Properties

 Label 33.2.f.a Level $33$ Weight $2$ Character orbit 33.f Analytic conductor $0.264$ Analytic rank $0$ Dimension $8$ CM no Inner twists $4$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [33,2,Mod(2,33)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(33, base_ring=CyclotomicField(10))

chi = DirichletCharacter(H, H._module([5, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("33.2");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$33 = 3 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 33.f (of order $$10$$, degree $$4$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.263506326670$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$2$$ over $$\Q(\zeta_{10})$$ Coefficient field: $$\Q(\zeta_{20})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{8} - x^{6} + x^{4} - x^{2} + 1$$ x^8 - x^6 + x^4 - x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{20}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - \zeta_{20}^{7} - \zeta_{20}^{5}) q^{2} + (\zeta_{20}^{6} + \zeta_{20}^{5} - \zeta_{20}^{3} + \zeta_{20} - 1) q^{3} + ( - \zeta_{20}^{4} - 1) q^{4} + (2 \zeta_{20}^{7} - \zeta_{20}^{5} + \zeta_{20}^{3} - 2 \zeta_{20}) q^{5} + (\zeta_{20}^{7} - \zeta_{20}^{6} + \zeta_{20}^{5} + \zeta_{20}^{3} + \zeta_{20}^{2} + \zeta_{20}) q^{6} + ( - 2 \zeta_{20}^{6} + 2 \zeta_{20}^{4} - \zeta_{20}^{2}) q^{7} + ( - 2 \zeta_{20}^{7} + 2 \zeta_{20}^{5} - \zeta_{20}^{3}) q^{8} + ( - \zeta_{20}^{6} - 2 \zeta_{20}^{2} - 2 \zeta_{20} + 2) q^{9}+O(q^{10})$$ q + (-z^7 - z^5) * q^2 + (z^6 + z^5 - z^3 + z - 1) * q^3 + (-z^4 - 1) * q^4 + (2*z^7 - z^5 + z^3 - 2*z) * q^5 + (z^7 - z^6 + z^5 + z^3 + z^2 + z) * q^6 + (-2*z^6 + 2*z^4 - z^2) * q^7 + (-2*z^7 + 2*z^5 - z^3) * q^8 + (-z^6 - 2*z^2 - 2*z + 2) * q^9 $$q + ( - \zeta_{20}^{7} - \zeta_{20}^{5}) q^{2} + (\zeta_{20}^{6} + \zeta_{20}^{5} - \zeta_{20}^{3} + \zeta_{20} - 1) q^{3} + ( - \zeta_{20}^{4} - 1) q^{4} + (2 \zeta_{20}^{7} - \zeta_{20}^{5} + \zeta_{20}^{3} - 2 \zeta_{20}) q^{5} + (\zeta_{20}^{7} - \zeta_{20}^{6} + \zeta_{20}^{5} + \zeta_{20}^{3} + \zeta_{20}^{2} + \zeta_{20}) q^{6} + ( - 2 \zeta_{20}^{6} + 2 \zeta_{20}^{4} - \zeta_{20}^{2}) q^{7} + ( - 2 \zeta_{20}^{7} + 2 \zeta_{20}^{5} - \zeta_{20}^{3}) q^{8} + ( - \zeta_{20}^{6} - 2 \zeta_{20}^{2} - 2 \zeta_{20} + 2) q^{9} + (3 \zeta_{20}^{6} + \zeta_{20}^{4} + 2 \zeta_{20}^{2} - 1) q^{10} + (\zeta_{20}^{7} - \zeta_{20}^{5} + 3 \zeta_{20}^{3} + \zeta_{20}) q^{11} + ( - \zeta_{20}^{6} - \zeta_{20}^{5} + \zeta_{20}^{4} + 2) q^{12} + (\zeta_{20}^{6} - 2 \zeta_{20}^{4} - 2) q^{13} + (\zeta_{20}^{5} - 3 \zeta_{20}^{3} + \zeta_{20}) q^{14} + ( - 3 \zeta_{20}^{7} - \zeta_{20}^{4} - 2 \zeta_{20}^{3} + 2 \zeta_{20} - 1) q^{15} + ( - \zeta_{20}^{6} - 3 \zeta_{20}^{4} - \zeta_{20}^{2}) q^{16} + (\zeta_{20}^{7} - 2 \zeta_{20}^{5} - 2 \zeta_{20}^{3} + \zeta_{20}) q^{17} + (2 \zeta_{20}^{7} + 4 \zeta_{20}^{6} - 4 \zeta_{20}^{5} - 2 \zeta_{20}^{4} + \zeta_{20}^{3} + 2 \zeta_{20}^{2} - 3 \zeta_{20} - 2) q^{18} + (2 \zeta_{20}^{6} + \zeta_{20}^{4} + \zeta_{20}^{2} + 2) q^{19} + ( - 2 \zeta_{20}^{7} + 2 \zeta_{20}^{5} + 3 \zeta_{20}) q^{20} + ( - \zeta_{20}^{7} + \zeta_{20}^{6} - \zeta_{20}^{5} - \zeta_{20}^{4} + 3 \zeta_{20}^{3} + 2 \zeta_{20}^{2} - 2 \zeta_{20} - 1) q^{21} + ( - 5 \zeta_{20}^{6} + 5 \zeta_{20}^{4} - 4 \zeta_{20}^{2} + 6) q^{22} + ( - 2 \zeta_{20}^{7} + 5 \zeta_{20}^{5} - 2 \zeta_{20}^{3}) q^{23} + (\zeta_{20}^{7} - 2 \zeta_{20}^{6} - \zeta_{20}^{5} + 4 \zeta_{20}^{4} + 2 \zeta_{20}^{3} - 3 \zeta_{20}^{2} - \zeta_{20} + 1) q^{24} + ( - 3 \zeta_{20}^{4} + 3 \zeta_{20}^{2}) q^{25} + (4 \zeta_{20}^{7} + 3 \zeta_{20}^{3} - 3 \zeta_{20}) q^{26} + ( - 4 \zeta_{20}^{7} - \zeta_{20}^{6} + 3 \zeta_{20}^{5} + 4 \zeta_{20}^{4} - 3 \zeta_{20}^{3} - \zeta_{20}^{2} + 4 \zeta_{20}) q^{27} + (\zeta_{20}^{6} - \zeta_{20}^{2}) q^{28} + (2 \zeta_{20}^{3} + 2 \zeta_{20}) q^{29} + (2 \zeta_{20}^{7} - 2 \zeta_{20}^{6} - 3 \zeta_{20}^{4} + \zeta_{20}^{3} - 3 \zeta_{20}^{2} - 2 \zeta_{20} - 2) q^{30} + ( - \zeta_{20}^{6} + 3 \zeta_{20}^{2} - 3) q^{31} + (5 \zeta_{20}^{7} - 2 \zeta_{20}^{5} - \zeta_{20}^{3} - 4 \zeta_{20}) q^{32} + (3 \zeta_{20}^{7} + 2 \zeta_{20}^{6} - 2 \zeta_{20}^{5} - 3 \zeta_{20}^{4} - \zeta_{20}^{3} + 5 \zeta_{20}^{2} - 3 \zeta_{20} - 3) q^{33} - 5 q^{34} + (\zeta_{20}^{7} + \zeta_{20}^{5}) q^{35} + (3 \zeta_{20}^{6} + 2 \zeta_{20}^{5} - 2 \zeta_{20}^{4} + 2 \zeta_{20}^{2} + 2 \zeta_{20} - 3) q^{36} - 3 \zeta_{20}^{2} q^{37} + ( - 5 \zeta_{20}^{7} + 5 \zeta_{20}) q^{38} + ( - 3 \zeta_{20}^{6} - \zeta_{20}^{5} + 2 \zeta_{20}^{4} - \zeta_{20}^{3} - \zeta_{20}^{2} + 4) q^{39} + (2 \zeta_{20}^{6} - \zeta_{20}^{4} + \zeta_{20}^{2} - 1) q^{40} + ( - 2 \zeta_{20}^{7} - \zeta_{20}^{3} + 2 \zeta_{20}) q^{41} + ( - 2 \zeta_{20}^{7} + \zeta_{20}^{6} + 2 \zeta_{20}^{5} - 3 \zeta_{20}^{2} + \zeta_{20} + 3) q^{42} + ( - 2 \zeta_{20}^{6} + 4 \zeta_{20}^{4} - 6 \zeta_{20}^{2} + 3) q^{43} + ( - 3 \zeta_{20}^{7} - \zeta_{20}^{5} - 2 \zeta_{20}^{3} - \zeta_{20}) q^{44} + (3 \zeta_{20}^{7} - 2 \zeta_{20}^{6} + \zeta_{20}^{5} + 2 \zeta_{20}^{4} + 3 \zeta_{20}^{3} + 4) q^{45} + (2 \zeta_{20}^{6} - 4 \zeta_{20}^{4} + 5 \zeta_{20}^{2} + 1) q^{46} + ( - 7 \zeta_{20}^{5} + 4 \zeta_{20}^{3} - 7 \zeta_{20}) q^{47} + ( - \zeta_{20}^{7} + 4 \zeta_{20}^{4} - 3 \zeta_{20}^{3} + \zeta_{20}^{2} + 3 \zeta_{20} + 4) q^{48} + (4 \zeta_{20}^{6} + 4 \zeta_{20}^{2}) q^{49} + ( - 3 \zeta_{20}^{7} - 3 \zeta_{20}) q^{50} + ( - 2 \zeta_{20}^{7} + 2 \zeta_{20}^{6} + 4 \zeta_{20}^{5} - 4 \zeta_{20}^{4} - \zeta_{20}^{3} + \zeta_{20}^{2} + 3 \zeta_{20} + 2) q^{51} + (\zeta_{20}^{6} + 2 \zeta_{20}^{4} + 2 \zeta_{20}^{2} + 1) q^{52} + (3 \zeta_{20}^{7} - 3 \zeta_{20}^{5} - 3 \zeta_{20}) q^{53} + ( - 2 \zeta_{20}^{7} - 5 \zeta_{20}^{6} + 3 \zeta_{20}^{5} - 3 \zeta_{20}^{4} - 4 \zeta_{20}^{3} - 2 \zeta_{20}^{2} + \cdots + 1) q^{54} + \cdots + ( - 2 \zeta_{20}^{7} - 3 \zeta_{20}^{5} - 4 \zeta_{20}^{4} - 4 \zeta_{20}^{2} + 6 \zeta_{20} + 2) q^{99} +O(q^{100})$$ q + (-z^7 - z^5) * q^2 + (z^6 + z^5 - z^3 + z - 1) * q^3 + (-z^4 - 1) * q^4 + (2*z^7 - z^5 + z^3 - 2*z) * q^5 + (z^7 - z^6 + z^5 + z^3 + z^2 + z) * q^6 + (-2*z^6 + 2*z^4 - z^2) * q^7 + (-2*z^7 + 2*z^5 - z^3) * q^8 + (-z^6 - 2*z^2 - 2*z + 2) * q^9 + (3*z^6 + z^4 + 2*z^2 - 1) * q^10 + (z^7 - z^5 + 3*z^3 + z) * q^11 + (-z^6 - z^5 + z^4 + 2) * q^12 + (z^6 - 2*z^4 - 2) * q^13 + (z^5 - 3*z^3 + z) * q^14 + (-3*z^7 - z^4 - 2*z^3 + 2*z - 1) * q^15 + (-z^6 - 3*z^4 - z^2) * q^16 + (z^7 - 2*z^5 - 2*z^3 + z) * q^17 + (2*z^7 + 4*z^6 - 4*z^5 - 2*z^4 + z^3 + 2*z^2 - 3*z - 2) * q^18 + (2*z^6 + z^4 + z^2 + 2) * q^19 + (-2*z^7 + 2*z^5 + 3*z) * q^20 + (-z^7 + z^6 - z^5 - z^4 + 3*z^3 + 2*z^2 - 2*z - 1) * q^21 + (-5*z^6 + 5*z^4 - 4*z^2 + 6) * q^22 + (-2*z^7 + 5*z^5 - 2*z^3) * q^23 + (z^7 - 2*z^6 - z^5 + 4*z^4 + 2*z^3 - 3*z^2 - z + 1) * q^24 + (-3*z^4 + 3*z^2) * q^25 + (4*z^7 + 3*z^3 - 3*z) * q^26 + (-4*z^7 - z^6 + 3*z^5 + 4*z^4 - 3*z^3 - z^2 + 4*z) * q^27 + (z^6 - z^2) * q^28 + (2*z^3 + 2*z) * q^29 + (2*z^7 - 2*z^6 - 3*z^4 + z^3 - 3*z^2 - 2*z - 2) * q^30 + (-z^6 + 3*z^2 - 3) * q^31 + (5*z^7 - 2*z^5 - z^3 - 4*z) * q^32 + (3*z^7 + 2*z^6 - 2*z^5 - 3*z^4 - z^3 + 5*z^2 - 3*z - 3) * q^33 - 5 * q^34 + (z^7 + z^5) * q^35 + (3*z^6 + 2*z^5 - 2*z^4 + 2*z^2 + 2*z - 3) * q^36 - 3*z^2 * q^37 + (-5*z^7 + 5*z) * q^38 + (-3*z^6 - z^5 + 2*z^4 - z^3 - z^2 + 4) * q^39 + (2*z^6 - z^4 + z^2 - 1) * q^40 + (-2*z^7 - z^3 + 2*z) * q^41 + (-2*z^7 + z^6 + 2*z^5 - 3*z^2 + z + 3) * q^42 + (-2*z^6 + 4*z^4 - 6*z^2 + 3) * q^43 + (-3*z^7 - z^5 - 2*z^3 - z) * q^44 + (3*z^7 - 2*z^6 + z^5 + 2*z^4 + 3*z^3 + 4) * q^45 + (2*z^6 - 4*z^4 + 5*z^2 + 1) * q^46 + (-7*z^5 + 4*z^3 - 7*z) * q^47 + (-z^7 + 4*z^4 - 3*z^3 + z^2 + 3*z + 4) * q^48 + (4*z^6 + 4*z^2) * q^49 + (-3*z^7 - 3*z) * q^50 + (-2*z^7 + 2*z^6 + 4*z^5 - 4*z^4 - z^3 + z^2 + 3*z + 2) * q^51 + (z^6 + 2*z^4 + 2*z^2 + 1) * q^52 + (3*z^7 - 3*z^5 - 3*z) * q^53 + (-2*z^7 - 5*z^6 + 3*z^5 - 3*z^4 - 4*z^3 - 2*z^2 + 6*z + 1) * q^54 + (-3*z^4 - 3*z^2 - 4) * q^55 + (4*z^7 - 7*z^5 + 4*z^3) * q^56 + (z^7 + z^6 + 3*z^5 - 2*z^4 - 2*z^3 - 2*z^2 + z - 4) * q^57 + (-6*z^6 + 4*z^4 - 4*z^2 + 6) * q^58 + (-2*z^7 - z^3 + z) * q^59 + (5*z^7 + z^6 - 2*z^5 + z^4 + 2*z^3 + z^2 - 5*z) * q^60 + (3*z^6 - z^4 - z^2 - 2) * q^61 + (-3*z^7 + 6*z^5 - 4*z^3 + 2*z) * q^62 + (4*z^7 - 3*z^6 - 4*z^5 + z^4 + 2*z^3 + z^2 - 3) * q^63 + (z^6 + 6*z^2 - 6) * q^64 + (-5*z^7 + 3*z^5 - z^3 + 6*z) * q^65 + (-4*z^7 + 7*z^6 + 5*z^5 - z^4 + 5*z^2 + z - 7) * q^66 + (7*z^6 - 7*z^4 - 4) * q^67 + (3*z^7 - z^5 + 4*z^3 - 2*z) * q^68 + (-2*z^6 - 3*z^5 + 7*z^4 + 2*z^3 - 7*z^2 - 3*z + 2) * q^69 + (z^4 + 2*z^2 + 1) * q^70 + (6*z^7 + z^5 - z^3 - 6*z) * q^71 + (-3*z^7 + z^5 - 2*z^4 + z^3 + 4*z^2 - 3*z - 4) * q^72 + (-16*z^6 + 8*z^4 - 8*z^2 + 8) * q^73 + (6*z^7 - 3*z^5 + 3*z^3 - 3*z) * q^74 + (3*z^7 + 3*z^6 - 3*z^5 + 3*z) * q^75 + (-4*z^6 - 2*z^4 - 2*z^2 + 1) * q^76 + (-4*z^7 + 8*z^5 - 8*z^3 + 5*z) * q^77 + (-4*z^7 + z^6 - 3*z^5 - z^4 - 4*z^3 - 3) * q^78 + (-z^6 + 2*z^4 + 4*z^2 + 6) * q^79 + (5*z^5 + 4*z^3 + 5*z) * q^80 + (4*z^7 + 8*z^3 - z^2 - 8*z) * q^81 + (-3*z^6 - z^4 - 3*z^2) * q^82 + (z^7 + 7*z^5 + 7*z^3 + z) * q^83 + (-z^7 - 2*z^6 + 2*z^5 + z^4 - 2*z^3 - z^2 + 1) * q^84 + (z^6 + 3*z^4 + 3*z^2 + 1) * q^85 + (5*z^7 - 5*z^5) * q^86 + (4*z^7 + 2*z^6 - 2*z^5 - 2*z^4 + 4*z^2 - 4*z - 2) * q^87 + (4*z^6 - 4*z^4 + z^2 + 4) * q^88 + (-4*z^7 - 3*z^5 - 4*z^3) * q^89 + (-6*z^7 - 3*z^6 - 2*z^5 + 6*z^4 - 4*z^3 + z^2 + 2*z + 7) * q^90 + (z^6 + z^4 - z^2 - 1) * q^91 + (-z^7 - 3*z^3 + 3*z) * q^92 + (3*z^7 + z^6 - 7*z^5 - 3*z^4 + 7*z^3 + z^2 - 3*z) * q^93 + (10*z^6 - 3*z^4 - 4*z^2 - 6) * q^94 + (3*z^7 - 6*z^5 - z^3 - 7*z) * q^95 + (-10*z^7 + z^6 + 3*z^5 - 3*z^4 - 5*z^3 - 3*z^2 + 7*z + 1) * q^96 + (6*z^6 + z^2 - 1) * q^97 + (-8*z^7 + 4*z^5 + 8*z) * q^98 + (-2*z^7 - 3*z^5 - 4*z^4 - 4*z^2 + 6*z + 2) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q - 6 q^{3} - 6 q^{4} - 10 q^{7} + 10 q^{9}+O(q^{10})$$ 8 * q - 6 * q^3 - 6 * q^4 - 10 * q^7 + 10 * q^9 $$8 q - 6 q^{3} - 6 q^{4} - 10 q^{7} + 10 q^{9} + 12 q^{12} - 10 q^{13} - 6 q^{15} + 2 q^{16} + 20 q^{19} + 20 q^{22} - 10 q^{24} + 12 q^{25} - 12 q^{27} - 20 q^{30} - 20 q^{31} - 4 q^{33} - 40 q^{34} - 10 q^{36} - 6 q^{37} + 20 q^{39} + 20 q^{42} + 24 q^{45} + 30 q^{46} + 26 q^{48} + 16 q^{49} + 30 q^{51} + 10 q^{52} - 32 q^{55} - 30 q^{57} + 20 q^{58} + 2 q^{60} - 10 q^{61} - 30 q^{63} - 34 q^{64} - 30 q^{66} - 4 q^{67} - 16 q^{69} + 10 q^{70} - 20 q^{72} + 6 q^{75} - 20 q^{78} + 50 q^{79} - 2 q^{81} - 10 q^{82} + 10 q^{85} + 50 q^{88} + 40 q^{90} - 10 q^{91} + 10 q^{93} - 30 q^{94} + 10 q^{96} + 6 q^{97} + 16 q^{99}+O(q^{100})$$ 8 * q - 6 * q^3 - 6 * q^4 - 10 * q^7 + 10 * q^9 + 12 * q^12 - 10 * q^13 - 6 * q^15 + 2 * q^16 + 20 * q^19 + 20 * q^22 - 10 * q^24 + 12 * q^25 - 12 * q^27 - 20 * q^30 - 20 * q^31 - 4 * q^33 - 40 * q^34 - 10 * q^36 - 6 * q^37 + 20 * q^39 + 20 * q^42 + 24 * q^45 + 30 * q^46 + 26 * q^48 + 16 * q^49 + 30 * q^51 + 10 * q^52 - 32 * q^55 - 30 * q^57 + 20 * q^58 + 2 * q^60 - 10 * q^61 - 30 * q^63 - 34 * q^64 - 30 * q^66 - 4 * q^67 - 16 * q^69 + 10 * q^70 - 20 * q^72 + 6 * q^75 - 20 * q^78 + 50 * q^79 - 2 * q^81 - 10 * q^82 + 10 * q^85 + 50 * q^88 + 40 * q^90 - 10 * q^91 + 10 * q^93 - 30 * q^94 + 10 * q^96 + 6 * q^97 + 16 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/33\mathbb{Z}\right)^\times$$.

 $$n$$ $$13$$ $$23$$ $$\chi(n)$$ $$\zeta_{20}^{2}$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2.1
 −0.951057 − 0.309017i 0.951057 + 0.309017i 0.587785 + 0.809017i −0.587785 − 0.809017i −0.951057 + 0.309017i 0.951057 − 0.309017i 0.587785 − 0.809017i −0.587785 + 0.809017i
−0.587785 + 1.80902i −1.67229 + 0.451057i −1.30902 0.951057i 2.48990 0.809017i 0.166977 3.29032i 0.427051 0.587785i −0.587785 + 0.427051i 2.59310 1.50859i 4.97980i
2.2 0.587785 1.80902i −0.945746 + 1.45106i −1.30902 0.951057i −2.48990 + 0.809017i 2.06909 + 2.56378i 0.427051 0.587785i 0.587785 0.427051i −1.21113 2.74466i 4.97980i
8.1 −0.951057 + 0.690983i 1.34786 1.08779i −0.190983 + 0.587785i −0.224514 + 0.309017i −0.530249 + 1.96589i −2.92705 0.951057i −0.951057 2.92705i 0.633446 2.93236i 0.449028i
8.2 0.951057 0.690983i −1.72982 0.0877853i −0.190983 + 0.587785i 0.224514 0.309017i −1.70582 + 1.11179i −2.92705 0.951057i 0.951057 + 2.92705i 2.98459 + 0.303706i 0.449028i
17.1 −0.587785 1.80902i −1.67229 0.451057i −1.30902 + 0.951057i 2.48990 + 0.809017i 0.166977 + 3.29032i 0.427051 + 0.587785i −0.587785 0.427051i 2.59310 + 1.50859i 4.97980i
17.2 0.587785 + 1.80902i −0.945746 1.45106i −1.30902 + 0.951057i −2.48990 0.809017i 2.06909 2.56378i 0.427051 + 0.587785i 0.587785 + 0.427051i −1.21113 + 2.74466i 4.97980i
29.1 −0.951057 0.690983i 1.34786 + 1.08779i −0.190983 0.587785i −0.224514 0.309017i −0.530249 1.96589i −2.92705 + 0.951057i −0.951057 + 2.92705i 0.633446 + 2.93236i 0.449028i
29.2 0.951057 + 0.690983i −1.72982 + 0.0877853i −0.190983 0.587785i 0.224514 + 0.309017i −1.70582 1.11179i −2.92705 + 0.951057i 0.951057 2.92705i 2.98459 0.303706i 0.449028i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 2.2 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.d odd 10 1 inner
33.f even 10 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.2.f.a 8
3.b odd 2 1 inner 33.2.f.a 8
4.b odd 2 1 528.2.bn.c 8
5.b even 2 1 825.2.bi.b 8
5.c odd 4 1 825.2.bs.a 8
5.c odd 4 1 825.2.bs.d 8
9.c even 3 2 891.2.u.a 16
9.d odd 6 2 891.2.u.a 16
11.b odd 2 1 363.2.f.b 8
11.c even 5 1 363.2.d.f 8
11.c even 5 1 363.2.f.b 8
11.c even 5 1 363.2.f.d 8
11.c even 5 1 363.2.f.e 8
11.d odd 10 1 inner 33.2.f.a 8
11.d odd 10 1 363.2.d.f 8
11.d odd 10 1 363.2.f.d 8
11.d odd 10 1 363.2.f.e 8
12.b even 2 1 528.2.bn.c 8
15.d odd 2 1 825.2.bi.b 8
15.e even 4 1 825.2.bs.a 8
15.e even 4 1 825.2.bs.d 8
33.d even 2 1 363.2.f.b 8
33.f even 10 1 inner 33.2.f.a 8
33.f even 10 1 363.2.d.f 8
33.f even 10 1 363.2.f.d 8
33.f even 10 1 363.2.f.e 8
33.h odd 10 1 363.2.d.f 8
33.h odd 10 1 363.2.f.b 8
33.h odd 10 1 363.2.f.d 8
33.h odd 10 1 363.2.f.e 8
44.g even 10 1 528.2.bn.c 8
55.h odd 10 1 825.2.bi.b 8
55.l even 20 1 825.2.bs.a 8
55.l even 20 1 825.2.bs.d 8
99.o odd 30 2 891.2.u.a 16
99.p even 30 2 891.2.u.a 16
132.n odd 10 1 528.2.bn.c 8
165.r even 10 1 825.2.bi.b 8
165.u odd 20 1 825.2.bs.a 8
165.u odd 20 1 825.2.bs.d 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.2.f.a 8 1.a even 1 1 trivial
33.2.f.a 8 3.b odd 2 1 inner
33.2.f.a 8 11.d odd 10 1 inner
33.2.f.a 8 33.f even 10 1 inner
363.2.d.f 8 11.c even 5 1
363.2.d.f 8 11.d odd 10 1
363.2.d.f 8 33.f even 10 1
363.2.d.f 8 33.h odd 10 1
363.2.f.b 8 11.b odd 2 1
363.2.f.b 8 11.c even 5 1
363.2.f.b 8 33.d even 2 1
363.2.f.b 8 33.h odd 10 1
363.2.f.d 8 11.c even 5 1
363.2.f.d 8 11.d odd 10 1
363.2.f.d 8 33.f even 10 1
363.2.f.d 8 33.h odd 10 1
363.2.f.e 8 11.c even 5 1
363.2.f.e 8 11.d odd 10 1
363.2.f.e 8 33.f even 10 1
363.2.f.e 8 33.h odd 10 1
528.2.bn.c 8 4.b odd 2 1
528.2.bn.c 8 12.b even 2 1
528.2.bn.c 8 44.g even 10 1
528.2.bn.c 8 132.n odd 10 1
825.2.bi.b 8 5.b even 2 1
825.2.bi.b 8 15.d odd 2 1
825.2.bi.b 8 55.h odd 10 1
825.2.bi.b 8 165.r even 10 1
825.2.bs.a 8 5.c odd 4 1
825.2.bs.a 8 15.e even 4 1
825.2.bs.a 8 55.l even 20 1
825.2.bs.a 8 165.u odd 20 1
825.2.bs.d 8 5.c odd 4 1
825.2.bs.d 8 15.e even 4 1
825.2.bs.d 8 55.l even 20 1
825.2.bs.d 8 165.u odd 20 1
891.2.u.a 16 9.c even 3 2
891.2.u.a 16 9.d odd 6 2
891.2.u.a 16 99.o odd 30 2
891.2.u.a 16 99.p even 30 2

Hecke kernels

This newform subspace is the entire newspace $$S_{2}^{\mathrm{new}}(33, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{8} + 5 T^{6} + 10 T^{4} + 25$$
$3$ $$T^{8} + 6 T^{7} + 13 T^{6} + 10 T^{5} + \cdots + 81$$
$5$ $$T^{8} - 11 T^{6} + 46 T^{4} + 4 T^{2} + \cdots + 1$$
$7$ $$(T^{4} + 5 T^{3} + 5 T^{2} - 5 T + 5)^{2}$$
$11$ $$T^{8} + 19 T^{6} + 301 T^{4} + \cdots + 14641$$
$13$ $$(T^{4} + 5 T^{3} + 5 T^{2} - 5 T + 5)^{2}$$
$17$ $$T^{8} + 250 T^{4} + 3125 T^{2} + \cdots + 15625$$
$19$ $$(T^{4} - 10 T^{3} + 50 T^{2} - 125 T + 125)^{2}$$
$23$ $$(T^{4} + 42 T^{2} + 121)^{2}$$
$29$ $$T^{8} + 160 T^{4} + 1600 T^{2} + \cdots + 6400$$
$31$ $$(T^{4} + 10 T^{3} + 40 T^{2} + 25 T + 25)^{2}$$
$37$ $$(T^{4} + 3 T^{3} + 9 T^{2} + 27 T + 81)^{2}$$
$41$ $$T^{8} - 5 T^{6} + 85 T^{4} + 75 T^{2} + \cdots + 25$$
$43$ $$(T^{4} + 50 T^{2} + 125)^{2}$$
$47$ $$T^{8} - 79 T^{6} + 3966 T^{4} + \cdots + 13845841$$
$53$ $$T^{8} - 36 T^{6} + 486 T^{4} + \cdots + 6561$$
$59$ $$T^{8} + 4 T^{6} + 46 T^{4} - 11 T^{2} + \cdots + 1$$
$61$ $$(T^{4} + 5 T^{3} + 125)^{2}$$
$67$ $$(T^{2} + T - 61)^{4}$$
$71$ $$T^{8} - 155 T^{6} + 9150 T^{4} + \cdots + 9150625$$
$73$ $$(T^{4} + 2560 T + 20480)^{2}$$
$79$ $$(T^{4} - 25 T^{3} + 225 T^{2} - 855 T + 1805)^{2}$$
$83$ $$T^{8} + 315 T^{6} + \cdots + 70644025$$
$89$ $$(T^{4} + 90 T^{2} + 25)^{2}$$
$97$ $$(T^{4} - 3 T^{3} + 34 T^{2} - 232 T + 841)^{2}$$