Properties

Label 325.4.c.f.51.1
Level $325$
Weight $4$
Character 325.51
Analytic conductor $19.176$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(51,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.51"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40708x^{8} + 309729x^{6} + 1120672x^{4} + 1546596x^{2} + 83136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.1
Root \(-5.39779i\) of defining polynomial
Character \(\chi\) \(=\) 325.51
Dual form 325.4.c.f.51.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.39779i q^{2} +9.57032 q^{3} -21.1361 q^{4} -51.6586i q^{6} -19.5662i q^{7} +70.9061i q^{8} +64.5911 q^{9} -22.1851i q^{11} -202.280 q^{12} +(-41.2492 - 22.2600i) q^{13} -105.614 q^{14} +213.647 q^{16} -3.19819 q^{17} -348.649i q^{18} -79.9778i q^{19} -187.255i q^{21} -119.751 q^{22} -81.6896 q^{23} +678.595i q^{24} +(-120.155 + 222.654i) q^{26} +359.759 q^{27} +413.555i q^{28} +15.5101 q^{29} +27.4476i q^{31} -585.974i q^{32} -212.319i q^{33} +17.2632i q^{34} -1365.21 q^{36} +418.722i q^{37} -431.703 q^{38} +(-394.768 - 213.035i) q^{39} -253.693i q^{41} -1010.76 q^{42} +83.2815 q^{43} +468.908i q^{44} +440.943i q^{46} -388.997i q^{47} +2044.67 q^{48} -39.8376 q^{49} -30.6078 q^{51} +(871.848 + 470.490i) q^{52} -92.5015 q^{53} -1941.90i q^{54} +1387.37 q^{56} -765.413i q^{57} -83.7202i q^{58} +385.328i q^{59} +734.366 q^{61} +148.156 q^{62} -1263.80i q^{63} -1453.79 q^{64} -1146.05 q^{66} +138.626i q^{67} +67.5975 q^{68} -781.796 q^{69} +497.037i q^{71} +4579.90i q^{72} -716.898i q^{73} +2260.17 q^{74} +1690.42i q^{76} -434.079 q^{77} +(-1149.92 + 2130.87i) q^{78} +425.224 q^{79} +1699.05 q^{81} -1369.38 q^{82} +793.338i q^{83} +3957.85i q^{84} -449.536i q^{86} +148.436 q^{87} +1573.06 q^{88} -1007.38i q^{89} +(-435.544 + 807.091i) q^{91} +1726.60 q^{92} +262.682i q^{93} -2099.73 q^{94} -5607.96i q^{96} -740.271i q^{97} +215.035i q^{98} -1432.96i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 12 q^{3} - 56 q^{4} + 158 q^{9} - 300 q^{12} - 46 q^{13} - 92 q^{14} + 280 q^{16} - 106 q^{17} - 192 q^{22} - 148 q^{23} - 284 q^{26} + 456 q^{27} + 18 q^{29} - 2084 q^{36} - 740 q^{38} - 560 q^{39}+ \cdots - 5924 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.39779i 1.90841i −0.299158 0.954204i \(-0.596706\pi\)
0.299158 0.954204i \(-0.403294\pi\)
\(3\) 9.57032 1.84181 0.920905 0.389788i \(-0.127452\pi\)
0.920905 + 0.389788i \(0.127452\pi\)
\(4\) −21.1361 −2.64202
\(5\) 0 0
\(6\) 51.6586i 3.51492i
\(7\) 19.5662i 1.05648i −0.849096 0.528239i \(-0.822853\pi\)
0.849096 0.528239i \(-0.177147\pi\)
\(8\) 70.9061i 3.13364i
\(9\) 64.5911 2.39226
\(10\) 0 0
\(11\) 22.1851i 0.608097i −0.952657 0.304049i \(-0.901662\pi\)
0.952657 0.304049i \(-0.0983385\pi\)
\(12\) −202.280 −4.86609
\(13\) −41.2492 22.2600i −0.880035 0.474908i
\(14\) −105.614 −2.01619
\(15\) 0 0
\(16\) 213.647 3.33824
\(17\) −3.19819 −0.0456280 −0.0228140 0.999740i \(-0.507263\pi\)
−0.0228140 + 0.999740i \(0.507263\pi\)
\(18\) 348.649i 4.56541i
\(19\) 79.9778i 0.965693i −0.875705 0.482846i \(-0.839603\pi\)
0.875705 0.482846i \(-0.160397\pi\)
\(20\) 0 0
\(21\) 187.255i 1.94583i
\(22\) −119.751 −1.16050
\(23\) −81.6896 −0.740585 −0.370293 0.928915i \(-0.620743\pi\)
−0.370293 + 0.928915i \(0.620743\pi\)
\(24\) 678.595i 5.77156i
\(25\) 0 0
\(26\) −120.155 + 222.654i −0.906318 + 1.67947i
\(27\) 359.759 2.56428
\(28\) 413.555i 2.79123i
\(29\) 15.5101 0.0993155 0.0496577 0.998766i \(-0.484187\pi\)
0.0496577 + 0.998766i \(0.484187\pi\)
\(30\) 0 0
\(31\) 27.4476i 0.159023i 0.996834 + 0.0795117i \(0.0253361\pi\)
−0.996834 + 0.0795117i \(0.974664\pi\)
\(32\) 585.974i 3.23708i
\(33\) 212.319i 1.12000i
\(34\) 17.2632i 0.0870768i
\(35\) 0 0
\(36\) −1365.21 −6.32040
\(37\) 418.722i 1.86047i 0.366963 + 0.930236i \(0.380398\pi\)
−0.366963 + 0.930236i \(0.619602\pi\)
\(38\) −431.703 −1.84294
\(39\) −394.768 213.035i −1.62086 0.874690i
\(40\) 0 0
\(41\) 253.693i 0.966346i −0.875525 0.483173i \(-0.839484\pi\)
0.875525 0.483173i \(-0.160516\pi\)
\(42\) −1010.76 −3.71344
\(43\) 83.2815 0.295356 0.147678 0.989035i \(-0.452820\pi\)
0.147678 + 0.989035i \(0.452820\pi\)
\(44\) 468.908i 1.60660i
\(45\) 0 0
\(46\) 440.943i 1.41334i
\(47\) 388.997i 1.20726i −0.797266 0.603628i \(-0.793721\pi\)
0.797266 0.603628i \(-0.206279\pi\)
\(48\) 2044.67 6.14840
\(49\) −39.8376 −0.116145
\(50\) 0 0
\(51\) −30.6078 −0.0840381
\(52\) 871.848 + 470.490i 2.32507 + 1.25472i
\(53\) −92.5015 −0.239737 −0.119868 0.992790i \(-0.538247\pi\)
−0.119868 + 0.992790i \(0.538247\pi\)
\(54\) 1941.90i 4.89369i
\(55\) 0 0
\(56\) 1387.37 3.31062
\(57\) 765.413i 1.77862i
\(58\) 83.7202i 0.189534i
\(59\) 385.328i 0.850262i 0.905132 + 0.425131i \(0.139772\pi\)
−0.905132 + 0.425131i \(0.860228\pi\)
\(60\) 0 0
\(61\) 734.366 1.54141 0.770704 0.637193i \(-0.219905\pi\)
0.770704 + 0.637193i \(0.219905\pi\)
\(62\) 148.156 0.303482
\(63\) 1263.80i 2.52737i
\(64\) −1453.79 −2.83943
\(65\) 0 0
\(66\) −1146.05 −2.13741
\(67\) 138.626i 0.252774i 0.991981 + 0.126387i \(0.0403381\pi\)
−0.991981 + 0.126387i \(0.959662\pi\)
\(68\) 67.5975 0.120550
\(69\) −781.796 −1.36402
\(70\) 0 0
\(71\) 497.037i 0.830809i 0.909637 + 0.415404i \(0.136360\pi\)
−0.909637 + 0.415404i \(0.863640\pi\)
\(72\) 4579.90i 7.49648i
\(73\) 716.898i 1.14941i −0.818362 0.574703i \(-0.805118\pi\)
0.818362 0.574703i \(-0.194882\pi\)
\(74\) 2260.17 3.55054
\(75\) 0 0
\(76\) 1690.42i 2.55138i
\(77\) −434.079 −0.642441
\(78\) −1149.92 + 2130.87i −1.66926 + 3.09326i
\(79\) 425.224 0.605588 0.302794 0.953056i \(-0.402081\pi\)
0.302794 + 0.953056i \(0.402081\pi\)
\(80\) 0 0
\(81\) 1699.05 2.33066
\(82\) −1369.38 −1.84418
\(83\) 793.338i 1.04916i 0.851362 + 0.524579i \(0.175777\pi\)
−0.851362 + 0.524579i \(0.824223\pi\)
\(84\) 3957.85i 5.14092i
\(85\) 0 0
\(86\) 449.536i 0.563659i
\(87\) 148.436 0.182920
\(88\) 1573.06 1.90556
\(89\) 1007.38i 1.19980i −0.800074 0.599901i \(-0.795207\pi\)
0.800074 0.599901i \(-0.204793\pi\)
\(90\) 0 0
\(91\) −435.544 + 807.091i −0.501730 + 0.929738i
\(92\) 1726.60 1.95664
\(93\) 262.682i 0.292891i
\(94\) −2099.73 −2.30394
\(95\) 0 0
\(96\) 5607.96i 5.96209i
\(97\) 740.271i 0.774878i −0.921895 0.387439i \(-0.873360\pi\)
0.921895 0.387439i \(-0.126640\pi\)
\(98\) 215.035i 0.221651i
\(99\) 1432.96i 1.45473i
\(100\) 0 0
\(101\) 1241.26 1.22287 0.611435 0.791295i \(-0.290593\pi\)
0.611435 + 0.791295i \(0.290593\pi\)
\(102\) 165.214i 0.160379i
\(103\) 539.693 0.516286 0.258143 0.966107i \(-0.416889\pi\)
0.258143 + 0.966107i \(0.416889\pi\)
\(104\) 1578.37 2924.82i 1.48819 2.75771i
\(105\) 0 0
\(106\) 499.304i 0.457516i
\(107\) 1978.96 1.78798 0.893988 0.448092i \(-0.147896\pi\)
0.893988 + 0.448092i \(0.147896\pi\)
\(108\) −7603.91 −6.77488
\(109\) 695.416i 0.611089i 0.952178 + 0.305545i \(0.0988386\pi\)
−0.952178 + 0.305545i \(0.901161\pi\)
\(110\) 0 0
\(111\) 4007.30i 3.42663i
\(112\) 4180.27i 3.52677i
\(113\) 929.958 0.774187 0.387093 0.922041i \(-0.373479\pi\)
0.387093 + 0.922041i \(0.373479\pi\)
\(114\) −4131.54 −3.39434
\(115\) 0 0
\(116\) −327.823 −0.262393
\(117\) −2664.33 1437.80i −2.10528 1.13610i
\(118\) 2079.92 1.62265
\(119\) 62.5766i 0.0482050i
\(120\) 0 0
\(121\) 838.820 0.630218
\(122\) 3963.95i 2.94164i
\(123\) 2427.92i 1.77982i
\(124\) 580.136i 0.420143i
\(125\) 0 0
\(126\) −6821.75 −4.82325
\(127\) −1018.39 −0.711558 −0.355779 0.934570i \(-0.615784\pi\)
−0.355779 + 0.934570i \(0.615784\pi\)
\(128\) 3159.45i 2.18171i
\(129\) 797.031 0.543989
\(130\) 0 0
\(131\) 181.321 0.120932 0.0604659 0.998170i \(-0.480741\pi\)
0.0604659 + 0.998170i \(0.480741\pi\)
\(132\) 4487.60i 2.95906i
\(133\) −1564.86 −1.02023
\(134\) 748.274 0.482395
\(135\) 0 0
\(136\) 226.772i 0.142982i
\(137\) 16.8451i 0.0105049i 0.999986 + 0.00525245i \(0.00167192\pi\)
−0.999986 + 0.00525245i \(0.998328\pi\)
\(138\) 4219.97i 2.60310i
\(139\) −303.101 −0.184954 −0.0924772 0.995715i \(-0.529479\pi\)
−0.0924772 + 0.995715i \(0.529479\pi\)
\(140\) 0 0
\(141\) 3722.83i 2.22354i
\(142\) 2682.90 1.58552
\(143\) −493.840 + 915.118i −0.288790 + 0.535147i
\(144\) 13799.7 7.98594
\(145\) 0 0
\(146\) −3869.67 −2.19353
\(147\) −381.258 −0.213916
\(148\) 8850.16i 4.91540i
\(149\) 908.684i 0.499612i 0.968296 + 0.249806i \(0.0803669\pi\)
−0.968296 + 0.249806i \(0.919633\pi\)
\(150\) 0 0
\(151\) 2598.33i 1.40032i −0.713985 0.700161i \(-0.753111\pi\)
0.713985 0.700161i \(-0.246889\pi\)
\(152\) 5670.92 3.02613
\(153\) −206.575 −0.109154
\(154\) 2343.07i 1.22604i
\(155\) 0 0
\(156\) 8343.87 + 4502.74i 4.28233 + 2.31095i
\(157\) −2512.22 −1.27705 −0.638526 0.769600i \(-0.720456\pi\)
−0.638526 + 0.769600i \(0.720456\pi\)
\(158\) 2295.27i 1.15571i
\(159\) −885.269 −0.441550
\(160\) 0 0
\(161\) 1598.36i 0.782412i
\(162\) 9171.11i 4.44784i
\(163\) 2128.77i 1.02293i −0.859303 0.511467i \(-0.829102\pi\)
0.859303 0.511467i \(-0.170898\pi\)
\(164\) 5362.09i 2.55310i
\(165\) 0 0
\(166\) 4282.27 2.00222
\(167\) 1924.60i 0.891798i 0.895083 + 0.445899i \(0.147116\pi\)
−0.895083 + 0.445899i \(0.852884\pi\)
\(168\) 13277.5 6.09753
\(169\) 1205.99 + 1836.41i 0.548925 + 0.835872i
\(170\) 0 0
\(171\) 5165.85i 2.31019i
\(172\) −1760.25 −0.780336
\(173\) −3623.82 −1.59256 −0.796282 0.604926i \(-0.793203\pi\)
−0.796282 + 0.604926i \(0.793203\pi\)
\(174\) 801.229i 0.349086i
\(175\) 0 0
\(176\) 4739.79i 2.02997i
\(177\) 3687.71i 1.56602i
\(178\) −5437.64 −2.28971
\(179\) 2895.47 1.20904 0.604518 0.796592i \(-0.293366\pi\)
0.604518 + 0.796592i \(0.293366\pi\)
\(180\) 0 0
\(181\) −1833.42 −0.752913 −0.376457 0.926434i \(-0.622858\pi\)
−0.376457 + 0.926434i \(0.622858\pi\)
\(182\) 4356.51 + 2350.97i 1.77432 + 0.957504i
\(183\) 7028.12 2.83898
\(184\) 5792.29i 2.32073i
\(185\) 0 0
\(186\) 1417.90 0.558955
\(187\) 70.9524i 0.0277463i
\(188\) 8221.90i 3.18959i
\(189\) 7039.13i 2.70911i
\(190\) 0 0
\(191\) −1377.00 −0.521654 −0.260827 0.965385i \(-0.583995\pi\)
−0.260827 + 0.965385i \(0.583995\pi\)
\(192\) −13913.2 −5.22969
\(193\) 3493.38i 1.30290i −0.758693 0.651449i \(-0.774162\pi\)
0.758693 0.651449i \(-0.225838\pi\)
\(194\) −3995.83 −1.47878
\(195\) 0 0
\(196\) 842.012 0.306856
\(197\) 4698.05i 1.69910i 0.527510 + 0.849549i \(0.323126\pi\)
−0.527510 + 0.849549i \(0.676874\pi\)
\(198\) −7734.82 −2.77621
\(199\) −622.741 −0.221834 −0.110917 0.993830i \(-0.535379\pi\)
−0.110917 + 0.993830i \(0.535379\pi\)
\(200\) 0 0
\(201\) 1326.69i 0.465561i
\(202\) 6700.05i 2.33373i
\(203\) 303.474i 0.104925i
\(204\) 646.930 0.222030
\(205\) 0 0
\(206\) 2913.15i 0.985284i
\(207\) −5276.42 −1.77167
\(208\) −8812.77 4755.78i −2.93777 1.58536i
\(209\) −1774.32 −0.587235
\(210\) 0 0
\(211\) 1343.25 0.438261 0.219131 0.975696i \(-0.429678\pi\)
0.219131 + 0.975696i \(0.429678\pi\)
\(212\) 1955.12 0.633389
\(213\) 4756.80i 1.53019i
\(214\) 10682.0i 3.41218i
\(215\) 0 0
\(216\) 25509.1i 8.03553i
\(217\) 537.045 0.168005
\(218\) 3753.71 1.16621
\(219\) 6860.95i 2.11699i
\(220\) 0 0
\(221\) 131.923 + 71.1917i 0.0401543 + 0.0216691i
\(222\) 21630.6 6.53941
\(223\) 1081.45i 0.324751i 0.986729 + 0.162375i \(0.0519155\pi\)
−0.986729 + 0.162375i \(0.948084\pi\)
\(224\) −11465.3 −3.41990
\(225\) 0 0
\(226\) 5019.72i 1.47746i
\(227\) 4333.06i 1.26694i 0.773767 + 0.633470i \(0.218370\pi\)
−0.773767 + 0.633470i \(0.781630\pi\)
\(228\) 16177.9i 4.69915i
\(229\) 4091.36i 1.18063i 0.807172 + 0.590316i \(0.200997\pi\)
−0.807172 + 0.590316i \(0.799003\pi\)
\(230\) 0 0
\(231\) −4154.28 −1.18325
\(232\) 1099.76i 0.311219i
\(233\) −4921.94 −1.38389 −0.691946 0.721949i \(-0.743246\pi\)
−0.691946 + 0.721949i \(0.743246\pi\)
\(234\) −7760.92 + 14381.5i −2.16815 + 4.01772i
\(235\) 0 0
\(236\) 8144.35i 2.24641i
\(237\) 4069.53 1.11538
\(238\) 337.776 0.0919947
\(239\) 1848.41i 0.500265i 0.968212 + 0.250133i \(0.0804743\pi\)
−0.968212 + 0.250133i \(0.919526\pi\)
\(240\) 0 0
\(241\) 2033.42i 0.543501i −0.962368 0.271751i \(-0.912397\pi\)
0.962368 0.271751i \(-0.0876026\pi\)
\(242\) 4527.78i 1.20271i
\(243\) 6546.96 1.72834
\(244\) −15521.7 −4.07243
\(245\) 0 0
\(246\) −13105.4 −3.39663
\(247\) −1780.30 + 3299.02i −0.458615 + 0.849844i
\(248\) −1946.20 −0.498322
\(249\) 7592.50i 1.93235i
\(250\) 0 0
\(251\) 2624.85 0.660075 0.330038 0.943968i \(-0.392939\pi\)
0.330038 + 0.943968i \(0.392939\pi\)
\(252\) 26711.9i 6.67736i
\(253\) 1812.29i 0.450348i
\(254\) 5497.08i 1.35794i
\(255\) 0 0
\(256\) 5423.74 1.32415
\(257\) −2704.07 −0.656323 −0.328162 0.944622i \(-0.606429\pi\)
−0.328162 + 0.944622i \(0.606429\pi\)
\(258\) 4302.20i 1.03815i
\(259\) 8192.81 1.96555
\(260\) 0 0
\(261\) 1001.81 0.237589
\(262\) 978.732i 0.230787i
\(263\) 7024.27 1.64690 0.823451 0.567387i \(-0.192046\pi\)
0.823451 + 0.567387i \(0.192046\pi\)
\(264\) 15054.7 3.50967
\(265\) 0 0
\(266\) 8446.81i 1.94702i
\(267\) 9640.98i 2.20981i
\(268\) 2930.02i 0.667833i
\(269\) 3126.72 0.708697 0.354348 0.935113i \(-0.384703\pi\)
0.354348 + 0.935113i \(0.384703\pi\)
\(270\) 0 0
\(271\) 7754.38i 1.73817i 0.494659 + 0.869087i \(0.335293\pi\)
−0.494659 + 0.869087i \(0.664707\pi\)
\(272\) −683.286 −0.152317
\(273\) −4168.29 + 7724.12i −0.924090 + 1.71240i
\(274\) 90.9262 0.0200476
\(275\) 0 0
\(276\) 16524.2 3.60376
\(277\) 3379.40 0.733028 0.366514 0.930413i \(-0.380551\pi\)
0.366514 + 0.930413i \(0.380551\pi\)
\(278\) 1636.07i 0.352968i
\(279\) 1772.87i 0.380426i
\(280\) 0 0
\(281\) 3717.14i 0.789131i −0.918868 0.394566i \(-0.870895\pi\)
0.918868 0.394566i \(-0.129105\pi\)
\(282\) −20095.1 −4.24341
\(283\) −3975.48 −0.835045 −0.417522 0.908667i \(-0.637102\pi\)
−0.417522 + 0.908667i \(0.637102\pi\)
\(284\) 10505.4i 2.19501i
\(285\) 0 0
\(286\) 4939.62 + 2665.65i 1.02128 + 0.551129i
\(287\) −4963.81 −1.02092
\(288\) 37848.7i 7.74395i
\(289\) −4902.77 −0.997918
\(290\) 0 0
\(291\) 7084.64i 1.42718i
\(292\) 15152.5i 3.03675i
\(293\) 7351.82i 1.46586i −0.680302 0.732932i \(-0.738151\pi\)
0.680302 0.732932i \(-0.261849\pi\)
\(294\) 2057.95i 0.408239i
\(295\) 0 0
\(296\) −29689.9 −5.83004
\(297\) 7981.29i 1.55933i
\(298\) 4904.88 0.953464
\(299\) 3369.63 + 1818.41i 0.651741 + 0.351710i
\(300\) 0 0
\(301\) 1629.50i 0.312037i
\(302\) −14025.2 −2.67239
\(303\) 11879.2 2.25229
\(304\) 17087.0i 3.22371i
\(305\) 0 0
\(306\) 1115.05i 0.208311i
\(307\) 5822.03i 1.08235i −0.840911 0.541174i \(-0.817980\pi\)
0.840911 0.541174i \(-0.182020\pi\)
\(308\) 9174.76 1.69734
\(309\) 5165.03 0.950901
\(310\) 0 0
\(311\) 8275.18 1.50882 0.754409 0.656405i \(-0.227924\pi\)
0.754409 + 0.656405i \(0.227924\pi\)
\(312\) 15105.5 27991.5i 2.74096 5.07918i
\(313\) −4922.13 −0.888866 −0.444433 0.895812i \(-0.646595\pi\)
−0.444433 + 0.895812i \(0.646595\pi\)
\(314\) 13560.5i 2.43714i
\(315\) 0 0
\(316\) −8987.60 −1.59997
\(317\) 2991.37i 0.530006i 0.964248 + 0.265003i \(0.0853730\pi\)
−0.964248 + 0.265003i \(0.914627\pi\)
\(318\) 4778.50i 0.842657i
\(319\) 344.093i 0.0603935i
\(320\) 0 0
\(321\) 18939.3 3.29311
\(322\) 8627.60 1.49316
\(323\) 255.785i 0.0440626i
\(324\) −35911.3 −6.15764
\(325\) 0 0
\(326\) −11490.7 −1.95217
\(327\) 6655.35i 1.12551i
\(328\) 17988.4 3.02818
\(329\) −7611.21 −1.27544
\(330\) 0 0
\(331\) 5421.39i 0.900262i 0.892963 + 0.450131i \(0.148623\pi\)
−0.892963 + 0.450131i \(0.851377\pi\)
\(332\) 16768.1i 2.77190i
\(333\) 27045.7i 4.45074i
\(334\) 10388.6 1.70191
\(335\) 0 0
\(336\) 40006.6i 6.49565i
\(337\) 7639.38 1.23485 0.617424 0.786631i \(-0.288176\pi\)
0.617424 + 0.786631i \(0.288176\pi\)
\(338\) 9912.56 6509.67i 1.59518 1.04757i
\(339\) 8900.00 1.42590
\(340\) 0 0
\(341\) 608.928 0.0967017
\(342\) −27884.2 −4.40878
\(343\) 5931.75i 0.933773i
\(344\) 5905.17i 0.925539i
\(345\) 0 0
\(346\) 19560.6i 3.03926i
\(347\) 10145.0 1.56948 0.784741 0.619823i \(-0.212796\pi\)
0.784741 + 0.619823i \(0.212796\pi\)
\(348\) −3137.37 −0.483278
\(349\) 1126.84i 0.172831i 0.996259 + 0.0864157i \(0.0275413\pi\)
−0.996259 + 0.0864157i \(0.972459\pi\)
\(350\) 0 0
\(351\) −14839.8 8008.22i −2.25666 1.21780i
\(352\) −12999.9 −1.96846
\(353\) 9532.90i 1.43735i 0.695345 + 0.718676i \(0.255251\pi\)
−0.695345 + 0.718676i \(0.744749\pi\)
\(354\) 19905.5 2.98860
\(355\) 0 0
\(356\) 21292.2i 3.16990i
\(357\) 598.879i 0.0887844i
\(358\) 15629.1i 2.30733i
\(359\) 6852.10i 1.00735i 0.863892 + 0.503677i \(0.168020\pi\)
−0.863892 + 0.503677i \(0.831980\pi\)
\(360\) 0 0
\(361\) 462.551 0.0674371
\(362\) 9896.44i 1.43686i
\(363\) 8027.78 1.16074
\(364\) 9205.71 17058.8i 1.32558 2.45638i
\(365\) 0 0
\(366\) 37936.3i 5.41793i
\(367\) −2453.68 −0.348995 −0.174497 0.984658i \(-0.555830\pi\)
−0.174497 + 0.984658i \(0.555830\pi\)
\(368\) −17452.8 −2.47225
\(369\) 16386.3i 2.31175i
\(370\) 0 0
\(371\) 1809.91i 0.253277i
\(372\) 5552.08i 0.773823i
\(373\) −1900.82 −0.263862 −0.131931 0.991259i \(-0.542118\pi\)
−0.131931 + 0.991259i \(0.542118\pi\)
\(374\) 382.986 0.0529512
\(375\) 0 0
\(376\) 27582.3 3.78311
\(377\) −639.778 345.254i −0.0874012 0.0471657i
\(378\) −37995.7 −5.17008
\(379\) 12116.2i 1.64213i 0.570831 + 0.821067i \(0.306621\pi\)
−0.570831 + 0.821067i \(0.693379\pi\)
\(380\) 0 0
\(381\) −9746.36 −1.31055
\(382\) 7432.74i 0.995529i
\(383\) 6754.44i 0.901138i −0.892742 0.450569i \(-0.851221\pi\)
0.892742 0.450569i \(-0.148779\pi\)
\(384\) 30236.9i 4.01829i
\(385\) 0 0
\(386\) −18856.5 −2.48646
\(387\) 5379.24 0.706569
\(388\) 15646.5i 2.04724i
\(389\) 2535.39 0.330461 0.165231 0.986255i \(-0.447163\pi\)
0.165231 + 0.986255i \(0.447163\pi\)
\(390\) 0 0
\(391\) 261.259 0.0337914
\(392\) 2824.73i 0.363955i
\(393\) 1735.30 0.222733
\(394\) 25359.1 3.24257
\(395\) 0 0
\(396\) 30287.3i 3.84342i
\(397\) 3881.63i 0.490713i 0.969433 + 0.245357i \(0.0789051\pi\)
−0.969433 + 0.245357i \(0.921095\pi\)
\(398\) 3361.42i 0.423349i
\(399\) −14976.3 −1.87907
\(400\) 0 0
\(401\) 10458.0i 1.30237i 0.758920 + 0.651184i \(0.225727\pi\)
−0.758920 + 0.651184i \(0.774273\pi\)
\(402\) 7161.22 0.888480
\(403\) 610.982 1132.19i 0.0755215 0.139946i
\(404\) −26235.4 −3.23084
\(405\) 0 0
\(406\) −1638.09 −0.200239
\(407\) 9289.40 1.13135
\(408\) 2170.28i 0.263345i
\(409\) 12296.3i 1.48658i 0.668970 + 0.743289i \(0.266735\pi\)
−0.668970 + 0.743289i \(0.733265\pi\)
\(410\) 0 0
\(411\) 161.213i 0.0193480i
\(412\) −11407.0 −1.36404
\(413\) 7539.42 0.898282
\(414\) 28481.0i 3.38108i
\(415\) 0 0
\(416\) −13043.8 + 24171.0i −1.53732 + 2.84875i
\(417\) −2900.77 −0.340651
\(418\) 9577.39i 1.12068i
\(419\) −9401.01 −1.09611 −0.548054 0.836443i \(-0.684631\pi\)
−0.548054 + 0.836443i \(0.684631\pi\)
\(420\) 0 0
\(421\) 16241.2i 1.88016i −0.340951 0.940081i \(-0.610749\pi\)
0.340951 0.940081i \(-0.389251\pi\)
\(422\) 7250.58i 0.836381i
\(423\) 25125.8i 2.88808i
\(424\) 6558.92i 0.751249i
\(425\) 0 0
\(426\) 25676.2 2.92023
\(427\) 14368.8i 1.62846i
\(428\) −41827.6 −4.72386
\(429\) −4726.21 + 8757.98i −0.531896 + 0.985639i
\(430\) 0 0
\(431\) 2664.58i 0.297792i −0.988853 0.148896i \(-0.952428\pi\)
0.988853 0.148896i \(-0.0475720\pi\)
\(432\) 76861.5 8.56019
\(433\) −10804.1 −1.19910 −0.599551 0.800336i \(-0.704654\pi\)
−0.599551 + 0.800336i \(0.704654\pi\)
\(434\) 2898.86i 0.320621i
\(435\) 0 0
\(436\) 14698.4i 1.61451i
\(437\) 6533.36i 0.715178i
\(438\) −37033.9 −4.04007
\(439\) −8612.49 −0.936337 −0.468168 0.883639i \(-0.655086\pi\)
−0.468168 + 0.883639i \(0.655086\pi\)
\(440\) 0 0
\(441\) −2573.15 −0.277848
\(442\) 384.278 712.092i 0.0413535 0.0766307i
\(443\) 2565.27 0.275123 0.137561 0.990493i \(-0.456074\pi\)
0.137561 + 0.990493i \(0.456074\pi\)
\(444\) 84698.9i 9.05323i
\(445\) 0 0
\(446\) 5837.45 0.619757
\(447\) 8696.40i 0.920191i
\(448\) 28445.2i 2.99979i
\(449\) 7527.86i 0.791229i −0.918417 0.395614i \(-0.870532\pi\)
0.918417 0.395614i \(-0.129468\pi\)
\(450\) 0 0
\(451\) −5628.21 −0.587632
\(452\) −19655.7 −2.04541
\(453\) 24866.8i 2.57913i
\(454\) 23389.0 2.41784
\(455\) 0 0
\(456\) 54272.5 5.57356
\(457\) 6433.57i 0.658534i −0.944237 0.329267i \(-0.893198\pi\)
0.944237 0.329267i \(-0.106802\pi\)
\(458\) 22084.3 2.25313
\(459\) −1150.58 −0.117003
\(460\) 0 0
\(461\) 4993.42i 0.504483i −0.967664 0.252242i \(-0.918832\pi\)
0.967664 0.252242i \(-0.0811678\pi\)
\(462\) 22423.9i 2.25813i
\(463\) 15182.4i 1.52395i 0.647608 + 0.761974i \(0.275770\pi\)
−0.647608 + 0.761974i \(0.724230\pi\)
\(464\) 3313.69 0.331539
\(465\) 0 0
\(466\) 26567.6i 2.64103i
\(467\) −10748.1 −1.06502 −0.532509 0.846425i \(-0.678751\pi\)
−0.532509 + 0.846425i \(0.678751\pi\)
\(468\) 56313.6 + 30389.4i 5.56218 + 3.00161i
\(469\) 2712.39 0.267050
\(470\) 0 0
\(471\) −24042.8 −2.35209
\(472\) −27322.1 −2.66441
\(473\) 1847.61i 0.179605i
\(474\) 21966.5i 2.12860i
\(475\) 0 0
\(476\) 1322.63i 0.127358i
\(477\) −5974.77 −0.573514
\(478\) 9977.31 0.954710
\(479\) 567.128i 0.0540976i 0.999634 + 0.0270488i \(0.00861095\pi\)
−0.999634 + 0.0270488i \(0.991389\pi\)
\(480\) 0 0
\(481\) 9320.73 17271.9i 0.883553 1.63728i
\(482\) −10975.9 −1.03722
\(483\) 15296.8i 1.44105i
\(484\) −17729.4 −1.66505
\(485\) 0 0
\(486\) 35339.1i 3.29838i
\(487\) 79.6868i 0.00741468i 0.999993 + 0.00370734i \(0.00118009\pi\)
−0.999993 + 0.00370734i \(0.998820\pi\)
\(488\) 52071.1i 4.83022i
\(489\) 20373.0i 1.88405i
\(490\) 0 0
\(491\) 4638.66 0.426354 0.213177 0.977014i \(-0.431619\pi\)
0.213177 + 0.977014i \(0.431619\pi\)
\(492\) 51316.9i 4.70233i
\(493\) −49.6043 −0.00453157
\(494\) 17807.4 + 9609.70i 1.62185 + 0.875225i
\(495\) 0 0
\(496\) 5864.10i 0.530858i
\(497\) 9725.14 0.877731
\(498\) 40982.7 3.68771
\(499\) 1508.55i 0.135334i −0.997708 0.0676672i \(-0.978444\pi\)
0.997708 0.0676672i \(-0.0215556\pi\)
\(500\) 0 0
\(501\) 18419.1i 1.64252i
\(502\) 14168.4i 1.25969i
\(503\) −6657.75 −0.590168 −0.295084 0.955471i \(-0.595348\pi\)
−0.295084 + 0.955471i \(0.595348\pi\)
\(504\) 89611.5 7.91987
\(505\) 0 0
\(506\) 9782.39 0.859447
\(507\) 11541.7 + 17575.0i 1.01101 + 1.53952i
\(508\) 21524.9 1.87995
\(509\) 11743.6i 1.02264i −0.859390 0.511321i \(-0.829156\pi\)
0.859390 0.511321i \(-0.170844\pi\)
\(510\) 0 0
\(511\) −14027.0 −1.21432
\(512\) 4000.61i 0.345319i
\(513\) 28772.7i 2.47631i
\(514\) 14596.0i 1.25253i
\(515\) 0 0
\(516\) −16846.2 −1.43723
\(517\) −8629.95 −0.734129
\(518\) 44223.1i 3.75106i
\(519\) −34681.1 −2.93320
\(520\) 0 0
\(521\) 22239.4 1.87011 0.935054 0.354505i \(-0.115350\pi\)
0.935054 + 0.354505i \(0.115350\pi\)
\(522\) 5407.58i 0.453416i
\(523\) −19668.3 −1.64443 −0.822214 0.569179i \(-0.807261\pi\)
−0.822214 + 0.569179i \(0.807261\pi\)
\(524\) −3832.42 −0.319504
\(525\) 0 0
\(526\) 37915.6i 3.14296i
\(527\) 87.7827i 0.00725592i
\(528\) 45361.3i 3.73882i
\(529\) −5493.81 −0.451533
\(530\) 0 0
\(531\) 24888.8i 2.03405i
\(532\) 33075.2 2.69547
\(533\) −5647.20 + 10464.6i −0.458925 + 0.850418i
\(534\) −52040.0 −4.21721
\(535\) 0 0
\(536\) −9829.43 −0.792102
\(537\) 27710.6 2.22681
\(538\) 16877.4i 1.35248i
\(539\) 883.802i 0.0706271i
\(540\) 0 0
\(541\) 13725.3i 1.09075i 0.838192 + 0.545375i \(0.183613\pi\)
−0.838192 + 0.545375i \(0.816387\pi\)
\(542\) 41856.5 3.31714
\(543\) −17546.5 −1.38672
\(544\) 1874.06i 0.147702i
\(545\) 0 0
\(546\) 41693.2 + 22499.6i 3.26796 + 1.76354i
\(547\) −16200.3 −1.26632 −0.633158 0.774022i \(-0.718242\pi\)
−0.633158 + 0.774022i \(0.718242\pi\)
\(548\) 356.040i 0.0277541i
\(549\) 47433.5 3.68745
\(550\) 0 0
\(551\) 1240.46i 0.0959083i
\(552\) 55434.1i 4.27434i
\(553\) 8320.04i 0.639790i
\(554\) 18241.3i 1.39892i
\(555\) 0 0
\(556\) 6406.38 0.488653
\(557\) 2529.48i 0.192419i −0.995361 0.0962097i \(-0.969328\pi\)
0.995361 0.0962097i \(-0.0306720\pi\)
\(558\) 9569.57 0.726007
\(559\) −3435.29 1853.84i −0.259924 0.140267i
\(560\) 0 0
\(561\) 679.037i 0.0511033i
\(562\) −20064.3 −1.50598
\(563\) −3787.41 −0.283517 −0.141759 0.989901i \(-0.545276\pi\)
−0.141759 + 0.989901i \(0.545276\pi\)
\(564\) 78686.2i 5.87462i
\(565\) 0 0
\(566\) 21458.8i 1.59361i
\(567\) 33244.0i 2.46229i
\(568\) −35243.0 −2.60345
\(569\) 12743.9 0.938933 0.469466 0.882950i \(-0.344446\pi\)
0.469466 + 0.882950i \(0.344446\pi\)
\(570\) 0 0
\(571\) 8991.11 0.658960 0.329480 0.944163i \(-0.393127\pi\)
0.329480 + 0.944163i \(0.393127\pi\)
\(572\) 10437.9 19342.1i 0.762989 1.41387i
\(573\) −13178.3 −0.960788
\(574\) 26793.6i 1.94834i
\(575\) 0 0
\(576\) −93901.7 −6.79266
\(577\) 17423.3i 1.25709i −0.777774 0.628544i \(-0.783651\pi\)
0.777774 0.628544i \(-0.216349\pi\)
\(578\) 26464.1i 1.90443i
\(579\) 33432.8i 2.39969i
\(580\) 0 0
\(581\) 15522.6 1.10841
\(582\) −38241.4 −2.72364
\(583\) 2052.16i 0.145783i
\(584\) 50832.5 3.60182
\(585\) 0 0
\(586\) −39683.6 −2.79746
\(587\) 14511.5i 1.02036i 0.860067 + 0.510181i \(0.170422\pi\)
−0.860067 + 0.510181i \(0.829578\pi\)
\(588\) 8058.33 0.565170
\(589\) 2195.20 0.153568
\(590\) 0 0
\(591\) 44961.9i 3.12941i
\(592\) 89458.8i 6.21070i
\(593\) 267.436i 0.0185199i 0.999957 + 0.00925994i \(0.00294757\pi\)
−0.999957 + 0.00925994i \(0.997052\pi\)
\(594\) −43081.4 −2.97584
\(595\) 0 0
\(596\) 19206.1i 1.31998i
\(597\) −5959.83 −0.408576
\(598\) 9815.39 18188.5i 0.671206 1.24379i
\(599\) 5428.80 0.370308 0.185154 0.982709i \(-0.440722\pi\)
0.185154 + 0.982709i \(0.440722\pi\)
\(600\) 0 0
\(601\) −25777.8 −1.74958 −0.874790 0.484502i \(-0.839001\pi\)
−0.874790 + 0.484502i \(0.839001\pi\)
\(602\) −8795.73 −0.595493
\(603\) 8954.00i 0.604701i
\(604\) 54918.6i 3.69968i
\(605\) 0 0
\(606\) 64121.6i 4.29829i
\(607\) −20383.4 −1.36299 −0.681497 0.731821i \(-0.738671\pi\)
−0.681497 + 0.731821i \(0.738671\pi\)
\(608\) −46864.9 −3.12603
\(609\) 2904.34i 0.193251i
\(610\) 0 0
\(611\) −8659.07 + 16045.8i −0.573336 + 1.06243i
\(612\) 4366.20 0.288387
\(613\) 7433.13i 0.489757i 0.969554 + 0.244879i \(0.0787481\pi\)
−0.969554 + 0.244879i \(0.921252\pi\)
\(614\) −31426.1 −2.06556
\(615\) 0 0
\(616\) 30778.9i 2.01318i
\(617\) 5540.71i 0.361524i −0.983527 0.180762i \(-0.942144\pi\)
0.983527 0.180762i \(-0.0578564\pi\)
\(618\) 27879.8i 1.81471i
\(619\) 15878.2i 1.03101i 0.856886 + 0.515506i \(0.172396\pi\)
−0.856886 + 0.515506i \(0.827604\pi\)
\(620\) 0 0
\(621\) −29388.6 −1.89907
\(622\) 44667.7i 2.87944i
\(623\) −19710.7 −1.26756
\(624\) −84341.1 45514.4i −5.41081 2.91992i
\(625\) 0 0
\(626\) 26568.6i 1.69632i
\(627\) −16980.8 −1.08158
\(628\) 53098.7 3.37400
\(629\) 1339.15i 0.0848896i
\(630\) 0 0
\(631\) 7809.85i 0.492718i −0.969179 0.246359i \(-0.920766\pi\)
0.969179 0.246359i \(-0.0792343\pi\)
\(632\) 30151.0i 1.89769i
\(633\) 12855.3 0.807194
\(634\) 16146.8 1.01147
\(635\) 0 0
\(636\) 18711.2 1.16658
\(637\) 1643.27 + 886.783i 0.102211 + 0.0551580i
\(638\) −1857.34 −0.115255
\(639\) 32104.1i 1.98751i
\(640\) 0 0
\(641\) −3286.62 −0.202517 −0.101259 0.994860i \(-0.532287\pi\)
−0.101259 + 0.994860i \(0.532287\pi\)
\(642\) 102230.i 6.28459i
\(643\) 9976.67i 0.611884i −0.952050 0.305942i \(-0.901029\pi\)
0.952050 0.305942i \(-0.0989714\pi\)
\(644\) 33783.1i 2.06715i
\(645\) 0 0
\(646\) 1380.67 0.0840895
\(647\) −2603.91 −0.158223 −0.0791115 0.996866i \(-0.525208\pi\)
−0.0791115 + 0.996866i \(0.525208\pi\)
\(648\) 120473.i 7.30343i
\(649\) 8548.55 0.517042
\(650\) 0 0
\(651\) 5139.70 0.309433
\(652\) 44994.0i 2.70261i
\(653\) −17296.8 −1.03657 −0.518283 0.855209i \(-0.673429\pi\)
−0.518283 + 0.855209i \(0.673429\pi\)
\(654\) 35924.2 2.14793
\(655\) 0 0
\(656\) 54200.8i 3.22589i
\(657\) 46305.2i 2.74968i
\(658\) 41083.7i 2.43406i
\(659\) 4108.13 0.242838 0.121419 0.992601i \(-0.461256\pi\)
0.121419 + 0.992601i \(0.461256\pi\)
\(660\) 0 0
\(661\) 5035.44i 0.296303i −0.988965 0.148151i \(-0.952668\pi\)
0.988965 0.148151i \(-0.0473323\pi\)
\(662\) 29263.5 1.71807
\(663\) 1262.54 + 681.328i 0.0739565 + 0.0399104i
\(664\) −56252.5 −3.28768
\(665\) 0 0
\(666\) 145987. 8.49381
\(667\) −1267.01 −0.0735516
\(668\) 40678.7i 2.35615i
\(669\) 10349.8i 0.598129i
\(670\) 0 0
\(671\) 16292.0i 0.937326i
\(672\) −109727. −6.29881
\(673\) 29342.4 1.68063 0.840316 0.542097i \(-0.182369\pi\)
0.840316 + 0.542097i \(0.182369\pi\)
\(674\) 41235.8i 2.35659i
\(675\) 0 0
\(676\) −25489.9 38814.6i −1.45027 2.20839i
\(677\) −15091.7 −0.856751 −0.428375 0.903601i \(-0.640914\pi\)
−0.428375 + 0.903601i \(0.640914\pi\)
\(678\) 48040.3i 2.72121i
\(679\) −14484.3 −0.818641
\(680\) 0 0
\(681\) 41468.8i 2.33346i
\(682\) 3286.86i 0.184546i
\(683\) 15949.3i 0.893533i 0.894651 + 0.446767i \(0.147425\pi\)
−0.894651 + 0.446767i \(0.852575\pi\)
\(684\) 109186.i 6.10356i
\(685\) 0 0
\(686\) −32018.3 −1.78202
\(687\) 39155.6i 2.17450i
\(688\) 17792.9 0.985969
\(689\) 3815.61 + 2059.08i 0.210977 + 0.113853i
\(690\) 0 0
\(691\) 9086.21i 0.500225i −0.968217 0.250113i \(-0.919532\pi\)
0.968217 0.250113i \(-0.0804677\pi\)
\(692\) 76593.5 4.20758
\(693\) −28037.7 −1.53689
\(694\) 54760.4i 2.99521i
\(695\) 0 0
\(696\) 10525.1i 0.573206i
\(697\) 811.359i 0.0440924i
\(698\) 6082.42 0.329832
\(699\) −47104.5 −2.54887
\(700\) 0 0
\(701\) −16228.1 −0.874359 −0.437179 0.899374i \(-0.644022\pi\)
−0.437179 + 0.899374i \(0.644022\pi\)
\(702\) −43226.7 + 80101.9i −2.32405 + 4.30662i
\(703\) 33488.4 1.79664
\(704\) 32252.5i 1.72665i
\(705\) 0 0
\(706\) 51456.6 2.74305
\(707\) 24286.7i 1.29193i
\(708\) 77944.0i 4.13745i
\(709\) 19425.5i 1.02897i −0.857499 0.514485i \(-0.827983\pi\)
0.857499 0.514485i \(-0.172017\pi\)
\(710\) 0 0
\(711\) 27465.7 1.44873
\(712\) 71429.6 3.75975
\(713\) 2242.18i 0.117770i
\(714\) 3232.62 0.169437
\(715\) 0 0
\(716\) −61199.0 −3.19429
\(717\) 17689.8i 0.921394i
\(718\) 36986.2 1.92244
\(719\) 548.566 0.0284535 0.0142268 0.999899i \(-0.495471\pi\)
0.0142268 + 0.999899i \(0.495471\pi\)
\(720\) 0 0
\(721\) 10559.8i 0.545445i
\(722\) 2496.75i 0.128697i
\(723\) 19460.4i 1.00103i
\(724\) 38751.5 1.98921
\(725\) 0 0
\(726\) 43332.3i 2.21517i
\(727\) −10550.1 −0.538213 −0.269107 0.963110i \(-0.586728\pi\)
−0.269107 + 0.963110i \(0.586728\pi\)
\(728\) −57227.7 30882.7i −2.91346 1.57224i
\(729\) 16782.2 0.852623
\(730\) 0 0
\(731\) −266.350 −0.0134765
\(732\) −148547. −7.50064
\(733\) 4007.86i 0.201956i 0.994889 + 0.100978i \(0.0321971\pi\)
−0.994889 + 0.100978i \(0.967803\pi\)
\(734\) 13244.4i 0.666024i
\(735\) 0 0
\(736\) 47868.0i 2.39734i
\(737\) 3075.43 0.153711
\(738\) −88449.8 −4.41176
\(739\) 1960.69i 0.0975984i −0.998809 0.0487992i \(-0.984461\pi\)
0.998809 0.0487992i \(-0.0155394\pi\)
\(740\) 0 0
\(741\) −17038.1 + 31572.7i −0.844682 + 1.56525i
\(742\) 9769.49 0.483355
\(743\) 18597.5i 0.918272i 0.888366 + 0.459136i \(0.151841\pi\)
−0.888366 + 0.459136i \(0.848159\pi\)
\(744\) −18625.8 −0.917814
\(745\) 0 0
\(746\) 10260.2i 0.503556i
\(747\) 51242.6i 2.50986i
\(748\) 1499.66i 0.0733061i
\(749\) 38720.8i 1.88896i
\(750\) 0 0
\(751\) 17920.4 0.870739 0.435369 0.900252i \(-0.356618\pi\)
0.435369 + 0.900252i \(0.356618\pi\)
\(752\) 83108.2i 4.03011i
\(753\) 25120.6 1.21573
\(754\) −1863.61 + 3453.39i −0.0900114 + 0.166797i
\(755\) 0 0
\(756\) 148780.i 7.15751i
\(757\) −9391.11 −0.450893 −0.225446 0.974256i \(-0.572384\pi\)
−0.225446 + 0.974256i \(0.572384\pi\)
\(758\) 65400.9 3.13386
\(759\) 17344.2i 0.829455i
\(760\) 0 0
\(761\) 20548.2i 0.978805i 0.872058 + 0.489403i \(0.162785\pi\)
−0.872058 + 0.489403i \(0.837215\pi\)
\(762\) 52608.8i 2.50107i
\(763\) 13606.7 0.645602
\(764\) 29104.4 1.37822
\(765\) 0 0
\(766\) −36459.1 −1.71974
\(767\) 8577.39 15894.5i 0.403796 0.748260i
\(768\) 51906.9 2.43884
\(769\) 10142.8i 0.475627i 0.971311 + 0.237813i \(0.0764307\pi\)
−0.971311 + 0.237813i \(0.923569\pi\)
\(770\) 0 0
\(771\) −25878.8 −1.20882
\(772\) 73836.6i 3.44228i
\(773\) 213.912i 0.00995327i 0.999988 + 0.00497664i \(0.00158412\pi\)
−0.999988 + 0.00497664i \(0.998416\pi\)
\(774\) 29036.0i 1.34842i
\(775\) 0 0
\(776\) 52489.8 2.42819
\(777\) 78407.8 3.62016
\(778\) 13685.5i 0.630654i
\(779\) −20289.8 −0.933193
\(780\) 0 0
\(781\) 11026.8 0.505212
\(782\) 1410.22i 0.0644878i
\(783\) 5579.89 0.254673
\(784\) −8511.19 −0.387718
\(785\) 0 0
\(786\) 9366.78i 0.425066i
\(787\) 13315.9i 0.603127i 0.953446 + 0.301563i \(0.0975085\pi\)
−0.953446 + 0.301563i \(0.902492\pi\)
\(788\) 99298.7i 4.48905i
\(789\) 67224.6 3.03328
\(790\) 0 0
\(791\) 18195.8i 0.817911i
\(792\) 101606. 4.55859
\(793\) −30292.0 16347.0i −1.35649 0.732027i
\(794\) 20952.2 0.936481
\(795\) 0 0
\(796\) 13162.3 0.586089
\(797\) −1432.22 −0.0636537 −0.0318268 0.999493i \(-0.510133\pi\)
−0.0318268 + 0.999493i \(0.510133\pi\)
\(798\) 80838.7i 3.58604i
\(799\) 1244.09i 0.0550847i
\(800\) 0 0
\(801\) 65068.0i 2.87024i
\(802\) 56450.3 2.48545
\(803\) −15904.5 −0.698950
\(804\) 28041.2i 1.23002i
\(805\) 0 0
\(806\) −6111.32 3297.95i −0.267075 0.144126i
\(807\) 29923.7 1.30528
\(808\) 88012.8i 3.83203i
\(809\) −1717.53 −0.0746416 −0.0373208 0.999303i \(-0.511882\pi\)
−0.0373208 + 0.999303i \(0.511882\pi\)
\(810\) 0 0
\(811\) 26684.7i 1.15539i −0.816251 0.577697i \(-0.803951\pi\)
0.816251 0.577697i \(-0.196049\pi\)
\(812\) 6414.27i 0.277213i
\(813\) 74211.9i 3.20138i
\(814\) 50142.2i 2.15907i
\(815\) 0 0
\(816\) −6539.27 −0.280539
\(817\) 6660.67i 0.285223i
\(818\) 66372.6 2.83700
\(819\) −28132.2 + 52130.9i −1.20027 + 2.22418i
\(820\) 0 0
\(821\) 28453.9i 1.20956i −0.796394 0.604779i \(-0.793262\pi\)
0.796394 0.604779i \(-0.206738\pi\)
\(822\) 870.193 0.0369239
\(823\) −24406.1 −1.03371 −0.516855 0.856073i \(-0.672898\pi\)
−0.516855 + 0.856073i \(0.672898\pi\)
\(824\) 38267.5i 1.61785i
\(825\) 0 0
\(826\) 40696.2i 1.71429i
\(827\) 23423.5i 0.984902i 0.870340 + 0.492451i \(0.163899\pi\)
−0.870340 + 0.492451i \(0.836101\pi\)
\(828\) 111523. 4.68079
\(829\) −18813.3 −0.788193 −0.394097 0.919069i \(-0.628942\pi\)
−0.394097 + 0.919069i \(0.628942\pi\)
\(830\) 0 0
\(831\) 32342.0 1.35010
\(832\) 59967.6 + 32361.3i 2.49880 + 1.34847i
\(833\) 127.408 0.00529944
\(834\) 15657.7i 0.650100i
\(835\) 0 0
\(836\) 37502.2 1.55149
\(837\) 9874.50i 0.407781i
\(838\) 50744.7i 2.09182i
\(839\) 2274.01i 0.0935726i −0.998905 0.0467863i \(-0.985102\pi\)
0.998905 0.0467863i \(-0.0148980\pi\)
\(840\) 0 0
\(841\) −24148.4 −0.990136
\(842\) −87666.7 −3.58811
\(843\) 35574.2i 1.45343i
\(844\) −28391.1 −1.15789
\(845\) 0 0
\(846\) −135624. −5.51162
\(847\) 16412.6i 0.665811i
\(848\) −19762.7 −0.800299
\(849\) −38046.6 −1.53799
\(850\) 0 0
\(851\) 34205.2i 1.37784i
\(852\) 100540.i 4.04279i
\(853\) 8197.12i 0.329032i −0.986374 0.164516i \(-0.947394\pi\)
0.986374 0.164516i \(-0.0526061\pi\)
\(854\) −77559.7 −3.10777
\(855\) 0 0
\(856\) 140320.i 5.60287i
\(857\) 43282.5 1.72521 0.862604 0.505879i \(-0.168832\pi\)
0.862604 + 0.505879i \(0.168832\pi\)
\(858\) 47273.7 + 25511.1i 1.88100 + 1.01507i
\(859\) 14884.8 0.591226 0.295613 0.955308i \(-0.404476\pi\)
0.295613 + 0.955308i \(0.404476\pi\)
\(860\) 0 0
\(861\) −47505.3 −1.88034
\(862\) −14382.9 −0.568309
\(863\) 29421.4i 1.16050i 0.814437 + 0.580252i \(0.197046\pi\)
−0.814437 + 0.580252i \(0.802954\pi\)
\(864\) 210809.i 8.30079i
\(865\) 0 0
\(866\) 58318.2i 2.28838i
\(867\) −46921.1 −1.83798
\(868\) −11351.1 −0.443871
\(869\) 9433.65i 0.368256i
\(870\) 0 0
\(871\) 3085.81 5718.20i 0.120044 0.222450i
\(872\) −49309.2 −1.91493
\(873\) 47814.9i 1.85371i
\(874\) 35265.7 1.36485
\(875\) 0 0
\(876\) 145014.i 5.59311i
\(877\) 44242.4i 1.70349i −0.523958 0.851744i \(-0.675545\pi\)
0.523958 0.851744i \(-0.324455\pi\)
\(878\) 46488.4i 1.78691i
\(879\) 70359.3i 2.69984i
\(880\) 0 0
\(881\) 6344.23 0.242614 0.121307 0.992615i \(-0.461292\pi\)
0.121307 + 0.992615i \(0.461292\pi\)
\(882\) 13889.3i 0.530247i
\(883\) −31600.7 −1.20436 −0.602178 0.798362i \(-0.705700\pi\)
−0.602178 + 0.798362i \(0.705700\pi\)
\(884\) −2788.34 1504.72i −0.106088 0.0572502i
\(885\) 0 0
\(886\) 13846.8i 0.525047i
\(887\) −22725.3 −0.860250 −0.430125 0.902769i \(-0.641531\pi\)
−0.430125 + 0.902769i \(0.641531\pi\)
\(888\) −284142. −10.7378
\(889\) 19926.1i 0.751745i
\(890\) 0 0
\(891\) 37693.6i 1.41727i
\(892\) 22857.7i 0.857997i
\(893\) −31111.1 −1.16584
\(894\) 46941.3 1.75610
\(895\) 0 0
\(896\) 61818.5 2.30492
\(897\) 32248.4 + 17402.8i 1.20038 + 0.647783i
\(898\) −40633.8 −1.50999
\(899\) 425.714i 0.0157935i
\(900\) 0 0
\(901\) 295.838 0.0109387
\(902\) 30379.9i 1.12144i
\(903\) 15594.9i 0.574713i
\(904\) 65939.7i 2.42602i
\(905\) 0 0
\(906\) −134226. −4.92203
\(907\) −21217.0 −0.776736 −0.388368 0.921504i \(-0.626961\pi\)
−0.388368 + 0.921504i \(0.626961\pi\)
\(908\) 91584.2i 3.34728i
\(909\) 80174.2 2.92542
\(910\) 0 0
\(911\) 7009.14 0.254910 0.127455 0.991844i \(-0.459319\pi\)
0.127455 + 0.991844i \(0.459319\pi\)
\(912\) 163529.i 5.93747i
\(913\) 17600.3 0.637990
\(914\) −34727.1 −1.25675
\(915\) 0 0
\(916\) 86475.6i 3.11925i
\(917\) 3547.77i 0.127762i
\(918\) 6210.58i 0.223290i
\(919\) 26748.5 0.960121 0.480061 0.877235i \(-0.340615\pi\)
0.480061 + 0.877235i \(0.340615\pi\)
\(920\) 0 0
\(921\) 55718.7i 1.99348i
\(922\) −26953.4 −0.962759
\(923\) 11064.0 20502.4i 0.394558 0.731141i
\(924\) 87805.5 3.12618
\(925\) 0 0
\(926\) 81951.6 2.90831
\(927\) 34859.3 1.23509
\(928\) 9088.51i 0.321492i
\(929\) 18623.8i 0.657726i 0.944378 + 0.328863i \(0.106665\pi\)
−0.944378 + 0.328863i \(0.893335\pi\)
\(930\) 0 0
\(931\) 3186.12i 0.112160i
\(932\) 104031. 3.65627
\(933\) 79196.1 2.77895
\(934\) 58016.0i 2.03249i
\(935\) 0 0
\(936\) 101949. 188917.i 3.56014 6.59717i
\(937\) 40923.2 1.42679 0.713396 0.700761i \(-0.247156\pi\)
0.713396 + 0.700761i \(0.247156\pi\)
\(938\) 14640.9i 0.509640i
\(939\) −47106.4 −1.63712
\(940\) 0 0
\(941\) 55098.3i 1.90877i 0.298576 + 0.954386i \(0.403488\pi\)
−0.298576 + 0.954386i \(0.596512\pi\)
\(942\) 129778.i 4.48874i
\(943\) 20724.1i 0.715661i
\(944\) 82324.3i 2.83838i
\(945\) 0 0
\(946\) −9973.01 −0.342760
\(947\) 40418.2i 1.38692i 0.720495 + 0.693460i \(0.243915\pi\)
−0.720495 + 0.693460i \(0.756085\pi\)
\(948\) −86014.2 −2.94685
\(949\) −15958.1 + 29571.5i −0.545862 + 1.01152i
\(950\) 0 0
\(951\) 28628.4i 0.976170i
\(952\) −4437.07 −0.151057
\(953\) 11373.4 0.386591 0.193296 0.981141i \(-0.438082\pi\)
0.193296 + 0.981141i \(0.438082\pi\)
\(954\) 32250.6i 1.09450i
\(955\) 0 0
\(956\) 39068.2i 1.32171i
\(957\) 3293.08i 0.111233i
\(958\) 3061.24 0.103240
\(959\) 329.595 0.0110982
\(960\) 0 0
\(961\) 29037.6 0.974712
\(962\) −93230.2 50311.4i −3.12460 1.68618i
\(963\) 127823. 4.27731
\(964\) 42978.6i 1.43594i
\(965\) 0 0
\(966\) 82568.9 2.75012
\(967\) 12910.4i 0.429339i −0.976687 0.214670i \(-0.931133\pi\)
0.976687 0.214670i \(-0.0688675\pi\)
\(968\) 59477.5i 1.97488i
\(969\) 2447.94i 0.0811550i
\(970\) 0 0
\(971\) 27002.5 0.892432 0.446216 0.894925i \(-0.352771\pi\)
0.446216 + 0.894925i \(0.352771\pi\)
\(972\) −138377. −4.56631
\(973\) 5930.54i 0.195400i
\(974\) 430.132 0.0141502
\(975\) 0 0
\(976\) 156895. 5.14559
\(977\) 8403.06i 0.275166i −0.990490 0.137583i \(-0.956067\pi\)
0.990490 0.137583i \(-0.0439334\pi\)
\(978\) −109969. −3.59553
\(979\) −22348.9 −0.729596
\(980\) 0 0
\(981\) 44917.7i 1.46189i
\(982\) 25038.5i 0.813656i
\(983\) 41927.2i 1.36040i 0.733028 + 0.680199i \(0.238106\pi\)
−0.733028 + 0.680199i \(0.761894\pi\)
\(984\) 172155. 5.57733
\(985\) 0 0
\(986\) 267.753i 0.00864808i
\(987\) −72841.8 −2.34912
\(988\) 37628.7 69728.5i 1.21167 2.24530i
\(989\) −6803.23 −0.218736
\(990\) 0 0
\(991\) −21469.8 −0.688206 −0.344103 0.938932i \(-0.611817\pi\)
−0.344103 + 0.938932i \(0.611817\pi\)
\(992\) 16083.6 0.514772
\(993\) 51884.5i 1.65811i
\(994\) 52494.3i 1.67507i
\(995\) 0 0
\(996\) 160476.i 5.10530i
\(997\) −24074.4 −0.764738 −0.382369 0.924010i \(-0.624892\pi\)
−0.382369 + 0.924010i \(0.624892\pi\)
\(998\) −8142.82 −0.258273
\(999\) 150639.i 4.77077i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.4.c.f.51.1 yes 14
5.2 odd 4 325.4.d.e.324.27 28
5.3 odd 4 325.4.d.e.324.2 28
5.4 even 2 325.4.c.d.51.14 yes 14
13.12 even 2 inner 325.4.c.f.51.14 yes 14
65.12 odd 4 325.4.d.e.324.1 28
65.38 odd 4 325.4.d.e.324.28 28
65.64 even 2 325.4.c.d.51.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.4.c.d.51.1 14 65.64 even 2
325.4.c.d.51.14 yes 14 5.4 even 2
325.4.c.f.51.1 yes 14 1.1 even 1 trivial
325.4.c.f.51.14 yes 14 13.12 even 2 inner
325.4.d.e.324.1 28 65.12 odd 4
325.4.d.e.324.2 28 5.3 odd 4
325.4.d.e.324.27 28 5.2 odd 4
325.4.d.e.324.28 28 65.38 odd 4