Properties

Label 2-3330-5.4-c1-0-37
Degree $2$
Conductor $3330$
Sign $0.846 + 0.532i$
Analytic cond. $26.5901$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + (1.89 + 1.19i)5-s − 1.91i·7-s + i·8-s + (1.19 − 1.89i)10-s − 6.34·11-s + 1.16i·13-s − 1.91·14-s + 16-s + 0.561i·17-s − 0.439·19-s + (−1.89 − 1.19i)20-s + 6.34i·22-s + 1.39i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + (0.846 + 0.532i)5-s − 0.722i·7-s + 0.353i·8-s + (0.376 − 0.598i)10-s − 1.91·11-s + 0.321i·13-s − 0.510·14-s + 0.250·16-s + 0.136i·17-s − 0.100·19-s + (−0.423 − 0.266i)20-s + 1.35i·22-s + 0.290i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $0.846 + 0.532i$
Analytic conductor: \(26.5901\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3330} (1999, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3330,\ (\ :1/2),\ 0.846 + 0.532i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.758165051\)
\(L(\frac12)\) \(\approx\) \(1.758165051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 + (-1.89 - 1.19i)T \)
37 \( 1 - iT \)
good7 \( 1 + 1.91iT - 7T^{2} \)
11 \( 1 + 6.34T + 11T^{2} \)
13 \( 1 - 1.16iT - 13T^{2} \)
17 \( 1 - 0.561iT - 17T^{2} \)
19 \( 1 + 0.439T + 19T^{2} \)
23 \( 1 - 1.39iT - 23T^{2} \)
29 \( 1 - 5.86T + 29T^{2} \)
31 \( 1 - 6.09T + 31T^{2} \)
41 \( 1 - 4.97T + 41T^{2} \)
43 \( 1 + 4.94iT - 43T^{2} \)
47 \( 1 - 6.69iT - 47T^{2} \)
53 \( 1 + 9.13iT - 53T^{2} \)
59 \( 1 - 5.51T + 59T^{2} \)
61 \( 1 - 13.3T + 61T^{2} \)
67 \( 1 + 5.03iT - 67T^{2} \)
71 \( 1 - 3.59T + 71T^{2} \)
73 \( 1 + 5.07iT - 73T^{2} \)
79 \( 1 - 0.343T + 79T^{2} \)
83 \( 1 - 12.8iT - 83T^{2} \)
89 \( 1 - 4.77T + 89T^{2} \)
97 \( 1 - 10.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.562316526382497344485783769038, −7.903500163974607187004118183823, −7.10034567675261964957604431165, −6.28122375409222548576773191101, −5.36531312590972763328713449432, −4.75633691049674172368728298376, −3.69211774233325381548485602226, −2.73064212206343883354935777407, −2.18006580516240574958033037320, −0.834237899254373491560863718884, 0.73069690479785477573737672906, 2.31126235725857293059668935015, 2.87201569416183250824887847887, 4.41648227486604416578023590106, 5.12332818207896035564849404709, 5.62994024514398680684593918575, 6.27099670754606399081960069535, 7.22533707519945570713267997263, 8.143893536639284464748674904272, 8.482340297128131000183058069705

Graph of the $Z$-function along the critical line