Properties

Label 33.2.a
Level $33$
Weight $2$
Character orbit 33.a
Rep. character $\chi_{33}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(33))\).

Total New Old
Modular forms 6 1 5
Cusp forms 3 1 2
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(11\)FrickeDim
\(+\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q + q^{2} - q^{3} - q^{4} - 2 q^{5} - q^{6} + 4 q^{7} - 3 q^{8} + q^{9} - 2 q^{10} + q^{11} + q^{12} - 2 q^{13} + 4 q^{14} + 2 q^{15} - q^{16} - 2 q^{17} + q^{18} + 2 q^{20} - 4 q^{21} + q^{22}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(33))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 11
33.2.a.a 33.a 1.a $1$ $0.264$ \(\Q\) None 33.2.a.a \(1\) \(-1\) \(-2\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}-2q^{5}-q^{6}+4q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(33))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(33)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)