\)
\(620\) −11.5303 7.26156i −0.463069 0.291631i
\(621\) 0 0
\(622\) 3.72790i 0.149475i
\(623\) 9.12898i 0.365745i
\(624\) 0 0
\(625\) −15.6676 + 19.4814i −0.626705 + 0.779256i
\(626\) 21.3300 0.852519
\(627\) 0 0
\(628\) 10.5701i 0.421792i
\(629\) −0.561130 −0.0223737
\(630\) 0 0
\(631\) −1.86790 −0.0743600 −0.0371800 0.999309i \(-0.511837\pi\)
−0.0371800 + 0.999309i \(0.511837\pi\)
\(632\) 0.343246i 0.0136536i
\(633\) 0 0
\(634\) −16.7437 −0.664976
\(635\) 5.63118 8.94152i 0.223467 0.354833i
\(636\) 0 0
\(637\) 3.88733i 0.154022i
\(638\) 37.1707i 1.47160i
\(639\) 0 0
\(640\) −1.19161 + 1.89211i −0.0471025 + 0.0747921i
\(641\) 14.0944 0.556696 0.278348 0.960480i \(-0.410213\pi\)
0.278348 + 0.960480i \(0.410213\pi\)
\(642\) 0 0
\(643\) 14.3894i 0.567463i 0.958904 + 0.283732i \(0.0915725\pi\)
−0.958904 + 0.283732i \(0.908428\pi\)
\(644\) −2.66013 −0.104824
\(645\) 0 0
\(646\) −0.246701 −0.00970634
\(647\) 22.5927i 0.888212i −0.895974 0.444106i \(-0.853521\pi\)
0.895974 0.444106i \(-0.146479\pi\)
\(648\) 0 0
\(649\) −34.9472 −1.37180
\(650\) 2.50605 + 5.23140i 0.0982953 + 0.205192i
\(651\) 0 0
\(652\) 4.37570i 0.171366i
\(653\) 5.82479i 0.227942i 0.993484 + 0.113971i \(0.0363570\pi\)
−0.993484 + 0.113971i \(0.963643\pi\)
\(654\) 0 0
\(655\) −32.5228 20.4822i −1.27077 0.800304i
\(656\) 4.97226 0.194134
\(657\) 0 0
\(658\) 12.7929i 0.498717i
\(659\) 22.9392 0.893585 0.446793 0.894638i \(-0.352566\pi\)
0.446793 + 0.894638i \(0.352566\pi\)
\(660\) 0 0
\(661\) 34.2691 1.33291 0.666456 0.745545i \(-0.267811\pi\)
0.666456 + 0.745545i \(0.267811\pi\)
\(662\) 13.8978i 0.540155i
\(663\) 0 0
\(664\) −12.8462 −0.498528
\(665\) −1.00079 + 1.58911i −0.0388090 + 0.0616232i
\(666\) 0 0
\(667\) 8.16231i 0.316046i
\(668\) 14.7422i 0.570392i
\(669\) 0 0
\(670\) −9.53575 6.00542i −0.368398 0.232010i
\(671\) −84.4825 −3.26141
\(672\) 0 0
\(673\) 14.5326i 0.560190i −0.959972 0.280095i \(-0.909634\pi\)
0.959972 0.280095i \(-0.0903660\pi\)
\(674\) 1.64957 0.0635389
\(675\) 0 0
\(676\) −11.6541 −0.448234
\(677\) 32.2679i 1.24016i 0.784539 + 0.620079i \(0.212899\pi\)
−0.784539 + 0.620079i \(0.787101\pi\)
\(678\) 0 0
\(679\) 20.6850 0.793816
\(680\) −1.06172 0.668647i −0.0407150 0.0256415i
\(681\) 0 0
\(682\) 38.6444i 1.47977i
\(683\) 7.04046i 0.269396i −0.990887 0.134698i \(-0.956994\pi\)
0.990887 0.134698i \(-0.0430064\pi\)
\(684\) 0 0
\(685\) −26.5618 + 42.1763i −1.01487 + 1.61147i
\(686\) −19.7730 −0.754938
\(687\) 0 0
\(688\) 4.94129i 0.188385i
\(689\) 10.5975 0.403733
\(690\) 0 0
\(691\) 19.0846 0.726014 0.363007 0.931786i \(-0.381750\pi\)
0.363007 + 0.931786i \(0.381750\pi\)
\(692\) 13.1708i 0.500679i
\(693\) 0 0
\(694\) −13.9455 −0.529363
\(695\) 11.7197 + 7.38082i 0.444554 + 0.279971i
\(696\) 0 0
\(697\) 2.79008i 0.105682i
\(698\) 2.06031i 0.0779838i
\(699\) 0 0
\(700\) −8.61411 + 4.12650i −0.325583 + 0.155967i
\(701\) −1.59801 −0.0603561 −0.0301781 0.999545i \(-0.509607\pi\)
−0.0301781 + 0.999545i \(0.509607\pi\)
\(702\) 0 0
\(703\) 0.439651i 0.0165818i
\(704\) 6.34148 0.239003
\(705\) 0 0
\(706\) −19.3839 −0.729524
\(707\) 7.54144i 0.283625i
\(708\) 0 0
\(709\) −18.5069 −0.695041 −0.347520 0.937672i \(-0.612976\pi\)
−0.347520 + 0.937672i \(0.612976\pi\)
\(710\) 4.28721 6.80748i 0.160896 0.255480i
\(711\) 0 0
\(712\) 4.77883i 0.179094i
\(713\) 8.48591i 0.317800i
\(714\) 0 0
\(715\) 8.76663 13.9202i 0.327853 0.520585i
\(716\) −2.72305 −0.101765
\(717\) 0 0
\(718\) 34.3855i 1.28325i
\(719\) 10.8584 0.404949 0.202475 0.979287i \(-0.435102\pi\)
0.202475 + 0.979287i \(0.435102\pi\)
\(720\) 0 0
\(721\) −15.7440 −0.586336
\(722\) 18.8067i 0.699913i
\(723\) 0 0
\(724\) 10.9553 0.407151
\(725\) 12.6617 + 26.4314i 0.470243 + 0.981638i
\(726\) 0 0
\(727\) 40.1183i 1.48791i −0.668232 0.743953i \(-0.732949\pi\)
0.668232 0.743953i \(-0.267051\pi\)
\(728\) 2.21620i 0.0821380i
\(729\) 0 0
\(730\) −9.59662 6.04375i −0.355187 0.223689i
\(731\) 2.77271 0.102552
\(732\) 0 0
\(733\) 3.99598i 0.147595i −0.997273 0.0737974i \(-0.976488\pi\)
0.997273 0.0737974i \(-0.0235118\pi\)
\(734\) −21.4179 −0.790548
\(735\) 0 0
\(736\) 1.39252 0.0513291
\(737\) 31.9595i 1.17724i
\(738\) 0 0
\(739\) 46.2713 1.70212 0.851059 0.525069i \(-0.175961\pi\)
0.851059 + 0.525069i \(0.175961\pi\)
\(740\) 1.19161 1.89211i 0.0438044 0.0695552i
\(741\) 0 0
\(742\) 17.4501i 0.640612i
\(743\) 45.9938i 1.68735i −0.536855 0.843674i \(-0.680388\pi\)
0.536855 0.843674i \(-0.319612\pi\)
\(744\) 0 0
\(745\) 2.87892 + 1.81308i 0.105475 + 0.0664262i
\(746\) −35.1439 −1.28671
\(747\) 0 0
\(748\) 3.55839i 0.130108i
\(749\) 21.7550 0.794910
\(750\) 0 0
\(751\) −4.06992 −0.148514 −0.0742568 0.997239i \(-0.523658\pi\)
−0.0742568 + 0.997239i \(0.523658\pi\)
\(752\) 6.69678i 0.244207i
\(753\) 0 0
\(754\) 6.80016 0.247647
\(755\) 4.78849 + 3.01569i 0.174271 + 0.109752i
\(756\) 0 0
\(757\) 41.5068i 1.50859i −0.656536 0.754295i \(-0.727979\pi\)
0.656536 0.754295i \(-0.272021\pi\)
\(758\) 21.8115i 0.792228i
\(759\) 0 0
\(760\) 0.523892 0.831867i 0.0190036 0.0301750i
\(761\) −2.87865 −0.104351 −0.0521755 0.998638i \(-0.516616\pi\)
−0.0521755 + 0.998638i \(0.516616\pi\)
\(762\) 0 0
\(763\) 13.8440i 0.501185i
\(764\) 19.1443 0.692618
\(765\) 0 0
\(766\) 25.0363 0.904598
\(767\) 6.39338i 0.230852i
\(768\) 0 0
\(769\) −36.7760 −1.32618 −0.663088 0.748542i \(-0.730754\pi\)
−0.663088 + 0.748542i \(0.730754\pi\)
\(770\) 22.9212 + 14.4353i 0.826022 + 0.520212i
\(771\) 0 0
\(772\) 2.79550i 0.100612i
\(773\) 31.1721i 1.12118i 0.828093 + 0.560591i \(0.189426\pi\)
−0.828093 + 0.560591i \(0.810574\pi\)
\(774\) 0 0
\(775\) 13.1637 + 27.4793i 0.472853 + 0.987086i
\(776\) −10.8281 −0.388707
\(777\) 0 0
\(778\) 34.4660i 1.23567i
\(779\) −2.18606 −0.0783237
\(780\) 0 0
\(781\) −22.8156 −0.816405
\(782\) 0.781386i 0.0279423i
\(783\) 0 0
\(784\) 3.35076 0.119670
\(785\) 12.5954 19.9997i 0.449550 0.713821i
\(786\) 0 0
\(787\) 22.3107i 0.795289i 0.917540 + 0.397644i \(0.130172\pi\)
−0.917540 + 0.397644i \(0.869828\pi\)
\(788\) 19.5186i 0.695320i
\(789\) 0 0
\(790\) 0.409015 0.649458i 0.0145521 0.0231067i
\(791\) −7.14769 −0.254143
\(792\) 0 0
\(793\) 15.4556i 0.548843i
\(794\) −36.3469 −1.28990
\(795\) 0 0
\(796\) −2.19757 −0.0778907
\(797\) 32.0844i 1.13649i −0.822860 0.568243i \(-0.807623\pi\)
0.822860 0.568243i \(-0.192377\pi\)
\(798\) 0 0
\(799\) −3.75777 −0.132940
\(800\) 4.50930 2.16014i 0.159428 0.0763723i
\(801\) 0 0
\(802\) 34.9811i 1.23523i
\(803\) 32.1635i 1.13503i
\(804\) 0 0
\(805\) 5.03326 + 3.16984i 0.177399 + 0.111722i
\(806\) 7.06976 0.249022
\(807\) 0 0
\(808\) 3.94778i 0.138882i
\(809\) 11.9477 0.420057 0.210029 0.977695i \(-0.432644\pi\)
0.210029 + 0.977695i \(0.432644\pi\)
\(810\) 0 0
\(811\) 38.7527 1.36079 0.680396 0.732845i \(-0.261808\pi\)
0.680396 + 0.732845i \(0.261808\pi\)
\(812\) 11.1973i 0.392947i
\(813\) 0 0
\(814\) −6.34148 −0.222269
\(815\) 5.21413 8.27930i 0.182643 0.290011i
\(816\) 0 0
\(817\) 2.17245i 0.0760043i
\(818\) 10.6254i 0.371509i
\(819\) 0 0
\(820\) −9.40805 5.92499i −0.328543 0.206910i
\(821\) 11.0047 0.384065 0.192033 0.981389i \(-0.438492\pi\)
0.192033 + 0.981389i \(0.438492\pi\)
\(822\) 0 0
\(823\) 31.6372i 1.10280i 0.834240 + 0.551402i \(0.185907\pi\)
−0.834240 + 0.551402i \(0.814093\pi\)
\(824\) 8.24163 0.287111
\(825\) 0 0
\(826\) −10.5275 −0.366297
\(827\) 4.74477i 0.164992i −0.996591 0.0824960i \(-0.973711\pi\)
0.996591 0.0824960i \(-0.0262892\pi\)
\(828\) 0 0
\(829\) −46.6435 −1.62000 −0.809998 0.586432i \(-0.800532\pi\)
−0.809998 + 0.586432i \(0.800532\pi\)
\(830\) 24.3063 + 15.3076i 0.843685 + 0.531335i
\(831\) 0 0
\(832\) 1.16014i 0.0402204i
\(833\) 1.88021i 0.0651455i
\(834\) 0 0
\(835\) −17.5669 + 27.8938i −0.607928 + 0.965304i
\(836\) −2.78804 −0.0964263
\(837\) 0 0
\(838\) 38.0309i 1.31376i
\(839\) −35.1217 −1.21254 −0.606268 0.795261i \(-0.707334\pi\)
−0.606268 + 0.795261i \(0.707334\pi\)
\(840\) 0 0
\(841\) 5.35749 0.184741
\(842\) 4.85797i 0.167417i
\(843\) 0 0
\(844\) −12.0625 −0.415208
\(845\) 22.0508 + 13.8871i 0.758570 + 0.477731i
\(846\) 0 0
\(847\) 55.8081i 1.91759i
\(848\) 9.13473i 0.313688i
\(849\) 0 0
\(850\) 1.21212 + 2.53030i 0.0415752 + 0.0867887i
\(851\) −1.39252 −0.0477351
\(852\) 0 0
\(853\) 13.8610i 0.474591i 0.971438 + 0.237295i \(0.0762609\pi\)
−0.971438 + 0.237295i \(0.923739\pi\)
\(854\) −25.4494 −0.870860
\(855\) 0 0
\(856\) −11.3883 −0.389243
\(857\) 22.0303i 0.752541i 0.926510 + 0.376271i \(0.122794\pi\)
−0.926510 + 0.376271i \(0.877206\pi\)
\(858\) 0 0
\(859\) −19.7323 −0.673256 −0.336628 0.941638i \(-0.609287\pi\)
−0.336628 + 0.941638i \(0.609287\pi\)
\(860\) −5.88809 + 9.34945i −0.200782 + 0.318814i
\(861\) 0 0
\(862\) 18.4965i 0.629993i
\(863\) 35.7875i 1.21822i −0.793086 0.609110i \(-0.791527\pi\)
0.793086 0.609110i \(-0.208473\pi\)
\(864\) 0 0
\(865\) −15.6945 + 24.9206i −0.533628 + 0.847325i
\(866\) 8.29687 0.281939
\(867\) 0 0
\(868\) 11.6412i 0.395128i
\(869\) −2.17669 −0.0738390
\(870\) 0 0
\(871\) 5.84680 0.198111
\(872\) 7.24702i 0.245415i
\(873\) 0 0
\(874\) −0.612224 −0.0207088
\(875\) 21.2160 + 2.45688i 0.717232 + 0.0830576i
\(876\) 0 0
\(877\) 39.4320i 1.33152i 0.746165 + 0.665761i \(0.231893\pi\)
−0.746165 + 0.665761i \(0.768107\pi\)
\(878\) 11.2675i 0.380259i
\(879\) 0 0
\(880\) −11.9988 7.55656i −0.404478 0.254732i
\(881\) −8.28585 −0.279157 −0.139579 0.990211i \(-0.544575\pi\)
−0.139579 + 0.990211i \(0.544575\pi\)
\(882\) 0 0
\(883\) 6.07448i 0.204422i 0.994763 + 0.102211i \(0.0325918\pi\)
−0.994763 + 0.102211i \(0.967408\pi\)
\(884\) 0.650986 0.0218950
\(885\) 0 0
\(886\) 35.1510 1.18092
\(887\) 17.0227i 0.571568i 0.958294 + 0.285784i \(0.0922539\pi\)
−0.958294 + 0.285784i \(0.907746\pi\)
\(888\) 0 0
\(889\) −9.02749 −0.302772
\(890\) 5.69449 9.04205i 0.190880 0.303090i
\(891\) 0 0
\(892\) 16.4112i 0.549488i
\(893\) 2.94425i 0.0985256i
\(894\) 0 0
\(895\) 5.15231 + 3.24482i 0.172223 + 0.108462i
\(896\) 1.91030 0.0638186
\(897\) 0 0
\(898\) 21.0162i 0.701321i
\(899\) 35.7196 1.19132
\(900\) 0 0
\(901\) 5.12577 0.170764
\(902\) 31.5315i 1.04988i
\(903\) 0 0
\(904\) 3.74166 0.124446
\(905\) −20.7286 13.0545i −0.689043 0.433945i
\(906\) 0 0
\(907\) 47.5075i 1.57746i −0.614739 0.788731i \(-0.710739\pi\)
0.614739 0.788731i \(-0.289261\pi\)
\(908\) 17.2720i 0.573191i
\(909\) 0 0
\(910\) 2.64085 4.19329i 0.0875433 0.139006i
\(911\) −13.3434 −0.442088 −0.221044 0.975264i \(-0.570946\pi\)
−0.221044 + 0.975264i \(0.570946\pi\)
\(912\) 0 0
\(913\) 81.4637i 2.69606i
\(914\) 33.7686 1.11696
\(915\) 0 0
\(916\) 16.6738 0.550919
\(917\) 32.8354i 1.08432i
\(918\) 0 0
\(919\) −21.0558 −0.694566 −0.347283 0.937760i \(-0.612896\pi\)
−0.347283 + 0.937760i \(0.612896\pi\)
\(920\) −2.63480 1.65934i −0.0868668 0.0547069i
\(921\) 0 0
\(922\) 0.263532i 0.00867895i
\(923\) 4.17397i 0.137388i
\(924\) 0 0
\(925\) −4.50930 + 2.16014i −0.148265 + 0.0710248i
\(926\) 4.73741 0.155681
\(927\) 0 0
\(928\) 5.86153i 0.192414i
\(929\) −38.2577 −1.25519 −0.627597 0.778539i \(-0.715961\pi\)
−0.627597 + 0.778539i \(0.715961\pi\)
\(930\) 0 0
\(931\) −1.47317 −0.0482811
\(932\) 7.78278i 0.254933i
\(933\) 0 0
\(934\) −2.52474 −0.0826120
\(935\) 4.24021 6.73286i 0.138670 0.220188i
\(936\) 0 0
\(937\) 20.2830i 0.662615i 0.943523 + 0.331308i \(0.107490\pi\)
−0.943523 + 0.331308i \(0.892510\pi\)
\(938\) 9.62743i 0.314347i
\(939\) 0 0
\(940\) 7.97995 12.6710i 0.260277 0.413283i
\(941\) −25.1260 −0.819084 −0.409542 0.912291i \(-0.634311\pi\)
−0.409542 + 0.912291i \(0.634311\pi\)
\(942\) 0 0
\(943\) 6.92398i 0.225476i
\(944\) 5.51090 0.179364
\(945\) 0 0
\(946\) 31.3351 1.01879
\(947\) 52.5869i 1.70884i −0.519580 0.854422i \(-0.673912\pi\)
0.519580 0.854422i \(-0.326088\pi\)
\(948\) 0 0
\(949\) 5.88412 0.191007
\(950\) −1.98252 + 0.949706i −0.0643215 + 0.0308125i
\(951\) 0 0
\(952\) 1.07193i 0.0347413i
\(953\) 32.9016i 1.06579i −0.846182 0.532894i \(-0.821105\pi\)
0.846182 0.532894i \(-0.178895\pi\)
\(954\) 0 0
\(955\) −36.2231 22.8126i −1.17215 0.738198i
\(956\) −1.24406 −0.0402356
\(957\) 0 0
\(958\) 11.9387i 0.385722i
\(959\) 42.5818 1.37504
\(960\) 0 0
\(961\) 6.13579 0.197929
\(962\) 1.16014i 0.0374043i
\(963\) 0 0
\(964\) 1.63717 0.0527297
\(965\) 3.33115 5.28939i 0.107233 0.170271i
\(966\) 0 0
\(967\) 26.5880i 0.855013i 0.904012 + 0.427506i \(0.140608\pi\)
−0.904012 + 0.427506i \(0.859392\pi\)
\(968\) 29.2143i 0.938984i
\(969\) 0 0
\(970\) 20.4880 + 12.9029i 0.657829 + 0.414287i
\(971\) −46.4529 −1.49074 −0.745372 0.666649i \(-0.767728\pi\)
−0.745372 + 0.666649i \(0.767728\pi\)
\(972\) 0 0
\(973\) 11.8324i 0.379329i
\(974\) 9.65874 0.309486
\(975\) 0 0
\(976\) 13.3222 0.426434
\(977\) 40.4082i 1.29277i −0.763010 0.646386i \(-0.776279\pi\)
0.763010 0.646386i \(-0.223721\pi\)
\(978\) 0 0
\(979\) −30.3048 −0.968546
\(980\) −6.34000 3.99280i −0.202524 0.127545i
\(981\) 0 0
\(982\) 24.9302i 0.795554i
\(983\) 30.0599i 0.958761i 0.877607 + 0.479380i \(0.159139\pi\)
−0.877607 + 0.479380i \(0.840861\pi\)
\(984\) 0 0
\(985\) 23.2585 36.9312i 0.741077 1.17673i
\(986\) 3.28908 0.104746
\(987\) 0 0
\(988\) 0.510055i 0.0162270i
\(989\) 6.88086 0.218799
\(990\) 0 0
\(991\) −54.3782 −1.72738 −0.863691 0.504022i \(-0.831853\pi\)
−0.863691 + 0.504022i \(0.831853\pi\)
\(992\) 6.09391i 0.193482i
\(993\) 0 0
\(994\) −6.87293 −0.217996
\(995\) 4.15803 + 2.61864i 0.131818 + 0.0830165i
\(996\) 0 0
\(997\) 0.230743i 0.00730769i 0.999993 + 0.00365385i \(0.00116306\pi\)
−0.999993 + 0.00365385i \(0.998837\pi\)
\(998\) 27.4315i 0.868329i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3330.2.d.r.1999.6 yes 14
3.2 odd 2 3330.2.d.q.1999.9 yes 14
5.4 even 2 inner 3330.2.d.r.1999.13 yes 14
15.14 odd 2 3330.2.d.q.1999.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3330.2.d.q.1999.2 14 15.14 odd 2
3330.2.d.q.1999.9 yes 14 3.2 odd 2
3330.2.d.r.1999.6 yes 14 1.1 even 1 trivial
3330.2.d.r.1999.13 yes 14 5.4 even 2 inner