Properties

Label 33.2.f
Level $33$
Weight $2$
Character orbit 33.f
Rep. character $\chi_{33}(2,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $8$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 33.f (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(33, [\chi])\).

Total New Old
Modular forms 24 24 0
Cusp forms 8 8 0
Eisenstein series 16 16 0

Trace form

\( 8 q - 6 q^{3} - 6 q^{4} - 10 q^{7} + 10 q^{9} + 12 q^{12} - 10 q^{13} - 6 q^{15} + 2 q^{16} + 20 q^{19} + 20 q^{22} - 10 q^{24} + 12 q^{25} - 12 q^{27} - 20 q^{30} - 20 q^{31} - 4 q^{33} - 40 q^{34} - 10 q^{36}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(33, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
33.2.f.a 33.f 33.f $8$ $0.264$ \(\Q(\zeta_{20})\) None 33.2.f.a \(0\) \(-6\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\zeta_{20}^{5}-\zeta_{20}^{7})q^{2}+(-1+\zeta_{20}+\cdots)q^{3}+\cdots\)