Properties

Label 33.2
Level 33
Weight 2
Dimension 19
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 160
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 33 = 3 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(160\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(33))\).

Total New Old
Modular forms 60 39 21
Cusp forms 21 19 2
Eisenstein series 39 20 19

Trace form

\( 19 q - 3 q^{2} - 6 q^{3} - 17 q^{4} - 6 q^{5} - 3 q^{6} - 8 q^{7} + 5 q^{8} + 4 q^{9} + 2 q^{10} - q^{11} + 3 q^{12} - 14 q^{13} + 6 q^{14} + 9 q^{15} + 19 q^{16} + 12 q^{17} + 7 q^{18} + 8 q^{20} + 12 q^{21}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
33.2.a \(\chi_{33}(1, \cdot)\) 33.2.a.a 1 1
33.2.d \(\chi_{33}(32, \cdot)\) 33.2.d.a 2 1
33.2.e \(\chi_{33}(4, \cdot)\) 33.2.e.a 4 4
33.2.e.b 4
33.2.f \(\chi_{33}(2, \cdot)\) 33.2.f.a 8 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(33))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(33)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)