Properties

Label 325.4.d.c.324.3
Level $325$
Weight $4$
Character 325.324
Analytic conductor $19.176$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(324,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.324"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.3
Root \(-3.65500i\) of defining polynomial
Character \(\chi\) \(=\) 325.324
Dual form 325.4.d.c.324.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.65500 q^{2} -8.59394i q^{3} +5.35901 q^{4} +31.4108i q^{6} +19.4590 q^{7} +9.65282 q^{8} -46.8559 q^{9} -20.0770i q^{11} -46.0550i q^{12} +(0.655046 + 46.8676i) q^{13} -71.1227 q^{14} -78.1531 q^{16} -89.4229i q^{17} +171.258 q^{18} +11.7815i q^{19} -167.230i q^{21} +73.3816i q^{22} -157.627i q^{23} -82.9558i q^{24} +(-2.39419 - 171.301i) q^{26} +170.640i q^{27} +104.281 q^{28} -116.112 q^{29} -245.999i q^{31} +208.427 q^{32} -172.541 q^{33} +326.840i q^{34} -251.101 q^{36} -213.834 q^{37} -43.0613i q^{38} +(402.777 - 5.62943i) q^{39} +442.192i q^{41} +611.224i q^{42} -184.625i q^{43} -107.593i q^{44} +576.126i q^{46} +247.157 q^{47} +671.643i q^{48} +35.6534 q^{49} -768.495 q^{51} +(3.51040 + 251.164i) q^{52} -14.9253i q^{53} -623.689i q^{54} +187.834 q^{56} +101.250 q^{57} +424.389 q^{58} +416.520i q^{59} -898.135 q^{61} +899.127i q^{62} -911.769 q^{63} -136.575 q^{64} +630.637 q^{66} -847.535 q^{67} -479.218i q^{68} -1354.64 q^{69} -512.385i q^{71} -452.291 q^{72} +533.502 q^{73} +781.564 q^{74} +63.1371i q^{76} -390.680i q^{77} +(-1472.15 + 20.5756i) q^{78} +90.0657 q^{79} +201.363 q^{81} -1616.21i q^{82} +1092.74 q^{83} -896.185i q^{84} +674.804i q^{86} +997.859i q^{87} -193.800i q^{88} +117.323i q^{89} +(12.7466 + 911.997i) q^{91} -844.724i q^{92} -2114.11 q^{93} -903.360 q^{94} -1791.21i q^{96} -895.447 q^{97} -130.313 q^{98} +940.727i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{2} + 56 q^{4} + 108 q^{7} - 48 q^{8} - 158 q^{9} + 6 q^{13} + 152 q^{14} + 280 q^{16} - 272 q^{18} - 344 q^{26} + 572 q^{28} - 588 q^{29} - 1788 q^{32} + 248 q^{33} + 496 q^{36} + 940 q^{37}+ \cdots + 7364 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.65500 −1.29224 −0.646118 0.763237i \(-0.723609\pi\)
−0.646118 + 0.763237i \(0.723609\pi\)
\(3\) 8.59394i 1.65391i −0.562272 0.826953i \(-0.690072\pi\)
0.562272 0.826953i \(-0.309928\pi\)
\(4\) 5.35901 0.669876
\(5\) 0 0
\(6\) 31.4108i 2.13724i
\(7\) 19.4590 1.05069 0.525344 0.850890i \(-0.323937\pi\)
0.525344 + 0.850890i \(0.323937\pi\)
\(8\) 9.65282 0.426599
\(9\) −46.8559 −1.73540
\(10\) 0 0
\(11\) 20.0770i 0.550314i −0.961399 0.275157i \(-0.911270\pi\)
0.961399 0.275157i \(-0.0887299\pi\)
\(12\) 46.0550i 1.10791i
\(13\) 0.655046 + 46.8676i 0.0139752 + 0.999902i
\(14\) −71.1227 −1.35774
\(15\) 0 0
\(16\) −78.1531 −1.22114
\(17\) 89.4229i 1.27578i −0.770128 0.637889i \(-0.779808\pi\)
0.770128 0.637889i \(-0.220192\pi\)
\(18\) 171.258 2.24255
\(19\) 11.7815i 0.142256i 0.997467 + 0.0711279i \(0.0226599\pi\)
−0.997467 + 0.0711279i \(0.977340\pi\)
\(20\) 0 0
\(21\) 167.230i 1.73774i
\(22\) 73.3816i 0.711136i
\(23\) 157.627i 1.42902i −0.699624 0.714511i \(-0.746649\pi\)
0.699624 0.714511i \(-0.253351\pi\)
\(24\) 82.9558i 0.705554i
\(25\) 0 0
\(26\) −2.39419 171.301i −0.0180592 1.29211i
\(27\) 170.640i 1.21629i
\(28\) 104.281 0.703831
\(29\) −116.112 −0.743498 −0.371749 0.928333i \(-0.621242\pi\)
−0.371749 + 0.928333i \(0.621242\pi\)
\(30\) 0 0
\(31\) 245.999i 1.42525i −0.701544 0.712626i \(-0.747506\pi\)
0.701544 0.712626i \(-0.252494\pi\)
\(32\) 208.427 1.15141
\(33\) −172.541 −0.910168
\(34\) 326.840i 1.64861i
\(35\) 0 0
\(36\) −251.101 −1.16250
\(37\) −213.834 −0.950112 −0.475056 0.879956i \(-0.657572\pi\)
−0.475056 + 0.879956i \(0.657572\pi\)
\(38\) 43.0613i 0.183828i
\(39\) 402.777 5.62943i 1.65374 0.0231136i
\(40\) 0 0
\(41\) 442.192i 1.68436i 0.539196 + 0.842180i \(0.318728\pi\)
−0.539196 + 0.842180i \(0.681272\pi\)
\(42\) 611.224i 2.24557i
\(43\) 184.625i 0.654768i −0.944891 0.327384i \(-0.893833\pi\)
0.944891 0.327384i \(-0.106167\pi\)
\(44\) 107.593i 0.368642i
\(45\) 0 0
\(46\) 576.126i 1.84663i
\(47\) 247.157 0.767056 0.383528 0.923529i \(-0.374709\pi\)
0.383528 + 0.923529i \(0.374709\pi\)
\(48\) 671.643i 2.01965i
\(49\) 35.6534 0.103946
\(50\) 0 0
\(51\) −768.495 −2.11002
\(52\) 3.51040 + 251.164i 0.00936162 + 0.669810i
\(53\) 14.9253i 0.0386821i −0.999813 0.0193410i \(-0.993843\pi\)
0.999813 0.0193410i \(-0.00615683\pi\)
\(54\) 623.689i 1.57173i
\(55\) 0 0
\(56\) 187.834 0.448222
\(57\) 101.250 0.235278
\(58\) 424.389 0.960776
\(59\) 416.520i 0.919090i 0.888155 + 0.459545i \(0.151987\pi\)
−0.888155 + 0.459545i \(0.848013\pi\)
\(60\) 0 0
\(61\) −898.135 −1.88515 −0.942577 0.333989i \(-0.891605\pi\)
−0.942577 + 0.333989i \(0.891605\pi\)
\(62\) 899.127i 1.84176i
\(63\) −911.769 −1.82337
\(64\) −136.575 −0.266747
\(65\) 0 0
\(66\) 630.637 1.17615
\(67\) −847.535 −1.54542 −0.772708 0.634761i \(-0.781098\pi\)
−0.772708 + 0.634761i \(0.781098\pi\)
\(68\) 479.218i 0.854613i
\(69\) −1354.64 −2.36347
\(70\) 0 0
\(71\) 512.385i 0.856463i −0.903669 0.428232i \(-0.859137\pi\)
0.903669 0.428232i \(-0.140863\pi\)
\(72\) −452.291 −0.740320
\(73\) 533.502 0.855365 0.427683 0.903929i \(-0.359330\pi\)
0.427683 + 0.903929i \(0.359330\pi\)
\(74\) 781.564 1.22777
\(75\) 0 0
\(76\) 63.1371i 0.0952938i
\(77\) 390.680i 0.578209i
\(78\) −1472.15 + 20.5756i −2.13703 + 0.0298682i
\(79\) 90.0657 0.128268 0.0641341 0.997941i \(-0.479571\pi\)
0.0641341 + 0.997941i \(0.479571\pi\)
\(80\) 0 0
\(81\) 201.363 0.276218
\(82\) 1616.21i 2.17659i
\(83\) 1092.74 1.44510 0.722551 0.691318i \(-0.242970\pi\)
0.722551 + 0.691318i \(0.242970\pi\)
\(84\) 896.185i 1.16407i
\(85\) 0 0
\(86\) 674.804i 0.846116i
\(87\) 997.859i 1.22968i
\(88\) 193.800i 0.234763i
\(89\) 117.323i 0.139733i 0.997556 + 0.0698666i \(0.0222574\pi\)
−0.997556 + 0.0698666i \(0.977743\pi\)
\(90\) 0 0
\(91\) 12.7466 + 911.997i 0.0146835 + 1.05059i
\(92\) 844.724i 0.957267i
\(93\) −2114.11 −2.35723
\(94\) −903.360 −0.991217
\(95\) 0 0
\(96\) 1791.21i 1.90432i
\(97\) −895.447 −0.937308 −0.468654 0.883382i \(-0.655261\pi\)
−0.468654 + 0.883382i \(0.655261\pi\)
\(98\) −130.313 −0.134323
\(99\) 940.727i 0.955017i
\(100\) 0 0
\(101\) −240.227 −0.236668 −0.118334 0.992974i \(-0.537755\pi\)
−0.118334 + 0.992974i \(0.537755\pi\)
\(102\) 2808.85 2.72664
\(103\) 123.954i 0.118578i 0.998241 + 0.0592891i \(0.0188834\pi\)
−0.998241 + 0.0592891i \(0.981117\pi\)
\(104\) 6.32305 + 452.405i 0.00596178 + 0.426557i
\(105\) 0 0
\(106\) 54.5520i 0.0499864i
\(107\) 1223.36i 1.10530i −0.833414 0.552649i \(-0.813617\pi\)
0.833414 0.552649i \(-0.186383\pi\)
\(108\) 914.461i 0.814760i
\(109\) 1738.02i 1.52727i 0.645648 + 0.763635i \(0.276587\pi\)
−0.645648 + 0.763635i \(0.723413\pi\)
\(110\) 0 0
\(111\) 1837.68i 1.57139i
\(112\) −1520.78 −1.28304
\(113\) 633.634i 0.527498i −0.964591 0.263749i \(-0.915041\pi\)
0.964591 0.263749i \(-0.0849590\pi\)
\(114\) −370.067 −0.304034
\(115\) 0 0
\(116\) −622.245 −0.498051
\(117\) −30.6927 2196.02i −0.0242525 1.73523i
\(118\) 1522.38i 1.18768i
\(119\) 1740.08i 1.34045i
\(120\) 0 0
\(121\) 927.912 0.697154
\(122\) 3282.68 2.43607
\(123\) 3800.17 2.78577
\(124\) 1318.31i 0.954742i
\(125\) 0 0
\(126\) 3332.51 2.35622
\(127\) 1731.65i 1.20991i 0.796259 + 0.604955i \(0.206809\pi\)
−0.796259 + 0.604955i \(0.793191\pi\)
\(128\) −1168.23 −0.806706
\(129\) −1586.66 −1.08292
\(130\) 0 0
\(131\) 2334.08 1.55671 0.778357 0.627822i \(-0.216053\pi\)
0.778357 + 0.627822i \(0.216053\pi\)
\(132\) −924.648 −0.609699
\(133\) 229.256i 0.149467i
\(134\) 3097.74 1.99704
\(135\) 0 0
\(136\) 863.183i 0.544245i
\(137\) −1528.05 −0.952922 −0.476461 0.879196i \(-0.658081\pi\)
−0.476461 + 0.879196i \(0.658081\pi\)
\(138\) 4951.20 3.05416
\(139\) 2246.04 1.37055 0.685274 0.728285i \(-0.259682\pi\)
0.685274 + 0.728285i \(0.259682\pi\)
\(140\) 0 0
\(141\) 2124.06i 1.26864i
\(142\) 1872.77i 1.10675i
\(143\) 940.963 13.1514i 0.550261 0.00769073i
\(144\) 3661.93 2.11917
\(145\) 0 0
\(146\) −1949.95 −1.10533
\(147\) 306.403i 0.171917i
\(148\) −1145.94 −0.636457
\(149\) 710.547i 0.390673i −0.980736 0.195337i \(-0.937420\pi\)
0.980736 0.195337i \(-0.0625799\pi\)
\(150\) 0 0
\(151\) 1201.89i 0.647738i −0.946102 0.323869i \(-0.895016\pi\)
0.946102 0.323869i \(-0.104984\pi\)
\(152\) 113.725i 0.0606861i
\(153\) 4189.99i 2.21399i
\(154\) 1427.93i 0.747183i
\(155\) 0 0
\(156\) 2158.49 30.1682i 1.10780 0.0154832i
\(157\) 677.363i 0.344328i −0.985068 0.172164i \(-0.944924\pi\)
0.985068 0.172164i \(-0.0550758\pi\)
\(158\) −329.190 −0.165753
\(159\) −128.267 −0.0639765
\(160\) 0 0
\(161\) 3067.27i 1.50146i
\(162\) −735.981 −0.356939
\(163\) −2043.08 −0.981756 −0.490878 0.871228i \(-0.663324\pi\)
−0.490878 + 0.871228i \(0.663324\pi\)
\(164\) 2369.71i 1.12831i
\(165\) 0 0
\(166\) −3993.95 −1.86741
\(167\) −2590.58 −1.20039 −0.600195 0.799854i \(-0.704910\pi\)
−0.600195 + 0.799854i \(0.704910\pi\)
\(168\) 1614.24i 0.741317i
\(169\) −2196.14 + 61.4009i −0.999609 + 0.0279476i
\(170\) 0 0
\(171\) 552.032i 0.246871i
\(172\) 989.407i 0.438614i
\(173\) 1092.54i 0.480140i −0.970756 0.240070i \(-0.922830\pi\)
0.970756 0.240070i \(-0.0771703\pi\)
\(174\) 3647.17i 1.58903i
\(175\) 0 0
\(176\) 1569.08i 0.672012i
\(177\) 3579.55 1.52009
\(178\) 428.817i 0.180568i
\(179\) −2643.64 −1.10388 −0.551942 0.833883i \(-0.686113\pi\)
−0.551942 + 0.833883i \(0.686113\pi\)
\(180\) 0 0
\(181\) 113.656 0.0466739 0.0233370 0.999728i \(-0.492571\pi\)
0.0233370 + 0.999728i \(0.492571\pi\)
\(182\) −46.5886 3333.35i −0.0189746 1.35761i
\(183\) 7718.52i 3.11787i
\(184\) 1521.55i 0.609619i
\(185\) 0 0
\(186\) 7727.05 3.04610
\(187\) −1795.35 −0.702079
\(188\) 1324.52 0.513832
\(189\) 3320.49i 1.27794i
\(190\) 0 0
\(191\) −1586.92 −0.601181 −0.300590 0.953753i \(-0.597184\pi\)
−0.300590 + 0.953753i \(0.597184\pi\)
\(192\) 1173.71i 0.441175i
\(193\) −2480.87 −0.925270 −0.462635 0.886549i \(-0.653096\pi\)
−0.462635 + 0.886549i \(0.653096\pi\)
\(194\) 3272.86 1.21122
\(195\) 0 0
\(196\) 191.067 0.0696308
\(197\) 4720.28 1.70714 0.853568 0.520981i \(-0.174434\pi\)
0.853568 + 0.520981i \(0.174434\pi\)
\(198\) 3438.36i 1.23411i
\(199\) −849.011 −0.302436 −0.151218 0.988500i \(-0.548320\pi\)
−0.151218 + 0.988500i \(0.548320\pi\)
\(200\) 0 0
\(201\) 7283.67i 2.55597i
\(202\) 878.028 0.305831
\(203\) −2259.42 −0.781185
\(204\) −4118.37 −1.41345
\(205\) 0 0
\(206\) 453.051i 0.153231i
\(207\) 7385.75i 2.47993i
\(208\) −51.1939 3662.85i −0.0170657 1.22102i
\(209\) 236.538 0.0782854
\(210\) 0 0
\(211\) −3094.07 −1.00950 −0.504751 0.863265i \(-0.668416\pi\)
−0.504751 + 0.863265i \(0.668416\pi\)
\(212\) 79.9849i 0.0259122i
\(213\) −4403.41 −1.41651
\(214\) 4471.38i 1.42831i
\(215\) 0 0
\(216\) 1647.16i 0.518865i
\(217\) 4786.91i 1.49750i
\(218\) 6352.47i 1.97359i
\(219\) 4584.88i 1.41469i
\(220\) 0 0
\(221\) 4191.04 58.5761i 1.27565 0.0178292i
\(222\) 6716.71i 2.03061i
\(223\) 923.125 0.277206 0.138603 0.990348i \(-0.455739\pi\)
0.138603 + 0.990348i \(0.455739\pi\)
\(224\) 4055.78 1.20977
\(225\) 0 0
\(226\) 2315.93i 0.681652i
\(227\) 652.853 0.190887 0.0954435 0.995435i \(-0.469573\pi\)
0.0954435 + 0.995435i \(0.469573\pi\)
\(228\) 542.597 0.157607
\(229\) 3450.44i 0.995685i 0.867268 + 0.497842i \(0.165874\pi\)
−0.867268 + 0.497842i \(0.834126\pi\)
\(230\) 0 0
\(231\) −3357.48 −0.956302
\(232\) −1120.81 −0.317175
\(233\) 2746.83i 0.772320i −0.922432 0.386160i \(-0.873801\pi\)
0.922432 0.386160i \(-0.126199\pi\)
\(234\) 112.182 + 8026.45i 0.0313400 + 2.24233i
\(235\) 0 0
\(236\) 2232.13i 0.615676i
\(237\) 774.020i 0.212143i
\(238\) 6359.99i 1.73217i
\(239\) 6624.49i 1.79290i −0.443148 0.896448i \(-0.646138\pi\)
0.443148 0.896448i \(-0.353862\pi\)
\(240\) 0 0
\(241\) 3220.25i 0.860725i −0.902656 0.430362i \(-0.858386\pi\)
0.902656 0.430362i \(-0.141614\pi\)
\(242\) −3391.52 −0.900888
\(243\) 2876.78i 0.759447i
\(244\) −4813.11 −1.26282
\(245\) 0 0
\(246\) −13889.6 −3.59988
\(247\) −552.170 + 7.71743i −0.142242 + 0.00198805i
\(248\) 2374.59i 0.608010i
\(249\) 9390.91i 2.39006i
\(250\) 0 0
\(251\) −410.078 −0.103123 −0.0515615 0.998670i \(-0.516420\pi\)
−0.0515615 + 0.998670i \(0.516420\pi\)
\(252\) −4886.18 −1.22143
\(253\) −3164.68 −0.786411
\(254\) 6329.16i 1.56349i
\(255\) 0 0
\(256\) 5362.49 1.30920
\(257\) 117.117i 0.0284262i 0.999899 + 0.0142131i \(0.00452433\pi\)
−0.999899 + 0.0142131i \(0.995476\pi\)
\(258\) 5799.23 1.39940
\(259\) −4161.00 −0.998271
\(260\) 0 0
\(261\) 5440.52 1.29027
\(262\) −8531.06 −2.01164
\(263\) 2511.96i 0.588950i −0.955659 0.294475i \(-0.904855\pi\)
0.955659 0.294475i \(-0.0951448\pi\)
\(264\) −1665.51 −0.388276
\(265\) 0 0
\(266\) 837.932i 0.193146i
\(267\) 1008.27 0.231105
\(268\) −4541.95 −1.03524
\(269\) −5896.91 −1.33658 −0.668292 0.743899i \(-0.732974\pi\)
−0.668292 + 0.743899i \(0.732974\pi\)
\(270\) 0 0
\(271\) 3452.44i 0.773877i −0.922106 0.386938i \(-0.873533\pi\)
0.922106 0.386938i \(-0.126467\pi\)
\(272\) 6988.68i 1.55791i
\(273\) 7837.65 109.543i 1.73757 0.0242852i
\(274\) 5585.03 1.23140
\(275\) 0 0
\(276\) −7259.51 −1.58323
\(277\) 2430.98i 0.527304i −0.964618 0.263652i \(-0.915073\pi\)
0.964618 0.263652i \(-0.0849270\pi\)
\(278\) −8209.26 −1.77107
\(279\) 11526.5i 2.47338i
\(280\) 0 0
\(281\) 3512.86i 0.745763i 0.927879 + 0.372882i \(0.121630\pi\)
−0.927879 + 0.372882i \(0.878370\pi\)
\(282\) 7763.42i 1.63938i
\(283\) 3590.13i 0.754103i 0.926192 + 0.377051i \(0.123062\pi\)
−0.926192 + 0.377051i \(0.876938\pi\)
\(284\) 2745.87i 0.573724i
\(285\) 0 0
\(286\) −3439.22 + 48.0683i −0.711067 + 0.00993825i
\(287\) 8604.62i 1.76974i
\(288\) −9766.02 −1.99815
\(289\) −3083.45 −0.627611
\(290\) 0 0
\(291\) 7695.42i 1.55022i
\(292\) 2859.04 0.572989
\(293\) 9311.11 1.85652 0.928260 0.371931i \(-0.121304\pi\)
0.928260 + 0.371931i \(0.121304\pi\)
\(294\) 1119.90i 0.222157i
\(295\) 0 0
\(296\) −2064.10 −0.405316
\(297\) 3425.95 0.669339
\(298\) 2597.05i 0.504842i
\(299\) 7387.60 103.253i 1.42888 0.0199708i
\(300\) 0 0
\(301\) 3592.62i 0.687958i
\(302\) 4392.90i 0.837030i
\(303\) 2064.49i 0.391426i
\(304\) 920.761i 0.173715i
\(305\) 0 0
\(306\) 15314.4i 2.86100i
\(307\) 2634.13 0.489699 0.244849 0.969561i \(-0.421261\pi\)
0.244849 + 0.969561i \(0.421261\pi\)
\(308\) 2093.65i 0.387328i
\(309\) 1065.25 0.196117
\(310\) 0 0
\(311\) −1976.39 −0.360356 −0.180178 0.983634i \(-0.557667\pi\)
−0.180178 + 0.983634i \(0.557667\pi\)
\(312\) 3887.94 54.3399i 0.705485 0.00986023i
\(313\) 4099.30i 0.740276i −0.928977 0.370138i \(-0.879310\pi\)
0.928977 0.370138i \(-0.120690\pi\)
\(314\) 2475.76i 0.444953i
\(315\) 0 0
\(316\) 482.663 0.0859238
\(317\) 619.492 0.109761 0.0548804 0.998493i \(-0.482522\pi\)
0.0548804 + 0.998493i \(0.482522\pi\)
\(318\) 468.817 0.0826728
\(319\) 2331.18i 0.409158i
\(320\) 0 0
\(321\) −10513.5 −1.82806
\(322\) 11210.9i 1.94024i
\(323\) 1053.54 0.181487
\(324\) 1079.11 0.185032
\(325\) 0 0
\(326\) 7467.45 1.26866
\(327\) 14936.5 2.52596
\(328\) 4268.40i 0.718546i
\(329\) 4809.44 0.805936
\(330\) 0 0
\(331\) 4249.98i 0.705741i −0.935672 0.352870i \(-0.885206\pi\)
0.935672 0.352870i \(-0.114794\pi\)
\(332\) 5855.98 0.968038
\(333\) 10019.4 1.64883
\(334\) 9468.56 1.55119
\(335\) 0 0
\(336\) 13069.5i 2.12203i
\(337\) 6965.45i 1.12591i −0.826487 0.562956i \(-0.809664\pi\)
0.826487 0.562956i \(-0.190336\pi\)
\(338\) 8026.89 224.420i 1.29173 0.0361149i
\(339\) −5445.41 −0.872431
\(340\) 0 0
\(341\) −4938.94 −0.784336
\(342\) 2017.68i 0.319016i
\(343\) −5980.66 −0.941474
\(344\) 1782.15i 0.279323i
\(345\) 0 0
\(346\) 3993.22i 0.620454i
\(347\) 4287.03i 0.663227i −0.943415 0.331613i \(-0.892407\pi\)
0.943415 0.331613i \(-0.107593\pi\)
\(348\) 5347.53i 0.823730i
\(349\) 10344.2i 1.58657i 0.608848 + 0.793287i \(0.291632\pi\)
−0.608848 + 0.793287i \(0.708368\pi\)
\(350\) 0 0
\(351\) −7997.49 + 111.777i −1.21617 + 0.0169978i
\(352\) 4184.59i 0.633635i
\(353\) 1570.76 0.236835 0.118418 0.992964i \(-0.462218\pi\)
0.118418 + 0.992964i \(0.462218\pi\)
\(354\) −13083.2 −1.96431
\(355\) 0 0
\(356\) 628.737i 0.0936039i
\(357\) −14954.2 −2.21697
\(358\) 9662.51 1.42648
\(359\) 4580.91i 0.673458i 0.941602 + 0.336729i \(0.109321\pi\)
−0.941602 + 0.336729i \(0.890679\pi\)
\(360\) 0 0
\(361\) 6720.20 0.979763
\(362\) −415.412 −0.0603138
\(363\) 7974.42i 1.15303i
\(364\) 68.3089 + 4887.40i 0.00983615 + 0.703762i
\(365\) 0 0
\(366\) 28211.2i 4.02902i
\(367\) 7725.22i 1.09878i 0.835565 + 0.549392i \(0.185140\pi\)
−0.835565 + 0.549392i \(0.814860\pi\)
\(368\) 12319.0i 1.74504i
\(369\) 20719.3i 2.92304i
\(370\) 0 0
\(371\) 290.432i 0.0406428i
\(372\) −11329.5 −1.57905
\(373\) 8286.80i 1.15033i 0.818036 + 0.575166i \(0.195063\pi\)
−0.818036 + 0.575166i \(0.804937\pi\)
\(374\) 6561.99 0.907253
\(375\) 0 0
\(376\) 2385.77 0.327225
\(377\) −76.0587 5441.89i −0.0103905 0.743425i
\(378\) 12136.4i 1.65140i
\(379\) 8496.27i 1.15151i −0.817621 0.575757i \(-0.804707\pi\)
0.817621 0.575757i \(-0.195293\pi\)
\(380\) 0 0
\(381\) 14881.7 2.00108
\(382\) 5800.19 0.776868
\(383\) −2814.87 −0.375544 −0.187772 0.982213i \(-0.560127\pi\)
−0.187772 + 0.982213i \(0.560127\pi\)
\(384\) 10039.7i 1.33421i
\(385\) 0 0
\(386\) 9067.58 1.19567
\(387\) 8650.76i 1.13629i
\(388\) −4798.70 −0.627880
\(389\) 1795.14 0.233977 0.116989 0.993133i \(-0.462676\pi\)
0.116989 + 0.993133i \(0.462676\pi\)
\(390\) 0 0
\(391\) −14095.5 −1.82312
\(392\) 344.156 0.0443431
\(393\) 20059.0i 2.57466i
\(394\) −17252.6 −2.20602
\(395\) 0 0
\(396\) 5041.36i 0.639743i
\(397\) −3046.79 −0.385174 −0.192587 0.981280i \(-0.561688\pi\)
−0.192587 + 0.981280i \(0.561688\pi\)
\(398\) 3103.13 0.390819
\(399\) 1970.22 0.247203
\(400\) 0 0
\(401\) 6060.07i 0.754677i −0.926075 0.377339i \(-0.876839\pi\)
0.926075 0.377339i \(-0.123161\pi\)
\(402\) 26621.8i 3.30292i
\(403\) 11529.4 161.141i 1.42511 0.0199181i
\(404\) −1287.38 −0.158538
\(405\) 0 0
\(406\) 8258.19 1.00948
\(407\) 4293.16i 0.522860i
\(408\) −7418.15 −0.900130
\(409\) 5020.20i 0.606927i 0.952843 + 0.303463i \(0.0981430\pi\)
−0.952843 + 0.303463i \(0.901857\pi\)
\(410\) 0 0
\(411\) 13132.0i 1.57604i
\(412\) 664.270i 0.0794326i
\(413\) 8105.07i 0.965677i
\(414\) 26994.9i 3.20465i
\(415\) 0 0
\(416\) 136.529 + 9768.46i 0.0160911 + 1.15129i
\(417\) 19302.3i 2.26676i
\(418\) −864.545 −0.101163
\(419\) 9083.45 1.05908 0.529541 0.848284i \(-0.322364\pi\)
0.529541 + 0.848284i \(0.322364\pi\)
\(420\) 0 0
\(421\) 1928.90i 0.223299i −0.993748 0.111650i \(-0.964387\pi\)
0.993748 0.111650i \(-0.0356135\pi\)
\(422\) 11308.8 1.30452
\(423\) −11580.8 −1.33115
\(424\) 144.072i 0.0165017i
\(425\) 0 0
\(426\) 16094.4 1.83047
\(427\) −17476.8 −1.98071
\(428\) 6556.00i 0.740412i
\(429\) −113.022 8086.58i −0.0127197 0.910079i
\(430\) 0 0
\(431\) 3177.44i 0.355109i −0.984111 0.177554i \(-0.943181\pi\)
0.984111 0.177554i \(-0.0568185\pi\)
\(432\) 13336.1i 1.48526i
\(433\) 9465.37i 1.05052i −0.850941 0.525262i \(-0.823967\pi\)
0.850941 0.525262i \(-0.176033\pi\)
\(434\) 17496.1i 1.93512i
\(435\) 0 0
\(436\) 9314.08i 1.02308i
\(437\) 1857.08 0.203287
\(438\) 16757.7i 1.82812i
\(439\) 768.174 0.0835146 0.0417573 0.999128i \(-0.486704\pi\)
0.0417573 + 0.999128i \(0.486704\pi\)
\(440\) 0 0
\(441\) −1670.57 −0.180388
\(442\) −15318.2 + 214.096i −1.64845 + 0.0230396i
\(443\) 1368.96i 0.146820i −0.997302 0.0734099i \(-0.976612\pi\)
0.997302 0.0734099i \(-0.0233881\pi\)
\(444\) 9848.14i 1.05264i
\(445\) 0 0
\(446\) −3374.02 −0.358216
\(447\) −6106.40 −0.646136
\(448\) −2657.61 −0.280268
\(449\) 2152.16i 0.226206i −0.993583 0.113103i \(-0.963921\pi\)
0.993583 0.113103i \(-0.0360790\pi\)
\(450\) 0 0
\(451\) 8877.91 0.926927
\(452\) 3395.65i 0.353358i
\(453\) −10329.0 −1.07130
\(454\) −2386.18 −0.246671
\(455\) 0 0
\(456\) 977.344 0.100369
\(457\) 10468.5 1.07154 0.535771 0.844363i \(-0.320021\pi\)
0.535771 + 0.844363i \(0.320021\pi\)
\(458\) 12611.4i 1.28666i
\(459\) 15259.1 1.55171
\(460\) 0 0
\(461\) 6737.46i 0.680683i 0.940302 + 0.340341i \(0.110543\pi\)
−0.940302 + 0.340341i \(0.889457\pi\)
\(462\) 12271.6 1.23577
\(463\) 6896.27 0.692218 0.346109 0.938194i \(-0.387503\pi\)
0.346109 + 0.938194i \(0.387503\pi\)
\(464\) 9074.51 0.907917
\(465\) 0 0
\(466\) 10039.6i 0.998021i
\(467\) 11356.8i 1.12533i −0.826685 0.562664i \(-0.809776\pi\)
0.826685 0.562664i \(-0.190224\pi\)
\(468\) −164.483 11768.5i −0.0162462 1.16239i
\(469\) −16492.2 −1.62375
\(470\) 0 0
\(471\) −5821.22 −0.569485
\(472\) 4020.59i 0.392082i
\(473\) −3706.72 −0.360328
\(474\) 2829.04i 0.274139i
\(475\) 0 0
\(476\) 9325.11i 0.897932i
\(477\) 699.339i 0.0671290i
\(478\) 24212.5i 2.31685i
\(479\) 7739.00i 0.738213i 0.929387 + 0.369106i \(0.120336\pi\)
−0.929387 + 0.369106i \(0.879664\pi\)
\(480\) 0 0
\(481\) −140.071 10021.9i −0.0132780 0.950019i
\(482\) 11770.0i 1.11226i
\(483\) −26359.9 −2.48327
\(484\) 4972.69 0.467007
\(485\) 0 0
\(486\) 10514.6i 0.981385i
\(487\) 21347.3 1.98632 0.993162 0.116748i \(-0.0372471\pi\)
0.993162 + 0.116748i \(0.0372471\pi\)
\(488\) −8669.54 −0.804204
\(489\) 17558.1i 1.62373i
\(490\) 0 0
\(491\) 11452.5 1.05264 0.526319 0.850287i \(-0.323572\pi\)
0.526319 + 0.850287i \(0.323572\pi\)
\(492\) 20365.1 1.86612
\(493\) 10383.1i 0.948539i
\(494\) 2018.18 28.2072i 0.183810 0.00256903i
\(495\) 0 0
\(496\) 19225.6i 1.74043i
\(497\) 9970.51i 0.899876i
\(498\) 34323.8i 3.08852i
\(499\) 8778.37i 0.787522i −0.919213 0.393761i \(-0.871174\pi\)
0.919213 0.393761i \(-0.128826\pi\)
\(500\) 0 0
\(501\) 22263.3i 1.98533i
\(502\) 1498.83 0.133259
\(503\) 20459.6i 1.81362i −0.421540 0.906810i \(-0.638510\pi\)
0.421540 0.906810i \(-0.361490\pi\)
\(504\) −8801.14 −0.777846
\(505\) 0 0
\(506\) 11566.9 1.01623
\(507\) 527.676 + 18873.5i 0.0462227 + 1.65326i
\(508\) 9279.90i 0.810490i
\(509\) 6203.63i 0.540218i −0.962830 0.270109i \(-0.912940\pi\)
0.962830 0.270109i \(-0.0870598\pi\)
\(510\) 0 0
\(511\) 10381.4 0.898722
\(512\) −10254.0 −0.885093
\(513\) −2010.40 −0.173024
\(514\) 428.062i 0.0367334i
\(515\) 0 0
\(516\) −8502.90 −0.725425
\(517\) 4962.19i 0.422122i
\(518\) 15208.5 1.29000
\(519\) −9389.21 −0.794105
\(520\) 0 0
\(521\) 9308.04 0.782711 0.391356 0.920240i \(-0.372006\pi\)
0.391356 + 0.920240i \(0.372006\pi\)
\(522\) −19885.1 −1.66733
\(523\) 1285.95i 0.107515i −0.998554 0.0537577i \(-0.982880\pi\)
0.998554 0.0537577i \(-0.0171199\pi\)
\(524\) 12508.4 1.04281
\(525\) 0 0
\(526\) 9181.20i 0.761063i
\(527\) −21998.0 −1.81831
\(528\) 13484.6 1.11144
\(529\) −12679.3 −1.04210
\(530\) 0 0
\(531\) 19516.4i 1.59499i
\(532\) 1228.59i 0.100124i
\(533\) −20724.5 + 289.656i −1.68420 + 0.0235392i
\(534\) −3685.23 −0.298643
\(535\) 0 0
\(536\) −8181.11 −0.659272
\(537\) 22719.3i 1.82572i
\(538\) 21553.2 1.72718
\(539\) 715.815i 0.0572029i
\(540\) 0 0
\(541\) 10504.9i 0.834824i −0.908717 0.417412i \(-0.862937\pi\)
0.908717 0.417412i \(-0.137063\pi\)
\(542\) 12618.6i 1.00003i
\(543\) 976.753i 0.0771943i
\(544\) 18638.1i 1.46894i
\(545\) 0 0
\(546\) −28646.6 + 400.380i −2.24535 + 0.0313822i
\(547\) 1017.35i 0.0795227i 0.999209 + 0.0397614i \(0.0126598\pi\)
−0.999209 + 0.0397614i \(0.987340\pi\)
\(548\) −8188.84 −0.638339
\(549\) 42082.9 3.27150
\(550\) 0 0
\(551\) 1367.97i 0.105767i
\(552\) −13076.1 −1.00825
\(553\) 1752.59 0.134770
\(554\) 8885.21i 0.681401i
\(555\) 0 0
\(556\) 12036.5 0.918098
\(557\) −15058.6 −1.14551 −0.572757 0.819725i \(-0.694126\pi\)
−0.572757 + 0.819725i \(0.694126\pi\)
\(558\) 42129.4i 3.19620i
\(559\) 8652.93 120.938i 0.654705 0.00915050i
\(560\) 0 0
\(561\) 15429.1i 1.16117i
\(562\) 12839.5i 0.963703i
\(563\) 6892.23i 0.515938i 0.966153 + 0.257969i \(0.0830532\pi\)
−0.966153 + 0.257969i \(0.916947\pi\)
\(564\) 11382.8i 0.849829i
\(565\) 0 0
\(566\) 13121.9i 0.974479i
\(567\) 3918.33 0.290219
\(568\) 4945.96i 0.365366i
\(569\) 23546.3 1.73482 0.867409 0.497595i \(-0.165783\pi\)
0.867409 + 0.497595i \(0.165783\pi\)
\(570\) 0 0
\(571\) −4737.30 −0.347198 −0.173599 0.984816i \(-0.555540\pi\)
−0.173599 + 0.984816i \(0.555540\pi\)
\(572\) 5042.63 70.4784i 0.368606 0.00515184i
\(573\) 13637.9i 0.994296i
\(574\) 31449.9i 2.28692i
\(575\) 0 0
\(576\) 6399.32 0.462914
\(577\) 2000.42 0.144330 0.0721652 0.997393i \(-0.477009\pi\)
0.0721652 + 0.997393i \(0.477009\pi\)
\(578\) 11270.0 0.811022
\(579\) 21320.5i 1.53031i
\(580\) 0 0
\(581\) 21263.6 1.51835
\(582\) 28126.7i 2.00325i
\(583\) −299.656 −0.0212873
\(584\) 5149.80 0.364898
\(585\) 0 0
\(586\) −34032.1 −2.39906
\(587\) 5961.64 0.419188 0.209594 0.977789i \(-0.432786\pi\)
0.209594 + 0.977789i \(0.432786\pi\)
\(588\) 1642.02i 0.115163i
\(589\) 2898.24 0.202750
\(590\) 0 0
\(591\) 40565.8i 2.82344i
\(592\) 16711.8 1.16022
\(593\) 9517.01 0.659050 0.329525 0.944147i \(-0.393111\pi\)
0.329525 + 0.944147i \(0.393111\pi\)
\(594\) −12521.8 −0.864945
\(595\) 0 0
\(596\) 3807.83i 0.261703i
\(597\) 7296.35i 0.500201i
\(598\) −27001.7 + 377.389i −1.84645 + 0.0258070i
\(599\) −8822.25 −0.601782 −0.300891 0.953659i \(-0.597284\pi\)
−0.300891 + 0.953659i \(0.597284\pi\)
\(600\) 0 0
\(601\) −388.522 −0.0263696 −0.0131848 0.999913i \(-0.504197\pi\)
−0.0131848 + 0.999913i \(0.504197\pi\)
\(602\) 13131.0i 0.889004i
\(603\) 39712.0 2.68192
\(604\) 6440.93i 0.433904i
\(605\) 0 0
\(606\) 7545.72i 0.505815i
\(607\) 2729.75i 0.182532i −0.995827 0.0912662i \(-0.970909\pi\)
0.995827 0.0912662i \(-0.0290914\pi\)
\(608\) 2455.58i 0.163794i
\(609\) 19417.4i 1.29201i
\(610\) 0 0
\(611\) 161.900 + 11583.7i 0.0107197 + 0.766981i
\(612\) 22454.2i 1.48310i
\(613\) 27578.2 1.81708 0.908542 0.417794i \(-0.137197\pi\)
0.908542 + 0.417794i \(0.137197\pi\)
\(614\) −9627.72 −0.632807
\(615\) 0 0
\(616\) 3771.16i 0.246663i
\(617\) 247.197 0.0161293 0.00806464 0.999967i \(-0.497433\pi\)
0.00806464 + 0.999967i \(0.497433\pi\)
\(618\) −3893.50 −0.253430
\(619\) 6035.92i 0.391929i −0.980611 0.195965i \(-0.937216\pi\)
0.980611 0.195965i \(-0.0627838\pi\)
\(620\) 0 0
\(621\) 26897.5 1.73810
\(622\) 7223.70 0.465665
\(623\) 2283.00i 0.146816i
\(624\) −31478.3 + 439.957i −2.01946 + 0.0282250i
\(625\) 0 0
\(626\) 14982.9i 0.956611i
\(627\) 2032.79i 0.129477i
\(628\) 3629.99i 0.230657i
\(629\) 19121.7i 1.21213i
\(630\) 0 0
\(631\) 16570.3i 1.04541i 0.852514 + 0.522705i \(0.175077\pi\)
−0.852514 + 0.522705i \(0.824923\pi\)
\(632\) 869.389 0.0547190
\(633\) 26590.3i 1.66962i
\(634\) −2264.24 −0.141837
\(635\) 0 0
\(636\) −687.386 −0.0428563
\(637\) 23.3546 + 1670.99i 0.00145266 + 0.103936i
\(638\) 8520.47i 0.528729i
\(639\) 24008.2i 1.48631i
\(640\) 0 0
\(641\) −7610.28 −0.468936 −0.234468 0.972124i \(-0.575335\pi\)
−0.234468 + 0.972124i \(0.575335\pi\)
\(642\) 38426.8 2.36228
\(643\) 15468.4 0.948699 0.474350 0.880337i \(-0.342683\pi\)
0.474350 + 0.880337i \(0.342683\pi\)
\(644\) 16437.5i 1.00579i
\(645\) 0 0
\(646\) −3850.67 −0.234524
\(647\) 25669.6i 1.55978i −0.625917 0.779889i \(-0.715275\pi\)
0.625917 0.779889i \(-0.284725\pi\)
\(648\) 1943.72 0.117834
\(649\) 8362.49 0.505788
\(650\) 0 0
\(651\) −41138.4 −2.47671
\(652\) −10948.9 −0.657655
\(653\) 3691.09i 0.221200i −0.993865 0.110600i \(-0.964723\pi\)
0.993865 0.110600i \(-0.0352772\pi\)
\(654\) −54592.8 −3.26414
\(655\) 0 0
\(656\) 34558.7i 2.05684i
\(657\) −24997.7 −1.48440
\(658\) −17578.5 −1.04146
\(659\) −23260.7 −1.37497 −0.687487 0.726197i \(-0.741286\pi\)
−0.687487 + 0.726197i \(0.741286\pi\)
\(660\) 0 0
\(661\) 93.6601i 0.00551128i 0.999996 + 0.00275564i \(0.000877149\pi\)
−0.999996 + 0.00275564i \(0.999123\pi\)
\(662\) 15533.7i 0.911984i
\(663\) −503.400 36017.5i −0.0294878 2.10981i
\(664\) 10548.0 0.616478
\(665\) 0 0
\(666\) −36620.8 −2.13067
\(667\) 18302.4i 1.06247i
\(668\) −13882.9 −0.804112
\(669\) 7933.29i 0.458473i
\(670\) 0 0
\(671\) 18031.9i 1.03743i
\(672\) 34855.2i 2.00084i
\(673\) 15681.6i 0.898191i −0.893484 0.449096i \(-0.851746\pi\)
0.893484 0.449096i \(-0.148254\pi\)
\(674\) 25458.7i 1.45494i
\(675\) 0 0
\(676\) −11769.1 + 329.048i −0.669614 + 0.0187214i
\(677\) 6692.61i 0.379938i 0.981790 + 0.189969i \(0.0608387\pi\)
−0.981790 + 0.189969i \(0.939161\pi\)
\(678\) 19903.0 1.12739
\(679\) −17424.5 −0.984818
\(680\) 0 0
\(681\) 5610.58i 0.315709i
\(682\) 18051.8 1.01355
\(683\) −5093.28 −0.285342 −0.142671 0.989770i \(-0.545569\pi\)
−0.142671 + 0.989770i \(0.545569\pi\)
\(684\) 2958.34i 0.165373i
\(685\) 0 0
\(686\) 21859.3 1.21661
\(687\) 29652.9 1.64677
\(688\) 14429.0i 0.799565i
\(689\) 699.514 9.77678i 0.0386783 0.000540589i
\(690\) 0 0
\(691\) 16747.8i 0.922020i −0.887395 0.461010i \(-0.847487\pi\)
0.887395 0.461010i \(-0.152513\pi\)
\(692\) 5854.92i 0.321634i
\(693\) 18305.6i 1.00342i
\(694\) 15669.1i 0.857046i
\(695\) 0 0
\(696\) 9632.16i 0.524578i
\(697\) 39542.1 2.14887
\(698\) 37808.2i 2.05023i
\(699\) −23606.1 −1.27734
\(700\) 0 0
\(701\) 18385.1 0.990580 0.495290 0.868728i \(-0.335062\pi\)
0.495290 + 0.868728i \(0.335062\pi\)
\(702\) 29230.8 408.545i 1.57157 0.0219652i
\(703\) 2519.29i 0.135159i
\(704\) 2742.02i 0.146795i
\(705\) 0 0
\(706\) −5741.11 −0.306047
\(707\) −4674.58 −0.248664
\(708\) 19182.8 1.01827
\(709\) 18930.7i 1.00276i −0.865227 0.501380i \(-0.832826\pi\)
0.865227 0.501380i \(-0.167174\pi\)
\(710\) 0 0
\(711\) −4220.11 −0.222597
\(712\) 1132.50i 0.0596100i
\(713\) −38776.2 −2.03672
\(714\) 54657.4 2.86485
\(715\) 0 0
\(716\) −14167.3 −0.739465
\(717\) −56930.5 −2.96528
\(718\) 16743.2i 0.870267i
\(719\) 12492.1 0.647951 0.323975 0.946066i \(-0.394981\pi\)
0.323975 + 0.946066i \(0.394981\pi\)
\(720\) 0 0
\(721\) 2412.02i 0.124589i
\(722\) −24562.3 −1.26609
\(723\) −27674.7 −1.42356
\(724\) 609.083 0.0312657
\(725\) 0 0
\(726\) 29146.5i 1.48998i
\(727\) 20599.5i 1.05088i −0.850829 0.525442i \(-0.823900\pi\)
0.850829 0.525442i \(-0.176100\pi\)
\(728\) 123.040 + 8803.35i 0.00626398 + 0.448178i
\(729\) 30159.7 1.53227
\(730\) 0 0
\(731\) −16509.7 −0.835340
\(732\) 41363.6i 2.08858i
\(733\) 10452.1 0.526683 0.263342 0.964703i \(-0.415175\pi\)
0.263342 + 0.964703i \(0.415175\pi\)
\(734\) 28235.7i 1.41989i
\(735\) 0 0
\(736\) 32853.7i 1.64538i
\(737\) 17016.0i 0.850465i
\(738\) 75728.9i 3.77726i
\(739\) 15791.4i 0.786059i −0.919526 0.393030i \(-0.871427\pi\)
0.919526 0.393030i \(-0.128573\pi\)
\(740\) 0 0
\(741\) 66.3231 + 4745.32i 0.00328804 + 0.235255i
\(742\) 1061.53i 0.0525201i
\(743\) −16295.2 −0.804592 −0.402296 0.915510i \(-0.631788\pi\)
−0.402296 + 0.915510i \(0.631788\pi\)
\(744\) −20407.1 −1.00559
\(745\) 0 0
\(746\) 30288.2i 1.48650i
\(747\) −51201.1 −2.50783
\(748\) −9621.28 −0.470306
\(749\) 23805.4i 1.16132i
\(750\) 0 0
\(751\) −2781.04 −0.135129 −0.0675643 0.997715i \(-0.521523\pi\)
−0.0675643 + 0.997715i \(0.521523\pi\)
\(752\) −19316.1 −0.936684
\(753\) 3524.19i 0.170556i
\(754\) 277.994 + 19890.1i 0.0134270 + 0.960682i
\(755\) 0 0
\(756\) 17794.5i 0.856059i
\(757\) 25968.3i 1.24681i 0.781901 + 0.623403i \(0.214250\pi\)
−0.781901 + 0.623403i \(0.785750\pi\)
\(758\) 31053.8i 1.48803i
\(759\) 27197.1i 1.30065i
\(760\) 0 0
\(761\) 6582.16i 0.313539i 0.987635 + 0.156769i \(0.0501080\pi\)
−0.987635 + 0.156769i \(0.949892\pi\)
\(762\) −54392.4 −2.58587
\(763\) 33820.2i 1.60468i
\(764\) −8504.32 −0.402716
\(765\) 0 0
\(766\) 10288.4 0.485292
\(767\) −19521.3 + 272.840i −0.919000 + 0.0128444i
\(768\) 46084.9i 2.16530i
\(769\) 7980.32i 0.374223i −0.982339 0.187112i \(-0.940087\pi\)
0.982339 0.187112i \(-0.0599126\pi\)
\(770\) 0 0
\(771\) 1006.49 0.0470143
\(772\) −13295.0 −0.619816
\(773\) 14633.6 0.680899 0.340450 0.940263i \(-0.389421\pi\)
0.340450 + 0.940263i \(0.389421\pi\)
\(774\) 31618.5i 1.46835i
\(775\) 0 0
\(776\) −8643.59 −0.399854
\(777\) 35759.4i 1.65105i
\(778\) −6561.23 −0.302354
\(779\) −5209.68 −0.239610
\(780\) 0 0
\(781\) −10287.2 −0.471324
\(782\) 51518.9 2.35590
\(783\) 19813.3i 0.904306i
\(784\) −2786.43 −0.126933
\(785\) 0 0
\(786\) 73315.4i 3.32707i
\(787\) 32406.4 1.46780 0.733902 0.679255i \(-0.237697\pi\)
0.733902 + 0.679255i \(0.237697\pi\)
\(788\) 25296.0 1.14357
\(789\) −21587.6 −0.974068
\(790\) 0 0
\(791\) 12329.9i 0.554236i
\(792\) 9080.67i 0.407409i
\(793\) −588.320 42093.4i −0.0263453 1.88497i
\(794\) 11136.0 0.497736
\(795\) 0 0
\(796\) −4549.85 −0.202595
\(797\) 43761.2i 1.94492i −0.233066 0.972461i \(-0.574876\pi\)
0.233066 0.972461i \(-0.425124\pi\)
\(798\) −7201.14 −0.319445
\(799\) 22101.5i 0.978593i
\(800\) 0 0
\(801\) 5497.29i 0.242493i
\(802\) 22149.6i 0.975222i
\(803\) 10711.1i 0.470720i
\(804\) 39033.2i 1.71218i
\(805\) 0 0
\(806\) −42139.9 + 588.970i −1.84158 + 0.0257389i
\(807\) 50677.7i 2.21058i
\(808\) −2318.87 −0.100962
\(809\) 20194.7 0.877638 0.438819 0.898576i \(-0.355397\pi\)
0.438819 + 0.898576i \(0.355397\pi\)
\(810\) 0 0
\(811\) 35223.5i 1.52511i 0.646924 + 0.762554i \(0.276055\pi\)
−0.646924 + 0.762554i \(0.723945\pi\)
\(812\) −12108.3 −0.523297
\(813\) −29670.0 −1.27992
\(814\) 15691.5i 0.675659i
\(815\) 0 0
\(816\) 60060.3 2.57663
\(817\) 2175.16 0.0931446
\(818\) 18348.8i 0.784293i
\(819\) −597.251 42732.4i −0.0254818 1.82319i
\(820\) 0 0
\(821\) 21772.3i 0.925527i 0.886482 + 0.462764i \(0.153142\pi\)
−0.886482 + 0.462764i \(0.846858\pi\)
\(822\) 47997.4i 2.03662i
\(823\) 12117.3i 0.513224i 0.966514 + 0.256612i \(0.0826063\pi\)
−0.966514 + 0.256612i \(0.917394\pi\)
\(824\) 1196.51i 0.0505852i
\(825\) 0 0
\(826\) 29624.0i 1.24788i
\(827\) 17732.9 0.745628 0.372814 0.927906i \(-0.378393\pi\)
0.372814 + 0.927906i \(0.378393\pi\)
\(828\) 39580.3i 1.66124i
\(829\) 42202.5 1.76810 0.884050 0.467392i \(-0.154806\pi\)
0.884050 + 0.467392i \(0.154806\pi\)
\(830\) 0 0
\(831\) −20891.7 −0.872110
\(832\) −89.4627 6400.92i −0.00372784 0.266721i
\(833\) 3188.23i 0.132612i
\(834\) 70549.9i 2.92919i
\(835\) 0 0
\(836\) 1267.61 0.0524415
\(837\) 41977.4 1.73351
\(838\) −33200.0 −1.36859
\(839\) 24334.6i 1.00134i 0.865639 + 0.500669i \(0.166913\pi\)
−0.865639 + 0.500669i \(0.833087\pi\)
\(840\) 0 0
\(841\) −10907.0 −0.447211
\(842\) 7050.14i 0.288556i
\(843\) 30189.3 1.23342
\(844\) −16581.2 −0.676241
\(845\) 0 0
\(846\) 42327.7 1.72016
\(847\) 18056.3 0.732492
\(848\) 1166.46i 0.0472363i
\(849\) 30853.4 1.24721
\(850\) 0 0
\(851\) 33706.0i 1.35773i
\(852\) −23597.9 −0.948885
\(853\) −40903.4 −1.64186 −0.820929 0.571031i \(-0.806544\pi\)
−0.820929 + 0.571031i \(0.806544\pi\)
\(854\) 63877.8 2.55955
\(855\) 0 0
\(856\) 11808.9i 0.471518i
\(857\) 34239.0i 1.36474i −0.731007 0.682370i \(-0.760949\pi\)
0.731007 0.682370i \(-0.239051\pi\)
\(858\) 413.096 + 29556.4i 0.0164369 + 1.17604i
\(859\) −46008.6 −1.82747 −0.913734 0.406314i \(-0.866814\pi\)
−0.913734 + 0.406314i \(0.866814\pi\)
\(860\) 0 0
\(861\) 73947.6 2.92698
\(862\) 11613.5i 0.458884i
\(863\) 1552.40 0.0612331 0.0306166 0.999531i \(-0.490253\pi\)
0.0306166 + 0.999531i \(0.490253\pi\)
\(864\) 35566.0i 1.40044i
\(865\) 0 0
\(866\) 34595.9i 1.35752i
\(867\) 26499.0i 1.03801i
\(868\) 25653.1i 1.00314i
\(869\) 1808.25i 0.0705878i
\(870\) 0 0
\(871\) −555.175 39721.9i −0.0215974 1.54527i
\(872\) 16776.8i 0.651531i
\(873\) 41956.9 1.62661
\(874\) −6787.63 −0.262695
\(875\) 0 0
\(876\) 24570.4i 0.947669i
\(877\) 5802.07 0.223400 0.111700 0.993742i \(-0.464370\pi\)
0.111700 + 0.993742i \(0.464370\pi\)
\(878\) −2807.67 −0.107921
\(879\) 80019.1i 3.07051i
\(880\) 0 0
\(881\) −991.228 −0.0379062 −0.0189531 0.999820i \(-0.506033\pi\)
−0.0189531 + 0.999820i \(0.506033\pi\)
\(882\) 6105.93 0.233104
\(883\) 17576.6i 0.669874i −0.942241 0.334937i \(-0.891285\pi\)
0.942241 0.334937i \(-0.108715\pi\)
\(884\) 22459.8 313.910i 0.854530 0.0119434i
\(885\) 0 0
\(886\) 5003.54i 0.189726i
\(887\) 27370.0i 1.03607i −0.855360 0.518035i \(-0.826664\pi\)
0.855360 0.518035i \(-0.173336\pi\)
\(888\) 17738.8i 0.670355i
\(889\) 33696.1i 1.27124i
\(890\) 0 0
\(891\) 4042.78i 0.152007i
\(892\) 4947.03 0.185694
\(893\) 2911.88i 0.109118i
\(894\) 22318.9 0.834961
\(895\) 0 0
\(896\) −22732.7 −0.847596
\(897\) −887.350 63488.6i −0.0330298 2.36324i
\(898\) 7866.13i 0.292312i
\(899\) 28563.5i 1.05967i
\(900\) 0 0
\(901\) −1334.67 −0.0493498
\(902\) −32448.7 −1.19781
\(903\) −30874.8 −1.13782
\(904\) 6116.35i 0.225030i
\(905\) 0 0
\(906\) 37752.4 1.38437
\(907\) 28779.1i 1.05358i −0.849997 0.526788i \(-0.823396\pi\)
0.849997 0.526788i \(-0.176604\pi\)
\(908\) 3498.64 0.127871
\(909\) 11256.0 0.410714
\(910\) 0 0
\(911\) 812.241 0.0295398 0.0147699 0.999891i \(-0.495298\pi\)
0.0147699 + 0.999891i \(0.495298\pi\)
\(912\) −7912.96 −0.287307
\(913\) 21938.9i 0.795260i
\(914\) −38262.3 −1.38469
\(915\) 0 0
\(916\) 18491.0i 0.666985i
\(917\) 45418.9 1.63562
\(918\) −55772.1 −2.00518
\(919\) 7982.53 0.286528 0.143264 0.989685i \(-0.454240\pi\)
0.143264 + 0.989685i \(0.454240\pi\)
\(920\) 0 0
\(921\) 22637.5i 0.809915i
\(922\) 24625.4i 0.879604i
\(923\) 24014.2 335.636i 0.856380 0.0119692i
\(924\) −17992.8 −0.640604
\(925\) 0 0
\(926\) −25205.9 −0.894510
\(927\) 5807.97i 0.205781i
\(928\) −24200.8 −0.856068
\(929\) 52612.3i 1.85808i −0.369984 0.929038i \(-0.620637\pi\)
0.369984 0.929038i \(-0.379363\pi\)
\(930\) 0 0
\(931\) 420.051i 0.0147869i
\(932\) 14720.3i 0.517359i
\(933\) 16985.0i 0.595995i
\(934\) 41509.0i 1.45419i
\(935\) 0 0
\(936\) −296.272 21197.8i −0.0103461 0.740248i
\(937\) 34900.3i 1.21680i −0.793630 0.608401i \(-0.791811\pi\)
0.793630 0.608401i \(-0.208189\pi\)
\(938\) 60279.0 2.09827
\(939\) −35229.2 −1.22435
\(940\) 0 0
\(941\) 4626.31i 0.160269i 0.996784 + 0.0801346i \(0.0255350\pi\)
−0.996784 + 0.0801346i \(0.974465\pi\)
\(942\) 21276.5 0.735909
\(943\) 69701.4 2.40699
\(944\) 32552.3i 1.12234i
\(945\) 0 0
\(946\) 13548.1 0.465630
\(947\) −22103.4 −0.758463 −0.379232 0.925302i \(-0.623812\pi\)
−0.379232 + 0.925302i \(0.623812\pi\)
\(948\) 4147.98i 0.142110i
\(949\) 349.468 + 25003.9i 0.0119539 + 0.855282i
\(950\) 0 0
\(951\) 5323.88i 0.181534i
\(952\) 16796.7i 0.571832i
\(953\) 41498.1i 1.41055i −0.708933 0.705276i \(-0.750823\pi\)
0.708933 0.705276i \(-0.249177\pi\)
\(954\) 2556.08i 0.0867465i
\(955\) 0 0
\(956\) 35500.7i 1.20102i
\(957\) 20034.1 0.676708
\(958\) 28286.0i 0.953946i
\(959\) −29734.4 −1.00122
\(960\) 0 0
\(961\) −30724.7 −1.03134
\(962\) 511.960 + 36630.0i 0.0171583 + 1.22765i
\(963\) 57321.7i 1.91814i
\(964\) 17257.4i 0.576579i
\(965\) 0 0
\(966\) 96345.4 3.20897
\(967\) −42191.4 −1.40309 −0.701543 0.712627i \(-0.747505\pi\)
−0.701543 + 0.712627i \(0.747505\pi\)
\(968\) 8956.97 0.297405
\(969\) 9054.03i 0.300162i
\(970\) 0 0
\(971\) −10472.7 −0.346123 −0.173061 0.984911i \(-0.555366\pi\)
−0.173061 + 0.984911i \(0.555366\pi\)
\(972\) 15416.7i 0.508735i
\(973\) 43705.7 1.44002
\(974\) −78024.4 −2.56680
\(975\) 0 0
\(976\) 70192.0 2.30204
\(977\) 34586.0 1.13255 0.566276 0.824216i \(-0.308384\pi\)
0.566276 + 0.824216i \(0.308384\pi\)
\(978\) 64174.8i 2.09825i
\(979\) 2355.51 0.0768972
\(980\) 0 0
\(981\) 81436.5i 2.65043i
\(982\) −41858.9 −1.36026
\(983\) −53923.9 −1.74965 −0.874825 0.484439i \(-0.839024\pi\)
−0.874825 + 0.484439i \(0.839024\pi\)
\(984\) 36682.4 1.18841
\(985\) 0 0
\(986\) 37950.1i 1.22574i
\(987\) 41332.1i 1.33294i
\(988\) −2959.09 + 41.3577i −0.0952845 + 0.00133175i
\(989\) −29101.9 −0.935678
\(990\) 0 0
\(991\) −2349.40 −0.0753090 −0.0376545 0.999291i \(-0.511989\pi\)
−0.0376545 + 0.999291i \(0.511989\pi\)
\(992\) 51272.9i 1.64104i
\(993\) −36524.1 −1.16723
\(994\) 36442.2i 1.16285i
\(995\) 0 0
\(996\) 50326.0i 1.60104i
\(997\) 10949.2i 0.347807i −0.984763 0.173903i \(-0.944362\pi\)
0.984763 0.173903i \(-0.0556381\pi\)
\(998\) 32084.9i 1.01767i
\(999\) 36488.7i 1.15561i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.4.d.c.324.3 14
5.2 odd 4 325.4.c.e.51.4 14
5.3 odd 4 65.4.c.a.51.11 yes 14
5.4 even 2 325.4.d.d.324.12 14
13.12 even 2 325.4.d.d.324.11 14
15.8 even 4 585.4.b.e.181.4 14
20.3 even 4 1040.4.k.d.961.2 14
65.8 even 4 845.4.a.i.1.2 7
65.12 odd 4 325.4.c.e.51.11 14
65.18 even 4 845.4.a.l.1.6 7
65.38 odd 4 65.4.c.a.51.4 14
65.64 even 2 inner 325.4.d.c.324.4 14
195.38 even 4 585.4.b.e.181.11 14
260.103 even 4 1040.4.k.d.961.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.4 14 65.38 odd 4
65.4.c.a.51.11 yes 14 5.3 odd 4
325.4.c.e.51.4 14 5.2 odd 4
325.4.c.e.51.11 14 65.12 odd 4
325.4.d.c.324.3 14 1.1 even 1 trivial
325.4.d.c.324.4 14 65.64 even 2 inner
325.4.d.d.324.11 14 13.12 even 2
325.4.d.d.324.12 14 5.4 even 2
585.4.b.e.181.4 14 15.8 even 4
585.4.b.e.181.11 14 195.38 even 4
845.4.a.i.1.2 7 65.8 even 4
845.4.a.l.1.6 7 65.18 even 4
1040.4.k.d.961.1 14 260.103 even 4
1040.4.k.d.961.2 14 20.3 even 4