Defining parameters
| Level: | \( N \) | \(=\) | \( 3330 = 2 \cdot 3^{2} \cdot 5 \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3330.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(1368\) | ||
| Trace bound: | \(14\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(17\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3330, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 700 | 90 | 610 |
| Cusp forms | 668 | 90 | 578 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3330, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(3330, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3330, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(370, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1110, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1665, [\chi])\)\(^{\oplus 2}\)