Properties

Label 325.4.d.e.324.27
Level $325$
Weight $4$
Character 325.324
Analytic conductor $19.176$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(324,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.324"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.27
Character \(\chi\) \(=\) 325.324
Dual form 325.4.d.e.324.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.39779 q^{2} -9.57032i q^{3} +21.1361 q^{4} -51.6586i q^{6} +19.5662 q^{7} +70.9061 q^{8} -64.5911 q^{9} -22.1851i q^{11} -202.280i q^{12} +(-22.2600 + 41.2492i) q^{13} +105.614 q^{14} +213.647 q^{16} -3.19819i q^{17} -348.649 q^{18} +79.9778i q^{19} -187.255i q^{21} -119.751i q^{22} +81.6896i q^{23} -678.595i q^{24} +(-120.155 + 222.654i) q^{26} +359.759i q^{27} +413.555 q^{28} -15.5101 q^{29} +27.4476i q^{31} +585.974 q^{32} -212.319 q^{33} -17.2632i q^{34} -1365.21 q^{36} -418.722 q^{37} +431.703i q^{38} +(394.768 + 213.035i) q^{39} -253.693i q^{41} -1010.76i q^{42} -83.2815i q^{43} -468.908i q^{44} +440.943i q^{46} +388.997 q^{47} -2044.67i q^{48} +39.8376 q^{49} -30.6078 q^{51} +(-470.490 + 871.848i) q^{52} +92.5015i q^{53} +1941.90i q^{54} +1387.37 q^{56} +765.413 q^{57} -83.7202 q^{58} -385.328i q^{59} +734.366 q^{61} +148.156i q^{62} -1263.80 q^{63} +1453.79 q^{64} -1146.05 q^{66} -138.626 q^{67} -67.5975i q^{68} +781.796 q^{69} +497.037i q^{71} -4579.90 q^{72} -716.898 q^{73} -2260.17 q^{74} +1690.42i q^{76} -434.079i q^{77} +(2130.87 + 1149.92i) q^{78} -425.224 q^{79} +1699.05 q^{81} -1369.38i q^{82} +793.338 q^{83} -3957.85i q^{84} -449.536i q^{86} +148.436i q^{87} -1573.06i q^{88} +1007.38i q^{89} +(-435.544 + 807.091i) q^{91} +1726.60i q^{92} +262.682 q^{93} +2099.73 q^{94} -5607.96i q^{96} +740.271 q^{97} +215.035 q^{98} +1432.96i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 112 q^{4} - 316 q^{9} + 184 q^{14} + 560 q^{16} - 568 q^{26} - 36 q^{29} - 4168 q^{36} + 1120 q^{39} - 576 q^{49} + 1072 q^{51} + 4984 q^{56} + 260 q^{61} + 5328 q^{64} - 3960 q^{66} + 4280 q^{69}+ \cdots + 11848 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.39779 1.90841 0.954204 0.299158i \(-0.0967058\pi\)
0.954204 + 0.299158i \(0.0967058\pi\)
\(3\) 9.57032i 1.84181i −0.389788 0.920905i \(-0.627452\pi\)
0.389788 0.920905i \(-0.372548\pi\)
\(4\) 21.1361 2.64202
\(5\) 0 0
\(6\) 51.6586i 3.51492i
\(7\) 19.5662 1.05648 0.528239 0.849096i \(-0.322853\pi\)
0.528239 + 0.849096i \(0.322853\pi\)
\(8\) 70.9061 3.13364
\(9\) −64.5911 −2.39226
\(10\) 0 0
\(11\) 22.1851i 0.608097i −0.952657 0.304049i \(-0.901662\pi\)
0.952657 0.304049i \(-0.0983385\pi\)
\(12\) 202.280i 4.86609i
\(13\) −22.2600 + 41.2492i −0.474908 + 0.880035i
\(14\) 105.614 2.01619
\(15\) 0 0
\(16\) 213.647 3.33824
\(17\) 3.19819i 0.0456280i −0.999740 0.0228140i \(-0.992737\pi\)
0.999740 0.0228140i \(-0.00726255\pi\)
\(18\) −348.649 −4.56541
\(19\) 79.9778i 0.965693i 0.875705 + 0.482846i \(0.160397\pi\)
−0.875705 + 0.482846i \(0.839603\pi\)
\(20\) 0 0
\(21\) 187.255i 1.94583i
\(22\) 119.751i 1.16050i
\(23\) 81.6896i 0.740585i 0.928915 + 0.370293i \(0.120743\pi\)
−0.928915 + 0.370293i \(0.879257\pi\)
\(24\) 678.595i 5.77156i
\(25\) 0 0
\(26\) −120.155 + 222.654i −0.906318 + 1.67947i
\(27\) 359.759i 2.56428i
\(28\) 413.555 2.79123
\(29\) −15.5101 −0.0993155 −0.0496577 0.998766i \(-0.515813\pi\)
−0.0496577 + 0.998766i \(0.515813\pi\)
\(30\) 0 0
\(31\) 27.4476i 0.159023i 0.996834 + 0.0795117i \(0.0253361\pi\)
−0.996834 + 0.0795117i \(0.974664\pi\)
\(32\) 585.974 3.23708
\(33\) −212.319 −1.12000
\(34\) 17.2632i 0.0870768i
\(35\) 0 0
\(36\) −1365.21 −6.32040
\(37\) −418.722 −1.86047 −0.930236 0.366963i \(-0.880398\pi\)
−0.930236 + 0.366963i \(0.880398\pi\)
\(38\) 431.703i 1.84294i
\(39\) 394.768 + 213.035i 1.62086 + 0.874690i
\(40\) 0 0
\(41\) 253.693i 0.966346i −0.875525 0.483173i \(-0.839484\pi\)
0.875525 0.483173i \(-0.160516\pi\)
\(42\) 1010.76i 3.71344i
\(43\) 83.2815i 0.295356i −0.989035 0.147678i \(-0.952820\pi\)
0.989035 0.147678i \(-0.0471799\pi\)
\(44\) 468.908i 1.60660i
\(45\) 0 0
\(46\) 440.943i 1.41334i
\(47\) 388.997 1.20726 0.603628 0.797266i \(-0.293721\pi\)
0.603628 + 0.797266i \(0.293721\pi\)
\(48\) 2044.67i 6.14840i
\(49\) 39.8376 0.116145
\(50\) 0 0
\(51\) −30.6078 −0.0840381
\(52\) −470.490 + 871.848i −1.25472 + 2.32507i
\(53\) 92.5015i 0.239737i 0.992790 + 0.119868i \(0.0382473\pi\)
−0.992790 + 0.119868i \(0.961753\pi\)
\(54\) 1941.90i 4.89369i
\(55\) 0 0
\(56\) 1387.37 3.31062
\(57\) 765.413 1.77862
\(58\) −83.7202 −0.189534
\(59\) 385.328i 0.850262i −0.905132 0.425131i \(-0.860228\pi\)
0.905132 0.425131i \(-0.139772\pi\)
\(60\) 0 0
\(61\) 734.366 1.54141 0.770704 0.637193i \(-0.219905\pi\)
0.770704 + 0.637193i \(0.219905\pi\)
\(62\) 148.156i 0.303482i
\(63\) −1263.80 −2.52737
\(64\) 1453.79 2.83943
\(65\) 0 0
\(66\) −1146.05 −2.13741
\(67\) −138.626 −0.252774 −0.126387 0.991981i \(-0.540338\pi\)
−0.126387 + 0.991981i \(0.540338\pi\)
\(68\) 67.5975i 0.120550i
\(69\) 781.796 1.36402
\(70\) 0 0
\(71\) 497.037i 0.830809i 0.909637 + 0.415404i \(0.136360\pi\)
−0.909637 + 0.415404i \(0.863640\pi\)
\(72\) −4579.90 −7.49648
\(73\) −716.898 −1.14941 −0.574703 0.818362i \(-0.694882\pi\)
−0.574703 + 0.818362i \(0.694882\pi\)
\(74\) −2260.17 −3.55054
\(75\) 0 0
\(76\) 1690.42i 2.55138i
\(77\) 434.079i 0.642441i
\(78\) 2130.87 + 1149.92i 3.09326 + 1.66926i
\(79\) −425.224 −0.605588 −0.302794 0.953056i \(-0.597919\pi\)
−0.302794 + 0.953056i \(0.597919\pi\)
\(80\) 0 0
\(81\) 1699.05 2.33066
\(82\) 1369.38i 1.84418i
\(83\) 793.338 1.04916 0.524579 0.851362i \(-0.324223\pi\)
0.524579 + 0.851362i \(0.324223\pi\)
\(84\) 3957.85i 5.14092i
\(85\) 0 0
\(86\) 449.536i 0.563659i
\(87\) 148.436i 0.182920i
\(88\) 1573.06i 1.90556i
\(89\) 1007.38i 1.19980i 0.800074 + 0.599901i \(0.204793\pi\)
−0.800074 + 0.599901i \(0.795207\pi\)
\(90\) 0 0
\(91\) −435.544 + 807.091i −0.501730 + 0.929738i
\(92\) 1726.60i 1.95664i
\(93\) 262.682 0.292891
\(94\) 2099.73 2.30394
\(95\) 0 0
\(96\) 5607.96i 5.96209i
\(97\) 740.271 0.774878 0.387439 0.921895i \(-0.373360\pi\)
0.387439 + 0.921895i \(0.373360\pi\)
\(98\) 215.035 0.221651
\(99\) 1432.96i 1.45473i
\(100\) 0 0
\(101\) 1241.26 1.22287 0.611435 0.791295i \(-0.290593\pi\)
0.611435 + 0.791295i \(0.290593\pi\)
\(102\) −165.214 −0.160379
\(103\) 539.693i 0.516286i −0.966107 0.258143i \(-0.916889\pi\)
0.966107 0.258143i \(-0.0831106\pi\)
\(104\) −1578.37 + 2924.82i −1.48819 + 2.75771i
\(105\) 0 0
\(106\) 499.304i 0.457516i
\(107\) 1978.96i 1.78798i 0.448092 + 0.893988i \(0.352104\pi\)
−0.448092 + 0.893988i \(0.647896\pi\)
\(108\) 7603.91i 6.77488i
\(109\) 695.416i 0.611089i −0.952178 0.305545i \(-0.901161\pi\)
0.952178 0.305545i \(-0.0988386\pi\)
\(110\) 0 0
\(111\) 4007.30i 3.42663i
\(112\) 4180.27 3.52677
\(113\) 929.958i 0.774187i −0.922041 0.387093i \(-0.873479\pi\)
0.922041 0.387093i \(-0.126521\pi\)
\(114\) 4131.54 3.39434
\(115\) 0 0
\(116\) −327.823 −0.262393
\(117\) 1437.80 2664.33i 1.13610 2.10528i
\(118\) 2079.92i 1.62265i
\(119\) 62.5766i 0.0482050i
\(120\) 0 0
\(121\) 838.820 0.630218
\(122\) 3963.95 2.94164
\(123\) −2427.92 −1.77982
\(124\) 580.136i 0.420143i
\(125\) 0 0
\(126\) −6821.75 −4.82325
\(127\) 1018.39i 0.711558i −0.934570 0.355779i \(-0.884216\pi\)
0.934570 0.355779i \(-0.115784\pi\)
\(128\) 3159.45 2.18171
\(129\) −797.031 −0.543989
\(130\) 0 0
\(131\) 181.321 0.120932 0.0604659 0.998170i \(-0.480741\pi\)
0.0604659 + 0.998170i \(0.480741\pi\)
\(132\) −4487.60 −2.95906
\(133\) 1564.86i 1.02023i
\(134\) −748.274 −0.482395
\(135\) 0 0
\(136\) 226.772i 0.142982i
\(137\) −16.8451 −0.0105049 −0.00525245 0.999986i \(-0.501672\pi\)
−0.00525245 + 0.999986i \(0.501672\pi\)
\(138\) 4219.97 2.60310
\(139\) 303.101 0.184954 0.0924772 0.995715i \(-0.470521\pi\)
0.0924772 + 0.995715i \(0.470521\pi\)
\(140\) 0 0
\(141\) 3722.83i 2.22354i
\(142\) 2682.90i 1.58552i
\(143\) 915.118 + 493.840i 0.535147 + 0.288790i
\(144\) −13799.7 −7.98594
\(145\) 0 0
\(146\) −3869.67 −2.19353
\(147\) 381.258i 0.213916i
\(148\) −8850.16 −4.91540
\(149\) 908.684i 0.499612i −0.968296 0.249806i \(-0.919633\pi\)
0.968296 0.249806i \(-0.0803669\pi\)
\(150\) 0 0
\(151\) 2598.33i 1.40032i −0.713985 0.700161i \(-0.753111\pi\)
0.713985 0.700161i \(-0.246889\pi\)
\(152\) 5670.92i 3.02613i
\(153\) 206.575i 0.109154i
\(154\) 2343.07i 1.22604i
\(155\) 0 0
\(156\) 8343.87 + 4502.74i 4.28233 + 2.31095i
\(157\) 2512.22i 1.27705i −0.769600 0.638526i \(-0.779544\pi\)
0.769600 0.638526i \(-0.220456\pi\)
\(158\) −2295.27 −1.15571
\(159\) 885.269 0.441550
\(160\) 0 0
\(161\) 1598.36i 0.782412i
\(162\) 9171.11 4.44784
\(163\) −2128.77 −1.02293 −0.511467 0.859303i \(-0.670898\pi\)
−0.511467 + 0.859303i \(0.670898\pi\)
\(164\) 5362.09i 2.55310i
\(165\) 0 0
\(166\) 4282.27 2.00222
\(167\) −1924.60 −0.891798 −0.445899 0.895083i \(-0.647116\pi\)
−0.445899 + 0.895083i \(0.647116\pi\)
\(168\) 13277.5i 6.09753i
\(169\) −1205.99 1836.41i −0.548925 0.835872i
\(170\) 0 0
\(171\) 5165.85i 2.31019i
\(172\) 1760.25i 0.780336i
\(173\) 3623.82i 1.59256i 0.604926 + 0.796282i \(0.293203\pi\)
−0.604926 + 0.796282i \(0.706797\pi\)
\(174\) 801.229i 0.349086i
\(175\) 0 0
\(176\) 4739.79i 2.02997i
\(177\) −3687.71 −1.56602
\(178\) 5437.64i 2.28971i
\(179\) −2895.47 −1.20904 −0.604518 0.796592i \(-0.706634\pi\)
−0.604518 + 0.796592i \(0.706634\pi\)
\(180\) 0 0
\(181\) −1833.42 −0.752913 −0.376457 0.926434i \(-0.622858\pi\)
−0.376457 + 0.926434i \(0.622858\pi\)
\(182\) −2350.97 + 4356.51i −0.957504 + 1.77432i
\(183\) 7028.12i 2.83898i
\(184\) 5792.29i 2.32073i
\(185\) 0 0
\(186\) 1417.90 0.558955
\(187\) −70.9524 −0.0277463
\(188\) 8221.90 3.18959
\(189\) 7039.13i 2.70911i
\(190\) 0 0
\(191\) −1377.00 −0.521654 −0.260827 0.965385i \(-0.583995\pi\)
−0.260827 + 0.965385i \(0.583995\pi\)
\(192\) 13913.2i 5.22969i
\(193\) −3493.38 −1.30290 −0.651449 0.758693i \(-0.725838\pi\)
−0.651449 + 0.758693i \(0.725838\pi\)
\(194\) 3995.83 1.47878
\(195\) 0 0
\(196\) 842.012 0.306856
\(197\) −4698.05 −1.69910 −0.849549 0.527510i \(-0.823126\pi\)
−0.849549 + 0.527510i \(0.823126\pi\)
\(198\) 7734.82i 2.77621i
\(199\) 622.741 0.221834 0.110917 0.993830i \(-0.464621\pi\)
0.110917 + 0.993830i \(0.464621\pi\)
\(200\) 0 0
\(201\) 1326.69i 0.465561i
\(202\) 6700.05 2.33373
\(203\) −303.474 −0.104925
\(204\) −646.930 −0.222030
\(205\) 0 0
\(206\) 2913.15i 0.985284i
\(207\) 5276.42i 1.77167i
\(208\) −4755.78 + 8812.77i −1.58536 + 2.93777i
\(209\) 1774.32 0.587235
\(210\) 0 0
\(211\) 1343.25 0.438261 0.219131 0.975696i \(-0.429678\pi\)
0.219131 + 0.975696i \(0.429678\pi\)
\(212\) 1955.12i 0.633389i
\(213\) 4756.80 1.53019
\(214\) 10682.0i 3.41218i
\(215\) 0 0
\(216\) 25509.1i 8.03553i
\(217\) 537.045i 0.168005i
\(218\) 3753.71i 1.16621i
\(219\) 6860.95i 2.11699i
\(220\) 0 0
\(221\) 131.923 + 71.1917i 0.0401543 + 0.0216691i
\(222\) 21630.6i 6.53941i
\(223\) 1081.45 0.324751 0.162375 0.986729i \(-0.448084\pi\)
0.162375 + 0.986729i \(0.448084\pi\)
\(224\) 11465.3 3.41990
\(225\) 0 0
\(226\) 5019.72i 1.47746i
\(227\) −4333.06 −1.26694 −0.633470 0.773767i \(-0.718370\pi\)
−0.633470 + 0.773767i \(0.718370\pi\)
\(228\) 16177.9 4.69915
\(229\) 4091.36i 1.18063i −0.807172 0.590316i \(-0.799003\pi\)
0.807172 0.590316i \(-0.200997\pi\)
\(230\) 0 0
\(231\) −4154.28 −1.18325
\(232\) −1099.76 −0.311219
\(233\) 4921.94i 1.38389i 0.721949 + 0.691946i \(0.243246\pi\)
−0.721949 + 0.691946i \(0.756754\pi\)
\(234\) 7760.92 14381.5i 2.16815 4.01772i
\(235\) 0 0
\(236\) 8144.35i 2.24641i
\(237\) 4069.53i 1.11538i
\(238\) 337.776i 0.0919947i
\(239\) 1848.41i 0.500265i −0.968212 0.250133i \(-0.919526\pi\)
0.968212 0.250133i \(-0.0804743\pi\)
\(240\) 0 0
\(241\) 2033.42i 0.543501i −0.962368 0.271751i \(-0.912397\pi\)
0.962368 0.271751i \(-0.0876026\pi\)
\(242\) 4527.78 1.20271
\(243\) 6546.96i 1.72834i
\(244\) 15521.7 4.07243
\(245\) 0 0
\(246\) −13105.4 −3.39663
\(247\) −3299.02 1780.30i −0.849844 0.458615i
\(248\) 1946.20i 0.498322i
\(249\) 7592.50i 1.93235i
\(250\) 0 0
\(251\) 2624.85 0.660075 0.330038 0.943968i \(-0.392939\pi\)
0.330038 + 0.943968i \(0.392939\pi\)
\(252\) −26711.9 −6.67736
\(253\) 1812.29 0.450348
\(254\) 5497.08i 1.35794i
\(255\) 0 0
\(256\) 5423.74 1.32415
\(257\) 2704.07i 0.656323i −0.944622 0.328162i \(-0.893571\pi\)
0.944622 0.328162i \(-0.106429\pi\)
\(258\) −4302.20 −1.03815
\(259\) −8192.81 −1.96555
\(260\) 0 0
\(261\) 1001.81 0.237589
\(262\) 978.732 0.230787
\(263\) 7024.27i 1.64690i −0.567387 0.823451i \(-0.692046\pi\)
0.567387 0.823451i \(-0.307954\pi\)
\(264\) −15054.7 −3.50967
\(265\) 0 0
\(266\) 8446.81i 1.94702i
\(267\) 9640.98 2.20981
\(268\) −2930.02 −0.667833
\(269\) −3126.72 −0.708697 −0.354348 0.935113i \(-0.615297\pi\)
−0.354348 + 0.935113i \(0.615297\pi\)
\(270\) 0 0
\(271\) 7754.38i 1.73817i 0.494659 + 0.869087i \(0.335293\pi\)
−0.494659 + 0.869087i \(0.664707\pi\)
\(272\) 683.286i 0.152317i
\(273\) 7724.12 + 4168.29i 1.71240 + 0.924090i
\(274\) −90.9262 −0.0200476
\(275\) 0 0
\(276\) 16524.2 3.60376
\(277\) 3379.40i 0.733028i 0.930413 + 0.366514i \(0.119449\pi\)
−0.930413 + 0.366514i \(0.880551\pi\)
\(278\) 1636.07 0.352968
\(279\) 1772.87i 0.380426i
\(280\) 0 0
\(281\) 3717.14i 0.789131i −0.918868 0.394566i \(-0.870895\pi\)
0.918868 0.394566i \(-0.129105\pi\)
\(282\) 20095.1i 4.24341i
\(283\) 3975.48i 0.835045i 0.908667 + 0.417522i \(0.137102\pi\)
−0.908667 + 0.417522i \(0.862898\pi\)
\(284\) 10505.4i 2.19501i
\(285\) 0 0
\(286\) 4939.62 + 2665.65i 1.02128 + 0.551129i
\(287\) 4963.81i 1.02092i
\(288\) −37848.7 −7.74395
\(289\) 4902.77 0.997918
\(290\) 0 0
\(291\) 7084.64i 1.42718i
\(292\) −15152.5 −3.03675
\(293\) −7351.82 −1.46586 −0.732932 0.680302i \(-0.761849\pi\)
−0.732932 + 0.680302i \(0.761849\pi\)
\(294\) 2057.95i 0.408239i
\(295\) 0 0
\(296\) −29689.9 −5.83004
\(297\) 7981.29 1.55933
\(298\) 4904.88i 0.953464i
\(299\) −3369.63 1818.41i −0.651741 0.351710i
\(300\) 0 0
\(301\) 1629.50i 0.312037i
\(302\) 14025.2i 2.67239i
\(303\) 11879.2i 2.25229i
\(304\) 17087.0i 3.22371i
\(305\) 0 0
\(306\) 1115.05i 0.208311i
\(307\) 5822.03 1.08235 0.541174 0.840911i \(-0.317980\pi\)
0.541174 + 0.840911i \(0.317980\pi\)
\(308\) 9174.76i 1.69734i
\(309\) −5165.03 −0.950901
\(310\) 0 0
\(311\) 8275.18 1.50882 0.754409 0.656405i \(-0.227924\pi\)
0.754409 + 0.656405i \(0.227924\pi\)
\(312\) 27991.5 + 15105.5i 5.07918 + 2.74096i
\(313\) 4922.13i 0.888866i 0.895812 + 0.444433i \(0.146595\pi\)
−0.895812 + 0.444433i \(0.853405\pi\)
\(314\) 13560.5i 2.43714i
\(315\) 0 0
\(316\) −8987.60 −1.59997
\(317\) −2991.37 −0.530006 −0.265003 0.964248i \(-0.585373\pi\)
−0.265003 + 0.964248i \(0.585373\pi\)
\(318\) 4778.50 0.842657
\(319\) 344.093i 0.0603935i
\(320\) 0 0
\(321\) 18939.3 3.29311
\(322\) 8627.60i 1.49316i
\(323\) 255.785 0.0440626
\(324\) 35911.3 6.15764
\(325\) 0 0
\(326\) −11490.7 −1.95217
\(327\) −6655.35 −1.12551
\(328\) 17988.4i 3.02818i
\(329\) 7611.21 1.27544
\(330\) 0 0
\(331\) 5421.39i 0.900262i 0.892963 + 0.450131i \(0.148623\pi\)
−0.892963 + 0.450131i \(0.851377\pi\)
\(332\) 16768.1 2.77190
\(333\) 27045.7 4.45074
\(334\) −10388.6 −1.70191
\(335\) 0 0
\(336\) 40006.6i 6.49565i
\(337\) 7639.38i 1.23485i 0.786631 + 0.617424i \(0.211824\pi\)
−0.786631 + 0.617424i \(0.788176\pi\)
\(338\) −6509.67 9912.56i −1.04757 1.59518i
\(339\) −8900.00 −1.42590
\(340\) 0 0
\(341\) 608.928 0.0967017
\(342\) 27884.2i 4.40878i
\(343\) −5931.75 −0.933773
\(344\) 5905.17i 0.925539i
\(345\) 0 0
\(346\) 19560.6i 3.03926i
\(347\) 10145.0i 1.56948i 0.619823 + 0.784741i \(0.287204\pi\)
−0.619823 + 0.784741i \(0.712796\pi\)
\(348\) 3137.37i 0.483278i
\(349\) 1126.84i 0.172831i −0.996259 0.0864157i \(-0.972459\pi\)
0.996259 0.0864157i \(-0.0275413\pi\)
\(350\) 0 0
\(351\) −14839.8 8008.22i −2.25666 1.21780i
\(352\) 12999.9i 1.96846i
\(353\) 9532.90 1.43735 0.718676 0.695345i \(-0.244749\pi\)
0.718676 + 0.695345i \(0.244749\pi\)
\(354\) −19905.5 −2.98860
\(355\) 0 0
\(356\) 21292.2i 3.16990i
\(357\) −598.879 −0.0887844
\(358\) −15629.1 −2.30733
\(359\) 6852.10i 1.00735i −0.863892 0.503677i \(-0.831980\pi\)
0.863892 0.503677i \(-0.168020\pi\)
\(360\) 0 0
\(361\) 462.551 0.0674371
\(362\) −9896.44 −1.43686
\(363\) 8027.78i 1.16074i
\(364\) −9205.71 + 17058.8i −1.32558 + 2.45638i
\(365\) 0 0
\(366\) 37936.3i 5.41793i
\(367\) 2453.68i 0.348995i −0.984658 0.174497i \(-0.944170\pi\)
0.984658 0.174497i \(-0.0558300\pi\)
\(368\) 17452.8i 2.47225i
\(369\) 16386.3i 2.31175i
\(370\) 0 0
\(371\) 1809.91i 0.253277i
\(372\) 5552.08 0.773823
\(373\) 1900.82i 0.263862i 0.991259 + 0.131931i \(0.0421178\pi\)
−0.991259 + 0.131931i \(0.957882\pi\)
\(374\) −382.986 −0.0529512
\(375\) 0 0
\(376\) 27582.3 3.78311
\(377\) 345.254 639.778i 0.0471657 0.0874012i
\(378\) 37995.7i 5.17008i
\(379\) 12116.2i 1.64213i −0.570831 0.821067i \(-0.693379\pi\)
0.570831 0.821067i \(-0.306621\pi\)
\(380\) 0 0
\(381\) −9746.36 −1.31055
\(382\) −7432.74 −0.995529
\(383\) −6754.44 −0.901138 −0.450569 0.892742i \(-0.648779\pi\)
−0.450569 + 0.892742i \(0.648779\pi\)
\(384\) 30236.9i 4.01829i
\(385\) 0 0
\(386\) −18856.5 −2.48646
\(387\) 5379.24i 0.706569i
\(388\) 15646.5 2.04724
\(389\) −2535.39 −0.330461 −0.165231 0.986255i \(-0.552837\pi\)
−0.165231 + 0.986255i \(0.552837\pi\)
\(390\) 0 0
\(391\) 261.259 0.0337914
\(392\) 2824.73 0.363955
\(393\) 1735.30i 0.222733i
\(394\) −25359.1 −3.24257
\(395\) 0 0
\(396\) 30287.3i 3.84342i
\(397\) −3881.63 −0.490713 −0.245357 0.969433i \(-0.578905\pi\)
−0.245357 + 0.969433i \(0.578905\pi\)
\(398\) 3361.42 0.423349
\(399\) 14976.3 1.87907
\(400\) 0 0
\(401\) 10458.0i 1.30237i 0.758920 + 0.651184i \(0.225727\pi\)
−0.758920 + 0.651184i \(0.774273\pi\)
\(402\) 7161.22i 0.888480i
\(403\) −1132.19 610.982i −0.139946 0.0755215i
\(404\) 26235.4 3.23084
\(405\) 0 0
\(406\) −1638.09 −0.200239
\(407\) 9289.40i 1.13135i
\(408\) −2170.28 −0.263345
\(409\) 12296.3i 1.48658i −0.668970 0.743289i \(-0.733265\pi\)
0.668970 0.743289i \(-0.266735\pi\)
\(410\) 0 0
\(411\) 161.213i 0.0193480i
\(412\) 11407.0i 1.36404i
\(413\) 7539.42i 0.898282i
\(414\) 28481.0i 3.38108i
\(415\) 0 0
\(416\) −13043.8 + 24171.0i −1.53732 + 2.84875i
\(417\) 2900.77i 0.340651i
\(418\) 9577.39 1.12068
\(419\) 9401.01 1.09611 0.548054 0.836443i \(-0.315369\pi\)
0.548054 + 0.836443i \(0.315369\pi\)
\(420\) 0 0
\(421\) 16241.2i 1.88016i −0.340951 0.940081i \(-0.610749\pi\)
0.340951 0.940081i \(-0.389251\pi\)
\(422\) 7250.58 0.836381
\(423\) −25125.8 −2.88808
\(424\) 6558.92i 0.751249i
\(425\) 0 0
\(426\) 25676.2 2.92023
\(427\) 14368.8 1.62846
\(428\) 41827.6i 4.72386i
\(429\) 4726.21 8757.98i 0.531896 0.985639i
\(430\) 0 0
\(431\) 2664.58i 0.297792i −0.988853 0.148896i \(-0.952428\pi\)
0.988853 0.148896i \(-0.0475720\pi\)
\(432\) 76861.5i 8.56019i
\(433\) 10804.1i 1.19910i 0.800336 + 0.599551i \(0.204654\pi\)
−0.800336 + 0.599551i \(0.795346\pi\)
\(434\) 2898.86i 0.320621i
\(435\) 0 0
\(436\) 14698.4i 1.61451i
\(437\) −6533.36 −0.715178
\(438\) 37033.9i 4.04007i
\(439\) 8612.49 0.936337 0.468168 0.883639i \(-0.344914\pi\)
0.468168 + 0.883639i \(0.344914\pi\)
\(440\) 0 0
\(441\) −2573.15 −0.277848
\(442\) 712.092 + 384.278i 0.0766307 + 0.0413535i
\(443\) 2565.27i 0.275123i −0.990493 0.137561i \(-0.956074\pi\)
0.990493 0.137561i \(-0.0439265\pi\)
\(444\) 84698.9i 9.05323i
\(445\) 0 0
\(446\) 5837.45 0.619757
\(447\) −8696.40 −0.920191
\(448\) 28445.2 2.99979
\(449\) 7527.86i 0.791229i 0.918417 + 0.395614i \(0.129468\pi\)
−0.918417 + 0.395614i \(0.870532\pi\)
\(450\) 0 0
\(451\) −5628.21 −0.587632
\(452\) 19655.7i 2.04541i
\(453\) −24866.8 −2.57913
\(454\) −23389.0 −2.41784
\(455\) 0 0
\(456\) 54272.5 5.57356
\(457\) 6433.57 0.658534 0.329267 0.944237i \(-0.393198\pi\)
0.329267 + 0.944237i \(0.393198\pi\)
\(458\) 22084.3i 2.25313i
\(459\) 1150.58 0.117003
\(460\) 0 0
\(461\) 4993.42i 0.504483i −0.967664 0.252242i \(-0.918832\pi\)
0.967664 0.252242i \(-0.0811678\pi\)
\(462\) −22423.9 −2.25813
\(463\) 15182.4 1.52395 0.761974 0.647608i \(-0.224230\pi\)
0.761974 + 0.647608i \(0.224230\pi\)
\(464\) −3313.69 −0.331539
\(465\) 0 0
\(466\) 26567.6i 2.64103i
\(467\) 10748.1i 1.06502i −0.846425 0.532509i \(-0.821249\pi\)
0.846425 0.532509i \(-0.178751\pi\)
\(468\) 30389.4 56313.6i 3.00161 5.56218i
\(469\) −2712.39 −0.267050
\(470\) 0 0
\(471\) −24042.8 −2.35209
\(472\) 27322.1i 2.66441i
\(473\) −1847.61 −0.179605
\(474\) 21966.5i 2.12860i
\(475\) 0 0
\(476\) 1322.63i 0.127358i
\(477\) 5974.77i 0.573514i
\(478\) 9977.31i 0.954710i
\(479\) 567.128i 0.0540976i −0.999634 0.0270488i \(-0.991389\pi\)
0.999634 0.0270488i \(-0.00861095\pi\)
\(480\) 0 0
\(481\) 9320.73 17271.9i 0.883553 1.63728i
\(482\) 10975.9i 1.03722i
\(483\) 15296.8 1.44105
\(484\) 17729.4 1.66505
\(485\) 0 0
\(486\) 35339.1i 3.29838i
\(487\) −79.6868 −0.00741468 −0.00370734 0.999993i \(-0.501180\pi\)
−0.00370734 + 0.999993i \(0.501180\pi\)
\(488\) 52071.1 4.83022
\(489\) 20373.0i 1.88405i
\(490\) 0 0
\(491\) 4638.66 0.426354 0.213177 0.977014i \(-0.431619\pi\)
0.213177 + 0.977014i \(0.431619\pi\)
\(492\) −51316.9 −4.70233
\(493\) 49.6043i 0.00453157i
\(494\) −17807.4 9609.70i −1.62185 0.875225i
\(495\) 0 0
\(496\) 5864.10i 0.530858i
\(497\) 9725.14i 0.877731i
\(498\) 40982.7i 3.68771i
\(499\) 1508.55i 0.135334i 0.997708 + 0.0676672i \(0.0215556\pi\)
−0.997708 + 0.0676672i \(0.978444\pi\)
\(500\) 0 0
\(501\) 18419.1i 1.64252i
\(502\) 14168.4 1.25969
\(503\) 6657.75i 0.590168i 0.955471 + 0.295084i \(0.0953477\pi\)
−0.955471 + 0.295084i \(0.904652\pi\)
\(504\) −89611.5 −7.91987
\(505\) 0 0
\(506\) 9782.39 0.859447
\(507\) −17575.0 + 11541.7i −1.53952 + 1.01101i
\(508\) 21524.9i 1.87995i
\(509\) 11743.6i 1.02264i 0.859390 + 0.511321i \(0.170844\pi\)
−0.859390 + 0.511321i \(0.829156\pi\)
\(510\) 0 0
\(511\) −14027.0 −1.21432
\(512\) 4000.61 0.345319
\(513\) −28772.7 −2.47631
\(514\) 14596.0i 1.25253i
\(515\) 0 0
\(516\) −16846.2 −1.43723
\(517\) 8629.95i 0.734129i
\(518\) −44223.1 −3.75106
\(519\) 34681.1 2.93320
\(520\) 0 0
\(521\) 22239.4 1.87011 0.935054 0.354505i \(-0.115350\pi\)
0.935054 + 0.354505i \(0.115350\pi\)
\(522\) 5407.58 0.453416
\(523\) 19668.3i 1.64443i 0.569179 + 0.822214i \(0.307261\pi\)
−0.569179 + 0.822214i \(0.692739\pi\)
\(524\) 3832.42 0.319504
\(525\) 0 0
\(526\) 37915.6i 3.14296i
\(527\) 87.7827 0.00725592
\(528\) −45361.3 −3.73882
\(529\) 5493.81 0.451533
\(530\) 0 0
\(531\) 24888.8i 2.03405i
\(532\) 33075.2i 2.69547i
\(533\) 10464.6 + 5647.20i 0.850418 + 0.458925i
\(534\) 52040.0 4.21721
\(535\) 0 0
\(536\) −9829.43 −0.792102
\(537\) 27710.6i 2.22681i
\(538\) −16877.4 −1.35248
\(539\) 883.802i 0.0706271i
\(540\) 0 0
\(541\) 13725.3i 1.09075i 0.838192 + 0.545375i \(0.183613\pi\)
−0.838192 + 0.545375i \(0.816387\pi\)
\(542\) 41856.5i 3.31714i
\(543\) 17546.5i 1.38672i
\(544\) 1874.06i 0.147702i
\(545\) 0 0
\(546\) 41693.2 + 22499.6i 3.26796 + 1.76354i
\(547\) 16200.3i 1.26632i −0.774022 0.633158i \(-0.781758\pi\)
0.774022 0.633158i \(-0.218242\pi\)
\(548\) −356.040 −0.0277541
\(549\) −47433.5 −3.68745
\(550\) 0 0
\(551\) 1240.46i 0.0959083i
\(552\) 55434.1 4.27434
\(553\) −8320.04 −0.639790
\(554\) 18241.3i 1.39892i
\(555\) 0 0
\(556\) 6406.38 0.488653
\(557\) 2529.48 0.192419 0.0962097 0.995361i \(-0.469328\pi\)
0.0962097 + 0.995361i \(0.469328\pi\)
\(558\) 9569.57i 0.726007i
\(559\) 3435.29 + 1853.84i 0.259924 + 0.140267i
\(560\) 0 0
\(561\) 679.037i 0.0511033i
\(562\) 20064.3i 1.50598i
\(563\) 3787.41i 0.283517i 0.989901 + 0.141759i \(0.0452757\pi\)
−0.989901 + 0.141759i \(0.954724\pi\)
\(564\) 78686.2i 5.87462i
\(565\) 0 0
\(566\) 21458.8i 1.59361i
\(567\) 33244.0 2.46229
\(568\) 35243.0i 2.60345i
\(569\) −12743.9 −0.938933 −0.469466 0.882950i \(-0.655554\pi\)
−0.469466 + 0.882950i \(0.655554\pi\)
\(570\) 0 0
\(571\) 8991.11 0.658960 0.329480 0.944163i \(-0.393127\pi\)
0.329480 + 0.944163i \(0.393127\pi\)
\(572\) 19342.1 + 10437.9i 1.41387 + 0.762989i
\(573\) 13178.3i 0.960788i
\(574\) 26793.6i 1.94834i
\(575\) 0 0
\(576\) −93901.7 −6.79266
\(577\) 17423.3 1.25709 0.628544 0.777774i \(-0.283651\pi\)
0.628544 + 0.777774i \(0.283651\pi\)
\(578\) 26464.1 1.90443
\(579\) 33432.8i 2.39969i
\(580\) 0 0
\(581\) 15522.6 1.10841
\(582\) 38241.4i 2.72364i
\(583\) 2052.16 0.145783
\(584\) −50832.5 −3.60182
\(585\) 0 0
\(586\) −39683.6 −2.79746
\(587\) −14511.5 −1.02036 −0.510181 0.860067i \(-0.670422\pi\)
−0.510181 + 0.860067i \(0.670422\pi\)
\(588\) 8058.33i 0.565170i
\(589\) −2195.20 −0.153568
\(590\) 0 0
\(591\) 44961.9i 3.12941i
\(592\) −89458.8 −6.21070
\(593\) 267.436 0.0185199 0.00925994 0.999957i \(-0.497052\pi\)
0.00925994 + 0.999957i \(0.497052\pi\)
\(594\) 43081.4 2.97584
\(595\) 0 0
\(596\) 19206.1i 1.31998i
\(597\) 5959.83i 0.408576i
\(598\) −18188.5 9815.39i −1.24379 0.671206i
\(599\) −5428.80 −0.370308 −0.185154 0.982709i \(-0.559278\pi\)
−0.185154 + 0.982709i \(0.559278\pi\)
\(600\) 0 0
\(601\) −25777.8 −1.74958 −0.874790 0.484502i \(-0.839001\pi\)
−0.874790 + 0.484502i \(0.839001\pi\)
\(602\) 8795.73i 0.595493i
\(603\) 8954.00 0.604701
\(604\) 54918.6i 3.69968i
\(605\) 0 0
\(606\) 64121.6i 4.29829i
\(607\) 20383.4i 1.36299i −0.731821 0.681497i \(-0.761329\pi\)
0.731821 0.681497i \(-0.238671\pi\)
\(608\) 46864.9i 3.12603i
\(609\) 2904.34i 0.193251i
\(610\) 0 0
\(611\) −8659.07 + 16045.8i −0.573336 + 1.06243i
\(612\) 4366.20i 0.288387i
\(613\) 7433.13 0.489757 0.244879 0.969554i \(-0.421252\pi\)
0.244879 + 0.969554i \(0.421252\pi\)
\(614\) 31426.1 2.06556
\(615\) 0 0
\(616\) 30778.9i 2.01318i
\(617\) 5540.71 0.361524 0.180762 0.983527i \(-0.442144\pi\)
0.180762 + 0.983527i \(0.442144\pi\)
\(618\) −27879.8 −1.81471
\(619\) 15878.2i 1.03101i −0.856886 0.515506i \(-0.827604\pi\)
0.856886 0.515506i \(-0.172396\pi\)
\(620\) 0 0
\(621\) −29388.6 −1.89907
\(622\) 44667.7 2.87944
\(623\) 19710.7i 1.26756i
\(624\) 84341.1 + 45514.4i 5.41081 + 2.91992i
\(625\) 0 0
\(626\) 26568.6i 1.69632i
\(627\) 16980.8i 1.08158i
\(628\) 53098.7i 3.37400i
\(629\) 1339.15i 0.0848896i
\(630\) 0 0
\(631\) 7809.85i 0.492718i −0.969179 0.246359i \(-0.920766\pi\)
0.969179 0.246359i \(-0.0792343\pi\)
\(632\) −30151.0 −1.89769
\(633\) 12855.3i 0.807194i
\(634\) −16146.8 −1.01147
\(635\) 0 0
\(636\) 18711.2 1.16658
\(637\) −886.783 + 1643.27i −0.0551580 + 0.102211i
\(638\) 1857.34i 0.115255i
\(639\) 32104.1i 1.98751i
\(640\) 0 0
\(641\) −3286.62 −0.202517 −0.101259 0.994860i \(-0.532287\pi\)
−0.101259 + 0.994860i \(0.532287\pi\)
\(642\) 102230. 6.28459
\(643\) −9976.67 −0.611884 −0.305942 0.952050i \(-0.598971\pi\)
−0.305942 + 0.952050i \(0.598971\pi\)
\(644\) 33783.1i 2.06715i
\(645\) 0 0
\(646\) 1380.67 0.0840895
\(647\) 2603.91i 0.158223i −0.996866 0.0791115i \(-0.974792\pi\)
0.996866 0.0791115i \(-0.0252083\pi\)
\(648\) 120473. 7.30343
\(649\) −8548.55 −0.517042
\(650\) 0 0
\(651\) 5139.70 0.309433
\(652\) −44994.0 −2.70261
\(653\) 17296.8i 1.03657i 0.855209 + 0.518283i \(0.173429\pi\)
−0.855209 + 0.518283i \(0.826571\pi\)
\(654\) −35924.2 −2.14793
\(655\) 0 0
\(656\) 54200.8i 3.22589i
\(657\) 46305.2 2.74968
\(658\) 41083.7 2.43406
\(659\) −4108.13 −0.242838 −0.121419 0.992601i \(-0.538744\pi\)
−0.121419 + 0.992601i \(0.538744\pi\)
\(660\) 0 0
\(661\) 5035.44i 0.296303i −0.988965 0.148151i \(-0.952668\pi\)
0.988965 0.148151i \(-0.0473323\pi\)
\(662\) 29263.5i 1.71807i
\(663\) 681.328 1262.54i 0.0399104 0.0739565i
\(664\) 56252.5 3.28768
\(665\) 0 0
\(666\) 145987. 8.49381
\(667\) 1267.01i 0.0735516i
\(668\) −40678.7 −2.35615
\(669\) 10349.8i 0.598129i
\(670\) 0 0
\(671\) 16292.0i 0.937326i
\(672\) 109727.i 6.29881i
\(673\) 29342.4i 1.68063i −0.542097 0.840316i \(-0.682369\pi\)
0.542097 0.840316i \(-0.317631\pi\)
\(674\) 41235.8i 2.35659i
\(675\) 0 0
\(676\) −25489.9 38814.6i −1.45027 2.20839i
\(677\) 15091.7i 0.856751i −0.903601 0.428375i \(-0.859086\pi\)
0.903601 0.428375i \(-0.140914\pi\)
\(678\) −48040.3 −2.72121
\(679\) 14484.3 0.818641
\(680\) 0 0
\(681\) 41468.8i 2.33346i
\(682\) 3286.86 0.184546
\(683\) 15949.3 0.893533 0.446767 0.894651i \(-0.352575\pi\)
0.446767 + 0.894651i \(0.352575\pi\)
\(684\) 109186.i 6.10356i
\(685\) 0 0
\(686\) −32018.3 −1.78202
\(687\) −39155.6 −2.17450
\(688\) 17792.9i 0.985969i
\(689\) −3815.61 2059.08i −0.210977 0.113853i
\(690\) 0 0
\(691\) 9086.21i 0.500225i −0.968217 0.250113i \(-0.919532\pi\)
0.968217 0.250113i \(-0.0804677\pi\)
\(692\) 76593.5i 4.20758i
\(693\) 28037.7i 1.53689i
\(694\) 54760.4i 2.99521i
\(695\) 0 0
\(696\) 10525.1i 0.573206i
\(697\) −811.359 −0.0440924
\(698\) 6082.42i 0.329832i
\(699\) 47104.5 2.54887
\(700\) 0 0
\(701\) −16228.1 −0.874359 −0.437179 0.899374i \(-0.644022\pi\)
−0.437179 + 0.899374i \(0.644022\pi\)
\(702\) −80101.9 43226.7i −4.30662 2.32405i
\(703\) 33488.4i 1.79664i
\(704\) 32252.5i 1.72665i
\(705\) 0 0
\(706\) 51456.6 2.74305
\(707\) 24286.7 1.29193
\(708\) −77944.0 −4.13745
\(709\) 19425.5i 1.02897i 0.857499 + 0.514485i \(0.172017\pi\)
−0.857499 + 0.514485i \(0.827983\pi\)
\(710\) 0 0
\(711\) 27465.7 1.44873
\(712\) 71429.6i 3.75975i
\(713\) −2242.18 −0.117770
\(714\) −3232.62 −0.169437
\(715\) 0 0
\(716\) −61199.0 −3.19429
\(717\) −17689.8 −0.921394
\(718\) 36986.2i 1.92244i
\(719\) −548.566 −0.0284535 −0.0142268 0.999899i \(-0.504529\pi\)
−0.0142268 + 0.999899i \(0.504529\pi\)
\(720\) 0 0
\(721\) 10559.8i 0.545445i
\(722\) 2496.75 0.128697
\(723\) −19460.4 −1.00103
\(724\) −38751.5 −1.98921
\(725\) 0 0
\(726\) 43332.3i 2.21517i
\(727\) 10550.1i 0.538213i −0.963110 0.269107i \(-0.913272\pi\)
0.963110 0.269107i \(-0.0867284\pi\)
\(728\) −30882.7 + 57227.7i −1.57224 + 2.91346i
\(729\) −16782.2 −0.852623
\(730\) 0 0
\(731\) −266.350 −0.0134765
\(732\) 148547.i 7.50064i
\(733\) 4007.86 0.201956 0.100978 0.994889i \(-0.467803\pi\)
0.100978 + 0.994889i \(0.467803\pi\)
\(734\) 13244.4i 0.666024i
\(735\) 0 0
\(736\) 47868.0i 2.39734i
\(737\) 3075.43i 0.153711i
\(738\) 88449.8i 4.41176i
\(739\) 1960.69i 0.0975984i 0.998809 + 0.0487992i \(0.0155394\pi\)
−0.998809 + 0.0487992i \(0.984461\pi\)
\(740\) 0 0
\(741\) −17038.1 + 31572.7i −0.844682 + 1.56525i
\(742\) 9769.49i 0.483355i
\(743\) 18597.5 0.918272 0.459136 0.888366i \(-0.348159\pi\)
0.459136 + 0.888366i \(0.348159\pi\)
\(744\) 18625.8 0.917814
\(745\) 0 0
\(746\) 10260.2i 0.503556i
\(747\) −51242.6 −2.50986
\(748\) −1499.66 −0.0733061
\(749\) 38720.8i 1.88896i
\(750\) 0 0
\(751\) 17920.4 0.870739 0.435369 0.900252i \(-0.356618\pi\)
0.435369 + 0.900252i \(0.356618\pi\)
\(752\) 83108.2 4.03011
\(753\) 25120.6i 1.21573i
\(754\) 1863.61 3453.39i 0.0900114 0.166797i
\(755\) 0 0
\(756\) 148780.i 7.15751i
\(757\) 9391.11i 0.450893i −0.974256 0.225446i \(-0.927616\pi\)
0.974256 0.225446i \(-0.0723840\pi\)
\(758\) 65400.9i 3.13386i
\(759\) 17344.2i 0.829455i
\(760\) 0 0
\(761\) 20548.2i 0.978805i 0.872058 + 0.489403i \(0.162785\pi\)
−0.872058 + 0.489403i \(0.837215\pi\)
\(762\) −52608.8 −2.50107
\(763\) 13606.7i 0.645602i
\(764\) −29104.4 −1.37822
\(765\) 0 0
\(766\) −36459.1 −1.71974
\(767\) 15894.5 + 8577.39i 0.748260 + 0.403796i
\(768\) 51906.9i 2.43884i
\(769\) 10142.8i 0.475627i −0.971311 0.237813i \(-0.923569\pi\)
0.971311 0.237813i \(-0.0764307\pi\)
\(770\) 0 0
\(771\) −25878.8 −1.20882
\(772\) −73836.6 −3.44228
\(773\) 213.912 0.00995327 0.00497664 0.999988i \(-0.498416\pi\)
0.00497664 + 0.999988i \(0.498416\pi\)
\(774\) 29036.0i 1.34842i
\(775\) 0 0
\(776\) 52489.8 2.42819
\(777\) 78407.8i 3.62016i
\(778\) −13685.5 −0.630654
\(779\) 20289.8 0.933193
\(780\) 0 0
\(781\) 11026.8 0.505212
\(782\) 1410.22 0.0644878
\(783\) 5579.89i 0.254673i
\(784\) 8511.19 0.387718
\(785\) 0 0
\(786\) 9366.78i 0.425066i
\(787\) −13315.9 −0.603127 −0.301563 0.953446i \(-0.597508\pi\)
−0.301563 + 0.953446i \(0.597508\pi\)
\(788\) −99298.7 −4.48905
\(789\) −67224.6 −3.03328
\(790\) 0 0
\(791\) 18195.8i 0.817911i
\(792\) 101606.i 4.55859i
\(793\) −16347.0 + 30292.0i −0.732027 + 1.35649i
\(794\) −20952.2 −0.936481
\(795\) 0 0
\(796\) 13162.3 0.586089
\(797\) 1432.22i 0.0636537i −0.999493 0.0318268i \(-0.989867\pi\)
0.999493 0.0318268i \(-0.0101325\pi\)
\(798\) 80838.7 3.58604
\(799\) 1244.09i 0.0550847i
\(800\) 0 0
\(801\) 65068.0i 2.87024i
\(802\) 56450.3i 2.48545i
\(803\) 15904.5i 0.698950i
\(804\) 28041.2i 1.23002i
\(805\) 0 0
\(806\) −6111.32 3297.95i −0.267075 0.144126i
\(807\) 29923.7i 1.30528i
\(808\) 88012.8 3.83203
\(809\) 1717.53 0.0746416 0.0373208 0.999303i \(-0.488118\pi\)
0.0373208 + 0.999303i \(0.488118\pi\)
\(810\) 0 0
\(811\) 26684.7i 1.15539i −0.816251 0.577697i \(-0.803951\pi\)
0.816251 0.577697i \(-0.196049\pi\)
\(812\) −6414.27 −0.277213
\(813\) 74211.9 3.20138
\(814\) 50142.2i 2.15907i
\(815\) 0 0
\(816\) −6539.27 −0.280539
\(817\) 6660.67 0.285223
\(818\) 66372.6i 2.83700i
\(819\) 28132.2 52130.9i 1.20027 2.22418i
\(820\) 0 0
\(821\) 28453.9i 1.20956i −0.796394 0.604779i \(-0.793262\pi\)
0.796394 0.604779i \(-0.206738\pi\)
\(822\) 870.193i 0.0369239i
\(823\) 24406.1i 1.03371i 0.856073 + 0.516855i \(0.172898\pi\)
−0.856073 + 0.516855i \(0.827102\pi\)
\(824\) 38267.5i 1.61785i
\(825\) 0 0
\(826\) 40696.2i 1.71429i
\(827\) −23423.5 −0.984902 −0.492451 0.870340i \(-0.663899\pi\)
−0.492451 + 0.870340i \(0.663899\pi\)
\(828\) 111523.i 4.68079i
\(829\) 18813.3 0.788193 0.394097 0.919069i \(-0.371058\pi\)
0.394097 + 0.919069i \(0.371058\pi\)
\(830\) 0 0
\(831\) 32342.0 1.35010
\(832\) −32361.3 + 59967.6i −1.34847 + 2.49880i
\(833\) 127.408i 0.00529944i
\(834\) 15657.7i 0.650100i
\(835\) 0 0
\(836\) 37502.2 1.55149
\(837\) −9874.50 −0.407781
\(838\) 50744.7 2.09182
\(839\) 2274.01i 0.0935726i 0.998905 + 0.0467863i \(0.0148980\pi\)
−0.998905 + 0.0467863i \(0.985102\pi\)
\(840\) 0 0
\(841\) −24148.4 −0.990136
\(842\) 87666.7i 3.58811i
\(843\) −35574.2 −1.45343
\(844\) 28391.1 1.15789
\(845\) 0 0
\(846\) −135624. −5.51162
\(847\) 16412.6 0.665811
\(848\) 19762.7i 0.800299i
\(849\) 38046.6 1.53799
\(850\) 0 0
\(851\) 34205.2i 1.37784i
\(852\) 100540. 4.04279
\(853\) −8197.12 −0.329032 −0.164516 0.986374i \(-0.552606\pi\)
−0.164516 + 0.986374i \(0.552606\pi\)
\(854\) 77559.7 3.10777
\(855\) 0 0
\(856\) 140320.i 5.60287i
\(857\) 43282.5i 1.72521i 0.505879 + 0.862604i \(0.331168\pi\)
−0.505879 + 0.862604i \(0.668832\pi\)
\(858\) 25511.1 47273.7i 1.01507 1.88100i
\(859\) −14884.8 −0.591226 −0.295613 0.955308i \(-0.595524\pi\)
−0.295613 + 0.955308i \(0.595524\pi\)
\(860\) 0 0
\(861\) −47505.3 −1.88034
\(862\) 14382.9i 0.568309i
\(863\) 29421.4 1.16050 0.580252 0.814437i \(-0.302954\pi\)
0.580252 + 0.814437i \(0.302954\pi\)
\(864\) 210809.i 8.30079i
\(865\) 0 0
\(866\) 58318.2i 2.28838i
\(867\) 46921.1i 1.83798i
\(868\) 11351.1i 0.443871i
\(869\) 9433.65i 0.368256i
\(870\) 0 0
\(871\) 3085.81 5718.20i 0.120044 0.222450i
\(872\) 49309.2i 1.91493i
\(873\) −47814.9 −1.85371
\(874\) −35265.7 −1.36485
\(875\) 0 0
\(876\) 145014.i 5.59311i
\(877\) 44242.4 1.70349 0.851744 0.523958i \(-0.175545\pi\)
0.851744 + 0.523958i \(0.175545\pi\)
\(878\) 46488.4 1.78691
\(879\) 70359.3i 2.69984i
\(880\) 0 0
\(881\) 6344.23 0.242614 0.121307 0.992615i \(-0.461292\pi\)
0.121307 + 0.992615i \(0.461292\pi\)
\(882\) −13889.3 −0.530247
\(883\) 31600.7i 1.20436i 0.798362 + 0.602178i \(0.205700\pi\)
−0.798362 + 0.602178i \(0.794300\pi\)
\(884\) 2788.34 + 1504.72i 0.106088 + 0.0572502i
\(885\) 0 0
\(886\) 13846.8i 0.525047i
\(887\) 22725.3i 0.860250i −0.902769 0.430125i \(-0.858469\pi\)
0.902769 0.430125i \(-0.141531\pi\)
\(888\) 284142.i 10.7378i
\(889\) 19926.1i 0.751745i
\(890\) 0 0
\(891\) 37693.6i 1.41727i
\(892\) 22857.7 0.857997
\(893\) 31111.1i 1.16584i
\(894\) −46941.3 −1.75610
\(895\) 0 0
\(896\) 61818.5 2.30492
\(897\) −17402.8 + 32248.4i −0.647783 + 1.20038i
\(898\) 40633.8i 1.50999i
\(899\) 425.714i 0.0157935i
\(900\) 0 0
\(901\) 295.838 0.0109387
\(902\) −30379.9 −1.12144
\(903\) −15594.9 −0.574713
\(904\) 65939.7i 2.42602i
\(905\) 0 0
\(906\) −134226. −4.92203
\(907\) 21217.0i 0.776736i −0.921504 0.388368i \(-0.873039\pi\)
0.921504 0.388368i \(-0.126961\pi\)
\(908\) −91584.2 −3.34728
\(909\) −80174.2 −2.92542
\(910\) 0 0
\(911\) 7009.14 0.254910 0.127455 0.991844i \(-0.459319\pi\)
0.127455 + 0.991844i \(0.459319\pi\)
\(912\) 163529. 5.93747
\(913\) 17600.3i 0.637990i
\(914\) 34727.1 1.25675
\(915\) 0 0
\(916\) 86475.6i 3.11925i
\(917\) 3547.77 0.127762
\(918\) 6210.58 0.223290
\(919\) −26748.5 −0.960121 −0.480061 0.877235i \(-0.659385\pi\)
−0.480061 + 0.877235i \(0.659385\pi\)
\(920\) 0 0
\(921\) 55718.7i 1.99348i
\(922\) 26953.4i 0.962759i
\(923\) −20502.4 11064.0i −0.731141 0.394558i
\(924\) −87805.5 −3.12618
\(925\) 0 0
\(926\) 81951.6 2.90831
\(927\) 34859.3i 1.23509i
\(928\) −9088.51 −0.321492
\(929\) 18623.8i 0.657726i −0.944378 0.328863i \(-0.893335\pi\)
0.944378 0.328863i \(-0.106665\pi\)
\(930\) 0 0
\(931\) 3186.12i 0.112160i
\(932\) 104031.i 3.65627i
\(933\) 79196.1i 2.77895i
\(934\) 58016.0i 2.03249i
\(935\) 0 0
\(936\) 101949. 188917.i 3.56014 6.59717i
\(937\) 40923.2i 1.42679i 0.700761 + 0.713396i \(0.252844\pi\)
−0.700761 + 0.713396i \(0.747156\pi\)
\(938\) −14640.9 −0.509640
\(939\) 47106.4 1.63712
\(940\) 0 0
\(941\) 55098.3i 1.90877i 0.298576 + 0.954386i \(0.403488\pi\)
−0.298576 + 0.954386i \(0.596512\pi\)
\(942\) −129778. −4.48874
\(943\) 20724.1 0.715661
\(944\) 82324.3i 2.83838i
\(945\) 0 0
\(946\) −9973.01 −0.342760
\(947\) −40418.2 −1.38692 −0.693460 0.720495i \(-0.743915\pi\)
−0.693460 + 0.720495i \(0.743915\pi\)
\(948\) 86014.2i 2.94685i
\(949\) 15958.1 29571.5i 0.545862 1.01152i
\(950\) 0 0
\(951\) 28628.4i 0.976170i
\(952\) 4437.07i 0.151057i
\(953\) 11373.4i 0.386591i −0.981141 0.193296i \(-0.938082\pi\)
0.981141 0.193296i \(-0.0619177\pi\)
\(954\) 32250.6i 1.09450i
\(955\) 0 0
\(956\) 39068.2i 1.32171i
\(957\) 3293.08 0.111233
\(958\) 3061.24i 0.103240i
\(959\) −329.595 −0.0110982
\(960\) 0 0
\(961\) 29037.6 0.974712
\(962\) 50311.4 93230.2i 1.68618 3.12460i
\(963\) 127823.i 4.27731i
\(964\) 42978.6i 1.43594i
\(965\) 0 0
\(966\) 82568.9 2.75012
\(967\) 12910.4 0.429339 0.214670 0.976687i \(-0.431133\pi\)
0.214670 + 0.976687i \(0.431133\pi\)
\(968\) 59477.5 1.97488
\(969\) 2447.94i 0.0811550i
\(970\) 0 0
\(971\) 27002.5 0.892432 0.446216 0.894925i \(-0.352771\pi\)
0.446216 + 0.894925i \(0.352771\pi\)
\(972\) 138377.i 4.56631i
\(973\) 5930.54 0.195400
\(974\) −430.132 −0.0141502
\(975\) 0 0
\(976\) 156895. 5.14559
\(977\) 8403.06 0.275166 0.137583 0.990490i \(-0.456067\pi\)
0.137583 + 0.990490i \(0.456067\pi\)
\(978\) 109969.i 3.59553i
\(979\) 22348.9 0.729596
\(980\) 0 0
\(981\) 44917.7i 1.46189i
\(982\) 25038.5 0.813656
\(983\) 41927.2 1.36040 0.680199 0.733028i \(-0.261894\pi\)
0.680199 + 0.733028i \(0.261894\pi\)
\(984\) −172155. −5.57733
\(985\) 0 0
\(986\) 267.753i 0.00864808i
\(987\) 72841.8i 2.34912i
\(988\) −69728.5 37628.7i −2.24530 1.21167i
\(989\) 6803.23 0.218736
\(990\) 0 0
\(991\) −21469.8 −0.688206 −0.344103 0.938932i \(-0.611817\pi\)
−0.344103 + 0.938932i \(0.611817\pi\)
\(992\) 16083.6i 0.514772i
\(993\) 51884.5 1.65811
\(994\) 52494.3i 1.67507i
\(995\) 0 0
\(996\) 160476.i 5.10530i
\(997\) 24074.4i 0.764738i −0.924010 0.382369i \(-0.875108\pi\)
0.924010 0.382369i \(-0.124892\pi\)
\(998\) 8142.82i 0.258273i
\(999\) 150639.i 4.77077i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.4.d.e.324.27 28
5.2 odd 4 325.4.c.d.51.14 yes 14
5.3 odd 4 325.4.c.f.51.1 yes 14
5.4 even 2 inner 325.4.d.e.324.2 28
13.12 even 2 inner 325.4.d.e.324.1 28
65.12 odd 4 325.4.c.d.51.1 14
65.38 odd 4 325.4.c.f.51.14 yes 14
65.64 even 2 inner 325.4.d.e.324.28 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.4.c.d.51.1 14 65.12 odd 4
325.4.c.d.51.14 yes 14 5.2 odd 4
325.4.c.f.51.1 yes 14 5.3 odd 4
325.4.c.f.51.14 yes 14 65.38 odd 4
325.4.d.e.324.1 28 13.12 even 2 inner
325.4.d.e.324.2 28 5.4 even 2 inner
325.4.d.e.324.27 28 1.1 even 1 trivial
325.4.d.e.324.28 28 65.64 even 2 inner