Properties

Label 33.2.a.a
Level 33
Weight 2
Character orbit 33.a
Self dual yes
Analytic conductor 0.264
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 33 = 3 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 33.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(0.263506326670\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} - q^{4} - 2q^{5} - q^{6} + 4q^{7} - 3q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} - q^{4} - 2q^{5} - q^{6} + 4q^{7} - 3q^{8} + q^{9} - 2q^{10} + q^{11} + q^{12} - 2q^{13} + 4q^{14} + 2q^{15} - q^{16} - 2q^{17} + q^{18} + 2q^{20} - 4q^{21} + q^{22} + 8q^{23} + 3q^{24} - q^{25} - 2q^{26} - q^{27} - 4q^{28} - 6q^{29} + 2q^{30} - 8q^{31} + 5q^{32} - q^{33} - 2q^{34} - 8q^{35} - q^{36} + 6q^{37} + 2q^{39} + 6q^{40} - 2q^{41} - 4q^{42} - q^{44} - 2q^{45} + 8q^{46} + 8q^{47} + q^{48} + 9q^{49} - q^{50} + 2q^{51} + 2q^{52} + 6q^{53} - q^{54} - 2q^{55} - 12q^{56} - 6q^{58} - 4q^{59} - 2q^{60} + 6q^{61} - 8q^{62} + 4q^{63} + 7q^{64} + 4q^{65} - q^{66} - 4q^{67} + 2q^{68} - 8q^{69} - 8q^{70} - 3q^{72} - 14q^{73} + 6q^{74} + q^{75} + 4q^{77} + 2q^{78} - 4q^{79} + 2q^{80} + q^{81} - 2q^{82} + 12q^{83} + 4q^{84} + 4q^{85} + 6q^{87} - 3q^{88} - 6q^{89} - 2q^{90} - 8q^{91} - 8q^{92} + 8q^{93} + 8q^{94} - 5q^{96} + 2q^{97} + 9q^{98} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 −1.00000 −2.00000 −1.00000 4.00000 −3.00000 1.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.2.a.a 1
3.b odd 2 1 99.2.a.b 1
4.b odd 2 1 528.2.a.g 1
5.b even 2 1 825.2.a.a 1
5.c odd 4 2 825.2.c.a 2
7.b odd 2 1 1617.2.a.j 1
8.b even 2 1 2112.2.a.bb 1
8.d odd 2 1 2112.2.a.j 1
9.c even 3 2 891.2.e.e 2
9.d odd 6 2 891.2.e.g 2
11.b odd 2 1 363.2.a.b 1
11.c even 5 4 363.2.e.e 4
11.d odd 10 4 363.2.e.g 4
12.b even 2 1 1584.2.a.o 1
13.b even 2 1 5577.2.a.a 1
15.d odd 2 1 2475.2.a.g 1
15.e even 4 2 2475.2.c.d 2
17.b even 2 1 9537.2.a.m 1
21.c even 2 1 4851.2.a.b 1
24.f even 2 1 6336.2.a.n 1
24.h odd 2 1 6336.2.a.x 1
33.d even 2 1 1089.2.a.j 1
44.c even 2 1 5808.2.a.t 1
55.d odd 2 1 9075.2.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.2.a.a 1 1.a even 1 1 trivial
99.2.a.b 1 3.b odd 2 1
363.2.a.b 1 11.b odd 2 1
363.2.e.e 4 11.c even 5 4
363.2.e.g 4 11.d odd 10 4
528.2.a.g 1 4.b odd 2 1
825.2.a.a 1 5.b even 2 1
825.2.c.a 2 5.c odd 4 2
891.2.e.e 2 9.c even 3 2
891.2.e.g 2 9.d odd 6 2
1089.2.a.j 1 33.d even 2 1
1584.2.a.o 1 12.b even 2 1
1617.2.a.j 1 7.b odd 2 1
2112.2.a.j 1 8.d odd 2 1
2112.2.a.bb 1 8.b even 2 1
2475.2.a.g 1 15.d odd 2 1
2475.2.c.d 2 15.e even 4 2
4851.2.a.b 1 21.c even 2 1
5577.2.a.a 1 13.b even 2 1
5808.2.a.t 1 44.c even 2 1
6336.2.a.n 1 24.f even 2 1
6336.2.a.x 1 24.h odd 2 1
9075.2.a.q 1 55.d odd 2 1
9537.2.a.m 1 17.b even 2 1

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(11\) \(-1\)

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(\Gamma_0(33))\).