Properties

Label 65.4.c.a.51.11
Level $65$
Weight $4$
Character 65.51
Analytic conductor $3.835$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [65,4,Mod(51,65)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(65, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("65.51"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 65.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83512415037\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.11
Root \(3.65500i\) of defining polynomial
Character \(\chi\) \(=\) 65.51
Dual form 65.4.c.a.51.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.65500i q^{2} +8.59394 q^{3} -5.35901 q^{4} +5.00000i q^{5} +31.4108i q^{6} -19.4590i q^{7} +9.65282i q^{8} +46.8559 q^{9} -18.2750 q^{10} -20.0770i q^{11} -46.0550 q^{12} +(-46.8676 + 0.655046i) q^{13} +71.1227 q^{14} +42.9697i q^{15} -78.1531 q^{16} -89.4229 q^{17} +171.258i q^{18} -11.7815i q^{19} -26.7950i q^{20} -167.230i q^{21} +73.3816 q^{22} +157.627 q^{23} +82.9558i q^{24} -25.0000 q^{25} +(-2.39419 - 171.301i) q^{26} +170.640 q^{27} +104.281i q^{28} +116.112 q^{29} -157.054 q^{30} -245.999i q^{31} -208.427i q^{32} -172.541i q^{33} -326.840i q^{34} +97.2951 q^{35} -251.101 q^{36} +213.834i q^{37} +43.0613 q^{38} +(-402.777 + 5.62943i) q^{39} -48.2641 q^{40} +442.192i q^{41} +611.224 q^{42} +184.625 q^{43} +107.593i q^{44} +234.279i q^{45} +576.126i q^{46} -247.157i q^{47} -671.643 q^{48} -35.6534 q^{49} -91.3749i q^{50} -768.495 q^{51} +(251.164 - 3.51040i) q^{52} +14.9253 q^{53} +623.689i q^{54} +100.385 q^{55} +187.834 q^{56} -101.250i q^{57} +424.389i q^{58} -416.520i q^{59} -230.275i q^{60} -898.135 q^{61} +899.127 q^{62} -911.769i q^{63} +136.575 q^{64} +(-3.27523 - 234.338i) q^{65} +630.637 q^{66} +847.535i q^{67} +479.218 q^{68} +1354.64 q^{69} +355.613i q^{70} -512.385i q^{71} +452.291i q^{72} +533.502i q^{73} -781.564 q^{74} -214.849 q^{75} +63.1371i q^{76} -390.680 q^{77} +(-20.5756 - 1472.15i) q^{78} -90.0657 q^{79} -390.766i q^{80} +201.363 q^{81} -1616.21 q^{82} +1092.74i q^{83} +896.185i q^{84} -447.114i q^{85} +674.804i q^{86} +997.859 q^{87} +193.800 q^{88} -117.323i q^{89} -856.290 q^{90} +(12.7466 + 911.997i) q^{91} -844.724 q^{92} -2114.11i q^{93} +903.360 q^{94} +58.9075 q^{95} -1791.21i q^{96} +895.447i q^{97} -130.313i q^{98} -940.727i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 56 q^{4} + 158 q^{9} - 20 q^{10} - 108 q^{12} - 4 q^{13} - 152 q^{14} + 280 q^{16} - 100 q^{17} + 648 q^{22} - 532 q^{23} - 350 q^{25} - 344 q^{26} - 48 q^{27} + 588 q^{29} - 200 q^{30} + 540 q^{35}+ \cdots - 3120 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.65500i 1.29224i 0.763237 + 0.646118i \(0.223609\pi\)
−0.763237 + 0.646118i \(0.776391\pi\)
\(3\) 8.59394 1.65391 0.826953 0.562272i \(-0.190072\pi\)
0.826953 + 0.562272i \(0.190072\pi\)
\(4\) −5.35901 −0.669876
\(5\) 5.00000i 0.447214i
\(6\) 31.4108i 2.13724i
\(7\) 19.4590i 1.05069i −0.850890 0.525344i \(-0.823937\pi\)
0.850890 0.525344i \(-0.176063\pi\)
\(8\) 9.65282i 0.426599i
\(9\) 46.8559 1.73540
\(10\) −18.2750 −0.577906
\(11\) 20.0770i 0.550314i −0.961399 0.275157i \(-0.911270\pi\)
0.961399 0.275157i \(-0.0887299\pi\)
\(12\) −46.0550 −1.10791
\(13\) −46.8676 + 0.655046i −0.999902 + 0.0139752i
\(14\) 71.1227 1.35774
\(15\) 42.9697i 0.739649i
\(16\) −78.1531 −1.22114
\(17\) −89.4229 −1.27578 −0.637889 0.770128i \(-0.720192\pi\)
−0.637889 + 0.770128i \(0.720192\pi\)
\(18\) 171.258i 2.24255i
\(19\) 11.7815i 0.142256i −0.997467 0.0711279i \(-0.977340\pi\)
0.997467 0.0711279i \(-0.0226599\pi\)
\(20\) 26.7950i 0.299578i
\(21\) 167.230i 1.73774i
\(22\) 73.3816 0.711136
\(23\) 157.627 1.42902 0.714511 0.699624i \(-0.246649\pi\)
0.714511 + 0.699624i \(0.246649\pi\)
\(24\) 82.9558i 0.705554i
\(25\) −25.0000 −0.200000
\(26\) −2.39419 171.301i −0.0180592 1.29211i
\(27\) 170.640 1.21629
\(28\) 104.281i 0.703831i
\(29\) 116.112 0.743498 0.371749 0.928333i \(-0.378758\pi\)
0.371749 + 0.928333i \(0.378758\pi\)
\(30\) −157.054 −0.955801
\(31\) 245.999i 1.42525i −0.701544 0.712626i \(-0.747506\pi\)
0.701544 0.712626i \(-0.252494\pi\)
\(32\) 208.427i 1.15141i
\(33\) 172.541i 0.910168i
\(34\) 326.840i 1.64861i
\(35\) 97.2951 0.469882
\(36\) −251.101 −1.16250
\(37\) 213.834i 0.950112i 0.879956 + 0.475056i \(0.157572\pi\)
−0.879956 + 0.475056i \(0.842428\pi\)
\(38\) 43.0613 0.183828
\(39\) −402.777 + 5.62943i −1.65374 + 0.0231136i
\(40\) −48.2641 −0.190781
\(41\) 442.192i 1.68436i 0.539196 + 0.842180i \(0.318728\pi\)
−0.539196 + 0.842180i \(0.681272\pi\)
\(42\) 611.224 2.24557
\(43\) 184.625 0.654768 0.327384 0.944891i \(-0.393833\pi\)
0.327384 + 0.944891i \(0.393833\pi\)
\(44\) 107.593i 0.368642i
\(45\) 234.279i 0.776095i
\(46\) 576.126i 1.84663i
\(47\) 247.157i 0.767056i −0.923529 0.383528i \(-0.874709\pi\)
0.923529 0.383528i \(-0.125291\pi\)
\(48\) −671.643 −2.01965
\(49\) −35.6534 −0.103946
\(50\) 91.3749i 0.258447i
\(51\) −768.495 −2.11002
\(52\) 251.164 3.51040i 0.669810 0.00936162i
\(53\) 14.9253 0.0386821 0.0193410 0.999813i \(-0.493843\pi\)
0.0193410 + 0.999813i \(0.493843\pi\)
\(54\) 623.689i 1.57173i
\(55\) 100.385 0.246108
\(56\) 187.834 0.448222
\(57\) 101.250i 0.235278i
\(58\) 424.389i 0.960776i
\(59\) 416.520i 0.919090i −0.888155 0.459545i \(-0.848013\pi\)
0.888155 0.459545i \(-0.151987\pi\)
\(60\) 230.275i 0.495473i
\(61\) −898.135 −1.88515 −0.942577 0.333989i \(-0.891605\pi\)
−0.942577 + 0.333989i \(0.891605\pi\)
\(62\) 899.127 1.84176
\(63\) 911.769i 1.82337i
\(64\) 136.575 0.266747
\(65\) −3.27523 234.338i −0.00624988 0.447170i
\(66\) 630.637 1.17615
\(67\) 847.535i 1.54542i 0.634761 + 0.772708i \(0.281098\pi\)
−0.634761 + 0.772708i \(0.718902\pi\)
\(68\) 479.218 0.854613
\(69\) 1354.64 2.36347
\(70\) 355.613i 0.607199i
\(71\) 512.385i 0.856463i −0.903669 0.428232i \(-0.859137\pi\)
0.903669 0.428232i \(-0.140863\pi\)
\(72\) 452.291i 0.740320i
\(73\) 533.502i 0.855365i 0.903929 + 0.427683i \(0.140670\pi\)
−0.903929 + 0.427683i \(0.859330\pi\)
\(74\) −781.564 −1.22777
\(75\) −214.849 −0.330781
\(76\) 63.1371i 0.0952938i
\(77\) −390.680 −0.578209
\(78\) −20.5756 1472.15i −0.0298682 2.13703i
\(79\) −90.0657 −0.128268 −0.0641341 0.997941i \(-0.520429\pi\)
−0.0641341 + 0.997941i \(0.520429\pi\)
\(80\) 390.766i 0.546111i
\(81\) 201.363 0.276218
\(82\) −1616.21 −2.17659
\(83\) 1092.74i 1.44510i 0.691318 + 0.722551i \(0.257030\pi\)
−0.691318 + 0.722551i \(0.742970\pi\)
\(84\) 896.185i 1.16407i
\(85\) 447.114i 0.570546i
\(86\) 674.804i 0.846116i
\(87\) 997.859 1.22968
\(88\) 193.800 0.234763
\(89\) 117.323i 0.139733i −0.997556 0.0698666i \(-0.977743\pi\)
0.997556 0.0698666i \(-0.0222574\pi\)
\(90\) −856.290 −1.00290
\(91\) 12.7466 + 911.997i 0.0146835 + 1.05059i
\(92\) −844.724 −0.957267
\(93\) 2114.11i 2.35723i
\(94\) 903.360 0.991217
\(95\) 58.9075 0.0636188
\(96\) 1791.21i 1.90432i
\(97\) 895.447i 0.937308i 0.883382 + 0.468654i \(0.155261\pi\)
−0.883382 + 0.468654i \(0.844739\pi\)
\(98\) 130.313i 0.134323i
\(99\) 940.727i 0.955017i
\(100\) 133.975 0.133975
\(101\) −240.227 −0.236668 −0.118334 0.992974i \(-0.537755\pi\)
−0.118334 + 0.992974i \(0.537755\pi\)
\(102\) 2808.85i 2.72664i
\(103\) −123.954 −0.118578 −0.0592891 0.998241i \(-0.518883\pi\)
−0.0592891 + 0.998241i \(0.518883\pi\)
\(104\) −6.32305 452.405i −0.00596178 0.426557i
\(105\) 836.148 0.777140
\(106\) 54.5520i 0.0499864i
\(107\) −1223.36 −1.10530 −0.552649 0.833414i \(-0.686383\pi\)
−0.552649 + 0.833414i \(0.686383\pi\)
\(108\) −914.461 −0.814760
\(109\) 1738.02i 1.52727i −0.645648 0.763635i \(-0.723413\pi\)
0.645648 0.763635i \(-0.276587\pi\)
\(110\) 366.908i 0.318030i
\(111\) 1837.68i 1.57139i
\(112\) 1520.78i 1.28304i
\(113\) 633.634 0.527498 0.263749 0.964591i \(-0.415041\pi\)
0.263749 + 0.964591i \(0.415041\pi\)
\(114\) 370.067 0.304034
\(115\) 788.135i 0.639078i
\(116\) −622.245 −0.498051
\(117\) −2196.02 + 30.6927i −1.73523 + 0.0242525i
\(118\) 1522.38 1.18768
\(119\) 1740.08i 1.34045i
\(120\) −414.779 −0.315533
\(121\) 927.912 0.697154
\(122\) 3282.68i 2.43607i
\(123\) 3800.17i 2.78577i
\(124\) 1318.31i 0.954742i
\(125\) 125.000i 0.0894427i
\(126\) 3332.51 2.35622
\(127\) 1731.65 1.20991 0.604955 0.796259i \(-0.293191\pi\)
0.604955 + 0.796259i \(0.293191\pi\)
\(128\) 1168.23i 0.806706i
\(129\) 1586.66 1.08292
\(130\) 856.505 11.9710i 0.577849 0.00807633i
\(131\) 2334.08 1.55671 0.778357 0.627822i \(-0.216053\pi\)
0.778357 + 0.627822i \(0.216053\pi\)
\(132\) 924.648i 0.609699i
\(133\) −229.256 −0.149467
\(134\) −3097.74 −1.99704
\(135\) 853.200i 0.543939i
\(136\) 863.183i 0.544245i
\(137\) 1528.05i 0.952922i 0.879196 + 0.476461i \(0.158081\pi\)
−0.879196 + 0.476461i \(0.841919\pi\)
\(138\) 4951.20i 3.05416i
\(139\) −2246.04 −1.37055 −0.685274 0.728285i \(-0.740318\pi\)
−0.685274 + 0.728285i \(0.740318\pi\)
\(140\) −521.405 −0.314763
\(141\) 2124.06i 1.26864i
\(142\) 1872.77 1.10675
\(143\) 13.1514 + 940.963i 0.00769073 + 0.550261i
\(144\) −3661.93 −2.11917
\(145\) 580.560i 0.332502i
\(146\) −1949.95 −1.10533
\(147\) −306.403 −0.171917
\(148\) 1145.94i 0.636457i
\(149\) 710.547i 0.390673i 0.980736 + 0.195337i \(0.0625799\pi\)
−0.980736 + 0.195337i \(0.937420\pi\)
\(150\) 785.271i 0.427447i
\(151\) 1201.89i 0.647738i −0.946102 0.323869i \(-0.895016\pi\)
0.946102 0.323869i \(-0.104984\pi\)
\(152\) 113.725 0.0606861
\(153\) −4189.99 −2.21399
\(154\) 1427.93i 0.747183i
\(155\) 1230.00 0.637392
\(156\) 2158.49 30.1682i 1.10780 0.0154832i
\(157\) −677.363 −0.344328 −0.172164 0.985068i \(-0.555076\pi\)
−0.172164 + 0.985068i \(0.555076\pi\)
\(158\) 329.190i 0.165753i
\(159\) 128.267 0.0639765
\(160\) 1042.13 0.514925
\(161\) 3067.27i 1.50146i
\(162\) 735.981i 0.356939i
\(163\) 2043.08i 0.981756i −0.871228 0.490878i \(-0.836676\pi\)
0.871228 0.490878i \(-0.163324\pi\)
\(164\) 2369.71i 1.12831i
\(165\) 862.705 0.407039
\(166\) −3993.95 −1.86741
\(167\) 2590.58i 1.20039i 0.799854 + 0.600195i \(0.204910\pi\)
−0.799854 + 0.600195i \(0.795090\pi\)
\(168\) 1614.24 0.741317
\(169\) 2196.14 61.4009i 0.999609 0.0279476i
\(170\) 1634.20 0.737280
\(171\) 552.032i 0.246871i
\(172\) −989.407 −0.438614
\(173\) 1092.54 0.480140 0.240070 0.970756i \(-0.422830\pi\)
0.240070 + 0.970756i \(0.422830\pi\)
\(174\) 3647.17i 1.58903i
\(175\) 486.475i 0.210138i
\(176\) 1569.08i 0.672012i
\(177\) 3579.55i 1.52009i
\(178\) 428.817 0.180568
\(179\) 2643.64 1.10388 0.551942 0.833883i \(-0.313887\pi\)
0.551942 + 0.833883i \(0.313887\pi\)
\(180\) 1255.50i 0.519888i
\(181\) 113.656 0.0466739 0.0233370 0.999728i \(-0.492571\pi\)
0.0233370 + 0.999728i \(0.492571\pi\)
\(182\) −3333.35 + 46.5886i −1.35761 + 0.0189746i
\(183\) −7718.52 −3.11787
\(184\) 1521.55i 0.609619i
\(185\) −1069.17 −0.424903
\(186\) 7727.05 3.04610
\(187\) 1795.35i 0.702079i
\(188\) 1324.52i 0.513832i
\(189\) 3320.49i 1.27794i
\(190\) 215.307i 0.0822105i
\(191\) −1586.92 −0.601181 −0.300590 0.953753i \(-0.597184\pi\)
−0.300590 + 0.953753i \(0.597184\pi\)
\(192\) 1173.71 0.441175
\(193\) 2480.87i 0.925270i −0.886549 0.462635i \(-0.846904\pi\)
0.886549 0.462635i \(-0.153096\pi\)
\(194\) −3272.86 −1.21122
\(195\) −28.1471 2013.89i −0.0103367 0.739577i
\(196\) 191.067 0.0696308
\(197\) 4720.28i 1.70714i −0.520981 0.853568i \(-0.674434\pi\)
0.520981 0.853568i \(-0.325566\pi\)
\(198\) 3438.36 1.23411
\(199\) 849.011 0.302436 0.151218 0.988500i \(-0.451680\pi\)
0.151218 + 0.988500i \(0.451680\pi\)
\(200\) 241.321i 0.0853197i
\(201\) 7283.67i 2.55597i
\(202\) 878.028i 0.305831i
\(203\) 2259.42i 0.781185i
\(204\) 4118.37 1.41345
\(205\) −2210.96 −0.753269
\(206\) 453.051i 0.153231i
\(207\) 7385.75 2.47993
\(208\) 3662.85 51.1939i 1.22102 0.0170657i
\(209\) −236.538 −0.0782854
\(210\) 3056.12i 1.00425i
\(211\) −3094.07 −1.00950 −0.504751 0.863265i \(-0.668416\pi\)
−0.504751 + 0.863265i \(0.668416\pi\)
\(212\) −79.9849 −0.0259122
\(213\) 4403.41i 1.41651i
\(214\) 4471.38i 1.42831i
\(215\) 923.125i 0.292821i
\(216\) 1647.16i 0.518865i
\(217\) −4786.91 −1.49750
\(218\) 6352.47 1.97359
\(219\) 4584.88i 1.41469i
\(220\) −537.965 −0.164862
\(221\) 4191.04 58.5761i 1.27565 0.0178292i
\(222\) −6716.71 −2.03061
\(223\) 923.125i 0.277206i 0.990348 + 0.138603i \(0.0442613\pi\)
−0.990348 + 0.138603i \(0.955739\pi\)
\(224\) −4055.78 −1.20977
\(225\) −1171.40 −0.347080
\(226\) 2315.93i 0.681652i
\(227\) 652.853i 0.190887i −0.995435 0.0954435i \(-0.969573\pi\)
0.995435 0.0954435i \(-0.0304269\pi\)
\(228\) 542.597i 0.157607i
\(229\) 3450.44i 0.995685i −0.867268 0.497842i \(-0.834126\pi\)
0.867268 0.497842i \(-0.165874\pi\)
\(230\) −2880.63 −0.825840
\(231\) −3357.48 −0.956302
\(232\) 1120.81i 0.317175i
\(233\) 2746.83 0.772320 0.386160 0.922432i \(-0.373801\pi\)
0.386160 + 0.922432i \(0.373801\pi\)
\(234\) −112.182 8026.45i −0.0313400 2.24233i
\(235\) 1235.79 0.343038
\(236\) 2232.13i 0.615676i
\(237\) −774.020 −0.212143
\(238\) −6359.99 −1.73217
\(239\) 6624.49i 1.79290i 0.443148 + 0.896448i \(0.353862\pi\)
−0.443148 + 0.896448i \(0.646138\pi\)
\(240\) 3358.22i 0.903216i
\(241\) 3220.25i 0.860725i −0.902656 0.430362i \(-0.858386\pi\)
0.902656 0.430362i \(-0.141614\pi\)
\(242\) 3391.52i 0.900888i
\(243\) −2876.78 −0.759447
\(244\) 4813.11 1.26282
\(245\) 178.267i 0.0464860i
\(246\) −13889.6 −3.59988
\(247\) 7.71743 + 552.170i 0.00198805 + 0.142242i
\(248\) 2374.59 0.608010
\(249\) 9390.91i 2.39006i
\(250\) 456.875 0.115581
\(251\) −410.078 −0.103123 −0.0515615 0.998670i \(-0.516420\pi\)
−0.0515615 + 0.998670i \(0.516420\pi\)
\(252\) 4886.18i 1.22143i
\(253\) 3164.68i 0.786411i
\(254\) 6329.16i 1.56349i
\(255\) 3842.48i 0.943628i
\(256\) 5362.49 1.30920
\(257\) 117.117 0.0284262 0.0142131 0.999899i \(-0.495476\pi\)
0.0142131 + 0.999899i \(0.495476\pi\)
\(258\) 5799.23i 1.39940i
\(259\) 4161.00 0.998271
\(260\) 17.5520 + 1255.82i 0.00418665 + 0.299548i
\(261\) 5440.52 1.29027
\(262\) 8531.06i 2.01164i
\(263\) 2511.96 0.588950 0.294475 0.955659i \(-0.404855\pi\)
0.294475 + 0.955659i \(0.404855\pi\)
\(264\) 1665.51 0.388276
\(265\) 74.6266i 0.0172992i
\(266\) 837.932i 0.193146i
\(267\) 1008.27i 0.231105i
\(268\) 4541.95i 1.03524i
\(269\) 5896.91 1.33658 0.668292 0.743899i \(-0.267026\pi\)
0.668292 + 0.743899i \(0.267026\pi\)
\(270\) −3118.45 −0.702898
\(271\) 3452.44i 0.773877i −0.922106 0.386938i \(-0.873533\pi\)
0.922106 0.386938i \(-0.126467\pi\)
\(272\) 6988.68 1.55791
\(273\) 109.543 + 7837.65i 0.0242852 + 1.73757i
\(274\) −5585.03 −1.23140
\(275\) 501.926i 0.110063i
\(276\) −7259.51 −1.58323
\(277\) −2430.98 −0.527304 −0.263652 0.964618i \(-0.584927\pi\)
−0.263652 + 0.964618i \(0.584927\pi\)
\(278\) 8209.26i 1.77107i
\(279\) 11526.5i 2.47338i
\(280\) 939.172i 0.200451i
\(281\) 3512.86i 0.745763i 0.927879 + 0.372882i \(0.121630\pi\)
−0.927879 + 0.372882i \(0.878370\pi\)
\(282\) 7763.42 1.63938
\(283\) −3590.13 −0.754103 −0.377051 0.926192i \(-0.623062\pi\)
−0.377051 + 0.926192i \(0.623062\pi\)
\(284\) 2745.87i 0.573724i
\(285\) 506.248 0.105219
\(286\) −3439.22 + 48.0683i −0.711067 + 0.00993825i
\(287\) 8604.62 1.76974
\(288\) 9766.02i 1.99815i
\(289\) 3083.45 0.627611
\(290\) −2121.94 −0.429672
\(291\) 7695.42i 1.55022i
\(292\) 2859.04i 0.572989i
\(293\) 9311.11i 1.85652i 0.371931 + 0.928260i \(0.378696\pi\)
−0.371931 + 0.928260i \(0.621304\pi\)
\(294\) 1119.90i 0.222157i
\(295\) 2082.60 0.411029
\(296\) −2064.10 −0.405316
\(297\) 3425.95i 0.669339i
\(298\) −2597.05 −0.504842
\(299\) −7387.60 + 103.253i −1.42888 + 0.0199708i
\(300\) 1151.37 0.221582
\(301\) 3592.62i 0.687958i
\(302\) 4392.90 0.837030
\(303\) −2064.49 −0.391426
\(304\) 920.761i 0.173715i
\(305\) 4490.67i 0.843067i
\(306\) 15314.4i 2.86100i
\(307\) 2634.13i 0.489699i −0.969561 0.244849i \(-0.921261\pi\)
0.969561 0.244849i \(-0.0787385\pi\)
\(308\) 2093.65 0.387328
\(309\) −1065.25 −0.196117
\(310\) 4495.64i 0.823661i
\(311\) −1976.39 −0.360356 −0.180178 0.983634i \(-0.557667\pi\)
−0.180178 + 0.983634i \(0.557667\pi\)
\(312\) −54.3399 3887.94i −0.00986023 0.705485i
\(313\) 4099.30 0.740276 0.370138 0.928977i \(-0.379310\pi\)
0.370138 + 0.928977i \(0.379310\pi\)
\(314\) 2475.76i 0.444953i
\(315\) 4558.84 0.815434
\(316\) 482.663 0.0859238
\(317\) 619.492i 0.109761i −0.998493 0.0548804i \(-0.982522\pi\)
0.998493 0.0548804i \(-0.0174777\pi\)
\(318\) 468.817i 0.0826728i
\(319\) 2331.18i 0.409158i
\(320\) 682.873i 0.119293i
\(321\) −10513.5 −1.82806
\(322\) 11210.9 1.94024
\(323\) 1053.54i 0.181487i
\(324\) −1079.11 −0.185032
\(325\) 1171.69 16.3762i 0.199980 0.00279503i
\(326\) 7467.45 1.26866
\(327\) 14936.5i 2.52596i
\(328\) −4268.40 −0.718546
\(329\) −4809.44 −0.805936
\(330\) 3153.18i 0.525991i
\(331\) 4249.98i 0.705741i −0.935672 0.352870i \(-0.885206\pi\)
0.935672 0.352870i \(-0.114794\pi\)
\(332\) 5855.98i 0.968038i
\(333\) 10019.4i 1.64883i
\(334\) −9468.56 −1.55119
\(335\) −4237.68 −0.691131
\(336\) 13069.5i 2.12203i
\(337\) −6965.45 −1.12591 −0.562956 0.826487i \(-0.690336\pi\)
−0.562956 + 0.826487i \(0.690336\pi\)
\(338\) 224.420 + 8026.89i 0.0361149 + 1.29173i
\(339\) 5445.41 0.872431
\(340\) 2396.09i 0.382195i
\(341\) −4938.94 −0.784336
\(342\) 2017.68 0.319016
\(343\) 5980.66i 0.941474i
\(344\) 1782.15i 0.279323i
\(345\) 6773.19i 1.05697i
\(346\) 3993.22i 0.620454i
\(347\) −4287.03 −0.663227 −0.331613 0.943415i \(-0.607593\pi\)
−0.331613 + 0.943415i \(0.607593\pi\)
\(348\) −5347.53 −0.823730
\(349\) 10344.2i 1.58657i −0.608848 0.793287i \(-0.708368\pi\)
0.608848 0.793287i \(-0.291632\pi\)
\(350\) −1778.07 −0.271548
\(351\) −7997.49 + 111.777i −1.21617 + 0.0169978i
\(352\) −4184.59 −0.633635
\(353\) 1570.76i 0.236835i 0.992964 + 0.118418i \(0.0377822\pi\)
−0.992964 + 0.118418i \(0.962218\pi\)
\(354\) 13083.2 1.96431
\(355\) 2561.92 0.383022
\(356\) 628.737i 0.0936039i
\(357\) 14954.2i 2.21697i
\(358\) 9662.51i 1.42648i
\(359\) 4580.91i 0.673458i −0.941602 0.336729i \(-0.890679\pi\)
0.941602 0.336729i \(-0.109321\pi\)
\(360\) −2261.46 −0.331081
\(361\) 6720.20 0.979763
\(362\) 415.412i 0.0603138i
\(363\) 7974.42 1.15303
\(364\) −68.3089 4887.40i −0.00983615 0.703762i
\(365\) −2667.51 −0.382531
\(366\) 28211.2i 4.02902i
\(367\) 7725.22 1.09878 0.549392 0.835565i \(-0.314860\pi\)
0.549392 + 0.835565i \(0.314860\pi\)
\(368\) −12319.0 −1.74504
\(369\) 20719.3i 2.92304i
\(370\) 3907.82i 0.549075i
\(371\) 290.432i 0.0406428i
\(372\) 11329.5i 1.57905i
\(373\) −8286.80 −1.15033 −0.575166 0.818036i \(-0.695063\pi\)
−0.575166 + 0.818036i \(0.695063\pi\)
\(374\) −6561.99 −0.907253
\(375\) 1074.24i 0.147930i
\(376\) 2385.77 0.327225
\(377\) −5441.89 + 76.0587i −0.743425 + 0.0103905i
\(378\) 12136.4 1.65140
\(379\) 8496.27i 1.15151i 0.817621 + 0.575757i \(0.195293\pi\)
−0.817621 + 0.575757i \(0.804707\pi\)
\(380\) −315.686 −0.0426167
\(381\) 14881.7 2.00108
\(382\) 5800.19i 0.776868i
\(383\) 2814.87i 0.375544i −0.982213 0.187772i \(-0.939873\pi\)
0.982213 0.187772i \(-0.0601266\pi\)
\(384\) 10039.7i 1.33421i
\(385\) 1953.40i 0.258583i
\(386\) 9067.58 1.19567
\(387\) 8650.76 1.13629
\(388\) 4798.70i 0.627880i
\(389\) −1795.14 −0.233977 −0.116989 0.993133i \(-0.537324\pi\)
−0.116989 + 0.993133i \(0.537324\pi\)
\(390\) 7360.75 102.878i 0.955708 0.0133575i
\(391\) −14095.5 −1.82312
\(392\) 344.156i 0.0443431i
\(393\) 20059.0 2.57466
\(394\) 17252.6 2.20602
\(395\) 450.329i 0.0573633i
\(396\) 5041.36i 0.639743i
\(397\) 3046.79i 0.385174i 0.981280 + 0.192587i \(0.0616877\pi\)
−0.981280 + 0.192587i \(0.938312\pi\)
\(398\) 3103.13i 0.390819i
\(399\) −1970.22 −0.247203
\(400\) 1953.83 0.244228
\(401\) 6060.07i 0.754677i −0.926075 0.377339i \(-0.876839\pi\)
0.926075 0.377339i \(-0.123161\pi\)
\(402\) −26621.8 −3.30292
\(403\) 161.141 + 11529.4i 0.0199181 + 1.42511i
\(404\) 1287.38 0.158538
\(405\) 1006.82i 0.123529i
\(406\) 8258.19 1.00948
\(407\) 4293.16 0.522860
\(408\) 7418.15i 0.900130i
\(409\) 5020.20i 0.606927i −0.952843 0.303463i \(-0.901857\pi\)
0.952843 0.303463i \(-0.0981430\pi\)
\(410\) 8081.05i 0.973402i
\(411\) 13132.0i 1.57604i
\(412\) 664.270 0.0794326
\(413\) −8105.07 −0.965677
\(414\) 26994.9i 3.20465i
\(415\) −5463.68 −0.646269
\(416\) 136.529 + 9768.46i 0.0160911 + 1.15129i
\(417\) −19302.3 −2.26676
\(418\) 864.545i 0.101163i
\(419\) −9083.45 −1.05908 −0.529541 0.848284i \(-0.677636\pi\)
−0.529541 + 0.848284i \(0.677636\pi\)
\(420\) −4480.93 −0.520588
\(421\) 1928.90i 0.223299i −0.993748 0.111650i \(-0.964387\pi\)
0.993748 0.111650i \(-0.0356135\pi\)
\(422\) 11308.8i 1.30452i
\(423\) 11580.8i 1.33115i
\(424\) 144.072i 0.0165017i
\(425\) 2235.57 0.255156
\(426\) 16094.4 1.83047
\(427\) 17476.8i 1.98071i
\(428\) 6556.00 0.740412
\(429\) 113.022 + 8086.58i 0.0127197 + 0.910079i
\(430\) −3374.02 −0.378395
\(431\) 3177.44i 0.355109i −0.984111 0.177554i \(-0.943181\pi\)
0.984111 0.177554i \(-0.0568185\pi\)
\(432\) −13336.1 −1.48526
\(433\) 9465.37 1.05052 0.525262 0.850941i \(-0.323967\pi\)
0.525262 + 0.850941i \(0.323967\pi\)
\(434\) 17496.1i 1.93512i
\(435\) 4989.30i 0.549927i
\(436\) 9314.08i 1.02308i
\(437\) 1857.08i 0.203287i
\(438\) −16757.7 −1.82812
\(439\) −768.174 −0.0835146 −0.0417573 0.999128i \(-0.513296\pi\)
−0.0417573 + 0.999128i \(0.513296\pi\)
\(440\) 969.001i 0.104989i
\(441\) −1670.57 −0.180388
\(442\) 214.096 + 15318.2i 0.0230396 + 1.64845i
\(443\) 1368.96 0.146820 0.0734099 0.997302i \(-0.476612\pi\)
0.0734099 + 0.997302i \(0.476612\pi\)
\(444\) 9848.14i 1.05264i
\(445\) 586.617 0.0624906
\(446\) −3374.02 −0.358216
\(447\) 6106.40i 0.646136i
\(448\) 2657.61i 0.280268i
\(449\) 2152.16i 0.226206i 0.993583 + 0.113103i \(0.0360790\pi\)
−0.993583 + 0.113103i \(0.963921\pi\)
\(450\) 4281.45i 0.448510i
\(451\) 8877.91 0.926927
\(452\) −3395.65 −0.353358
\(453\) 10329.0i 1.07130i
\(454\) 2386.18 0.246671
\(455\) −4559.99 + 63.7328i −0.469836 + 0.00656668i
\(456\) 977.344 0.100369
\(457\) 10468.5i 1.07154i −0.844363 0.535771i \(-0.820021\pi\)
0.844363 0.535771i \(-0.179979\pi\)
\(458\) 12611.4 1.28666
\(459\) −15259.1 −1.55171
\(460\) 4223.62i 0.428103i
\(461\) 6737.46i 0.680683i 0.940302 + 0.340341i \(0.110543\pi\)
−0.940302 + 0.340341i \(0.889457\pi\)
\(462\) 12271.6i 1.23577i
\(463\) 6896.27i 0.692218i 0.938194 + 0.346109i \(0.112497\pi\)
−0.938194 + 0.346109i \(0.887503\pi\)
\(464\) −9074.51 −0.907917
\(465\) 10570.5 1.05419
\(466\) 10039.6i 0.998021i
\(467\) −11356.8 −1.12533 −0.562664 0.826685i \(-0.690224\pi\)
−0.562664 + 0.826685i \(0.690224\pi\)
\(468\) 11768.5 164.483i 1.16239 0.0162462i
\(469\) 16492.2 1.62375
\(470\) 4516.80i 0.443286i
\(471\) −5821.22 −0.569485
\(472\) 4020.59 0.392082
\(473\) 3706.72i 0.360328i
\(474\) 2829.04i 0.274139i
\(475\) 294.537i 0.0284512i
\(476\) 9325.11i 0.897932i
\(477\) 699.339 0.0671290
\(478\) −24212.5 −2.31685
\(479\) 7739.00i 0.738213i −0.929387 0.369106i \(-0.879664\pi\)
0.929387 0.369106i \(-0.120336\pi\)
\(480\) 8956.04 0.851636
\(481\) −140.071 10021.9i −0.0132780 0.950019i
\(482\) 11770.0 1.11226
\(483\) 26359.9i 2.48327i
\(484\) −4972.69 −0.467007
\(485\) −4477.23 −0.419177
\(486\) 10514.6i 0.981385i
\(487\) 21347.3i 1.98632i −0.116748 0.993162i \(-0.537247\pi\)
0.116748 0.993162i \(-0.462753\pi\)
\(488\) 8669.54i 0.804204i
\(489\) 17558.1i 1.62373i
\(490\) 651.566 0.0600709
\(491\) 11452.5 1.05264 0.526319 0.850287i \(-0.323572\pi\)
0.526319 + 0.850287i \(0.323572\pi\)
\(492\) 20365.1i 1.86612i
\(493\) −10383.1 −0.948539
\(494\) −2018.18 + 28.2072i −0.183810 + 0.00256903i
\(495\) 4703.64 0.427096
\(496\) 19225.6i 1.74043i
\(497\) −9970.51 −0.899876
\(498\) −34323.8 −3.08852
\(499\) 8778.37i 0.787522i 0.919213 + 0.393761i \(0.128826\pi\)
−0.919213 + 0.393761i \(0.871174\pi\)
\(500\) 669.876i 0.0599155i
\(501\) 22263.3i 1.98533i
\(502\) 1498.83i 0.133259i
\(503\) 20459.6 1.81362 0.906810 0.421540i \(-0.138510\pi\)
0.906810 + 0.421540i \(0.138510\pi\)
\(504\) 8801.14 0.777846
\(505\) 1201.13i 0.105841i
\(506\) 11566.9 1.01623
\(507\) 18873.5 527.676i 1.65326 0.0462227i
\(508\) −9279.90 −0.810490
\(509\) 6203.63i 0.540218i 0.962830 + 0.270109i \(0.0870598\pi\)
−0.962830 + 0.270109i \(0.912940\pi\)
\(510\) 14044.2 1.21939
\(511\) 10381.4 0.898722
\(512\) 10254.0i 0.885093i
\(513\) 2010.40i 0.173024i
\(514\) 428.062i 0.0367334i
\(515\) 619.770i 0.0530297i
\(516\) −8502.90 −0.725425
\(517\) −4962.19 −0.422122
\(518\) 15208.5i 1.29000i
\(519\) 9389.21 0.794105
\(520\) 2262.02 31.6152i 0.190762 0.00266619i
\(521\) 9308.04 0.782711 0.391356 0.920240i \(-0.372006\pi\)
0.391356 + 0.920240i \(0.372006\pi\)
\(522\) 19885.1i 1.66733i
\(523\) 1285.95 0.107515 0.0537577 0.998554i \(-0.482880\pi\)
0.0537577 + 0.998554i \(0.482880\pi\)
\(524\) −12508.4 −1.04281
\(525\) 4180.74i 0.347548i
\(526\) 9181.20i 0.761063i
\(527\) 21998.0i 1.81831i
\(528\) 13484.6i 1.11144i
\(529\) 12679.3 1.04210
\(530\) −272.760 −0.0223546
\(531\) 19516.4i 1.59499i
\(532\) 1228.59 0.100124
\(533\) −289.656 20724.5i −0.0235392 1.68420i
\(534\) 3685.23 0.298643
\(535\) 6116.81i 0.494304i
\(536\) −8181.11 −0.659272
\(537\) 22719.3 1.82572
\(538\) 21553.2i 1.72718i
\(539\) 715.815i 0.0572029i
\(540\) 4572.31i 0.364372i
\(541\) 10504.9i 0.834824i −0.908717 0.417412i \(-0.862937\pi\)
0.908717 0.417412i \(-0.137063\pi\)
\(542\) 12618.6 1.00003
\(543\) 976.753 0.0771943
\(544\) 18638.1i 1.46894i
\(545\) 8690.11 0.683016
\(546\) −28646.6 + 400.380i −2.24535 + 0.0313822i
\(547\) 1017.35 0.0795227 0.0397614 0.999209i \(-0.487340\pi\)
0.0397614 + 0.999209i \(0.487340\pi\)
\(548\) 8188.84i 0.638339i
\(549\) −42082.9 −3.27150
\(550\) −1834.54 −0.142227
\(551\) 1367.97i 0.105767i
\(552\) 13076.1i 1.00825i
\(553\) 1752.59i 0.134770i
\(554\) 8885.21i 0.681401i
\(555\) −9188.40 −0.702749
\(556\) 12036.5 0.918098
\(557\) 15058.6i 1.14551i 0.819725 + 0.572757i \(0.194126\pi\)
−0.819725 + 0.572757i \(0.805874\pi\)
\(558\) 42129.4 3.19620
\(559\) −8652.93 + 120.938i −0.654705 + 0.00915050i
\(560\) −7603.91 −0.573793
\(561\) 15429.1i 1.16117i
\(562\) −12839.5 −0.963703
\(563\) −6892.23 −0.515938 −0.257969 0.966153i \(-0.583053\pi\)
−0.257969 + 0.966153i \(0.583053\pi\)
\(564\) 11382.8i 0.849829i
\(565\) 3168.17i 0.235904i
\(566\) 13121.9i 0.974479i
\(567\) 3918.33i 0.290219i
\(568\) 4945.96 0.365366
\(569\) −23546.3 −1.73482 −0.867409 0.497595i \(-0.834217\pi\)
−0.867409 + 0.497595i \(0.834217\pi\)
\(570\) 1850.33i 0.135968i
\(571\) −4737.30 −0.347198 −0.173599 0.984816i \(-0.555540\pi\)
−0.173599 + 0.984816i \(0.555540\pi\)
\(572\) −70.4784 5042.63i −0.00515184 0.368606i
\(573\) −13637.9 −0.994296
\(574\) 31449.9i 2.28692i
\(575\) −3940.68 −0.285804
\(576\) 6399.32 0.462914
\(577\) 2000.42i 0.144330i −0.997393 0.0721652i \(-0.977009\pi\)
0.997393 0.0721652i \(-0.0229909\pi\)
\(578\) 11270.0i 0.811022i
\(579\) 21320.5i 1.53031i
\(580\) 3111.22i 0.222735i
\(581\) 21263.6 1.51835
\(582\) −28126.7 −2.00325
\(583\) 299.656i 0.0212873i
\(584\) −5149.80 −0.364898
\(585\) −153.464 10980.1i −0.0108461 0.776020i
\(586\) −34032.1 −2.39906
\(587\) 5961.64i 0.419188i −0.977789 0.209594i \(-0.932786\pi\)
0.977789 0.209594i \(-0.0672142\pi\)
\(588\) 1642.02 0.115163
\(589\) −2898.24 −0.202750
\(590\) 7611.90i 0.531147i
\(591\) 40565.8i 2.82344i
\(592\) 16711.8i 1.16022i
\(593\) 9517.01i 0.659050i 0.944147 + 0.329525i \(0.106889\pi\)
−0.944147 + 0.329525i \(0.893111\pi\)
\(594\) 12521.8 0.864945
\(595\) −8700.41 −0.599465
\(596\) 3807.83i 0.261703i
\(597\) 7296.35 0.500201
\(598\) −377.389 27001.7i −0.0258070 1.84645i
\(599\) 8822.25 0.601782 0.300891 0.953659i \(-0.402716\pi\)
0.300891 + 0.953659i \(0.402716\pi\)
\(600\) 2073.90i 0.141111i
\(601\) −388.522 −0.0263696 −0.0131848 0.999913i \(-0.504197\pi\)
−0.0131848 + 0.999913i \(0.504197\pi\)
\(602\) 13131.0 0.889004
\(603\) 39712.0i 2.68192i
\(604\) 6440.93i 0.433904i
\(605\) 4639.56i 0.311777i
\(606\) 7545.72i 0.505815i
\(607\) −2729.75 −0.182532 −0.0912662 0.995827i \(-0.529091\pi\)
−0.0912662 + 0.995827i \(0.529091\pi\)
\(608\) −2455.58 −0.163794
\(609\) 19417.4i 1.29201i
\(610\) 16413.4 1.08944
\(611\) 161.900 + 11583.7i 0.0107197 + 0.766981i
\(612\) 22454.2 1.48310
\(613\) 27578.2i 1.81708i 0.417794 + 0.908542i \(0.362803\pi\)
−0.417794 + 0.908542i \(0.637197\pi\)
\(614\) 9627.72 0.632807
\(615\) −19000.9 −1.24583
\(616\) 3771.16i 0.246663i
\(617\) 247.197i 0.0161293i −0.999967 0.00806464i \(-0.997433\pi\)
0.999967 0.00806464i \(-0.00256708\pi\)
\(618\) 3893.50i 0.253430i
\(619\) 6035.92i 0.391929i 0.980611 + 0.195965i \(0.0627838\pi\)
−0.980611 + 0.195965i \(0.937216\pi\)
\(620\) −6591.56 −0.426973
\(621\) 26897.5 1.73810
\(622\) 7223.70i 0.465665i
\(623\) −2283.00 −0.146816
\(624\) 31478.3 439.957i 2.01946 0.0282250i
\(625\) 625.000 0.0400000
\(626\) 14982.9i 0.956611i
\(627\) −2032.79 −0.129477
\(628\) 3629.99 0.230657
\(629\) 19121.7i 1.21213i
\(630\) 16662.6i 1.05373i
\(631\) 16570.3i 1.04541i 0.852514 + 0.522705i \(0.175077\pi\)
−0.852514 + 0.522705i \(0.824923\pi\)
\(632\) 869.389i 0.0547190i
\(633\) −26590.3 −1.66962
\(634\) 2264.24 0.141837
\(635\) 8658.23i 0.541089i
\(636\) −687.386 −0.0428563
\(637\) 1670.99 23.3546i 0.103936 0.00145266i
\(638\) 8520.47 0.528729
\(639\) 24008.2i 1.48631i
\(640\) 5841.17 0.360770
\(641\) −7610.28 −0.468936 −0.234468 0.972124i \(-0.575335\pi\)
−0.234468 + 0.972124i \(0.575335\pi\)
\(642\) 38426.8i 2.36228i
\(643\) 15468.4i 0.948699i 0.880337 + 0.474350i \(0.157317\pi\)
−0.880337 + 0.474350i \(0.842683\pi\)
\(644\) 16437.5i 1.00579i
\(645\) 7933.28i 0.484299i
\(646\) −3850.67 −0.234524
\(647\) −25669.6 −1.55978 −0.779889 0.625917i \(-0.784725\pi\)
−0.779889 + 0.625917i \(0.784725\pi\)
\(648\) 1943.72i 0.117834i
\(649\) −8362.49 −0.505788
\(650\) 59.8548 + 4282.52i 0.00361184 + 0.258422i
\(651\) −41138.4 −2.47671
\(652\) 10948.9i 0.657655i
\(653\) 3691.09 0.221200 0.110600 0.993865i \(-0.464723\pi\)
0.110600 + 0.993865i \(0.464723\pi\)
\(654\) 54592.8 3.26414
\(655\) 11670.4i 0.696184i
\(656\) 34558.7i 2.05684i
\(657\) 24997.7i 1.48440i
\(658\) 17578.5i 1.04146i
\(659\) 23260.7 1.37497 0.687487 0.726197i \(-0.258714\pi\)
0.687487 + 0.726197i \(0.258714\pi\)
\(660\) −4623.24 −0.272666
\(661\) 93.6601i 0.00551128i 0.999996 + 0.00275564i \(0.000877149\pi\)
−0.999996 + 0.00275564i \(0.999123\pi\)
\(662\) 15533.7 0.911984
\(663\) 36017.5 503.400i 2.10981 0.0294878i
\(664\) −10548.0 −0.616478
\(665\) 1146.28i 0.0668435i
\(666\) −36620.8 −2.13067
\(667\) 18302.4 1.06247
\(668\) 13882.9i 0.804112i
\(669\) 7933.29i 0.458473i
\(670\) 15488.7i 0.893105i
\(671\) 18031.9i 1.03743i
\(672\) −34855.2 −2.00084
\(673\) 15681.6 0.898191 0.449096 0.893484i \(-0.351746\pi\)
0.449096 + 0.893484i \(0.351746\pi\)
\(674\) 25458.7i 1.45494i
\(675\) −4266.00 −0.243257
\(676\) −11769.1 + 329.048i −0.669614 + 0.0187214i
\(677\) 6692.61 0.379938 0.189969 0.981790i \(-0.439161\pi\)
0.189969 + 0.981790i \(0.439161\pi\)
\(678\) 19903.0i 1.12739i
\(679\) 17424.5 0.984818
\(680\) 4315.92 0.243394
\(681\) 5610.58i 0.315709i
\(682\) 18051.8i 1.01355i
\(683\) 5093.28i 0.285342i −0.989770 0.142671i \(-0.954431\pi\)
0.989770 0.142671i \(-0.0455691\pi\)
\(684\) 2958.34i 0.165373i
\(685\) −7640.26 −0.426160
\(686\) 21859.3 1.21661
\(687\) 29652.9i 1.64677i
\(688\) −14429.0 −0.799565
\(689\) −699.514 + 9.77678i −0.0386783 + 0.000540589i
\(690\) −24756.0 −1.36586
\(691\) 16747.8i 0.922020i −0.887395 0.461010i \(-0.847487\pi\)
0.887395 0.461010i \(-0.152513\pi\)
\(692\) −5854.92 −0.321634
\(693\) −18305.6 −1.00342
\(694\) 15669.1i 0.857046i
\(695\) 11230.2i 0.612928i
\(696\) 9632.16i 0.524578i
\(697\) 39542.1i 2.14887i
\(698\) 37808.2 2.05023
\(699\) 23606.1 1.27734
\(700\) 2607.03i 0.140766i
\(701\) 18385.1 0.990580 0.495290 0.868728i \(-0.335062\pi\)
0.495290 + 0.868728i \(0.335062\pi\)
\(702\) −408.545 29230.8i −0.0219652 1.57157i
\(703\) 2519.29 0.135159
\(704\) 2742.02i 0.146795i
\(705\) 10620.3 0.567352
\(706\) −5741.11 −0.306047
\(707\) 4674.58i 0.248664i
\(708\) 19182.8i 1.01827i
\(709\) 18930.7i 1.00276i 0.865227 + 0.501380i \(0.167174\pi\)
−0.865227 + 0.501380i \(0.832826\pi\)
\(710\) 9363.83i 0.494955i
\(711\) −4220.11 −0.222597
\(712\) 1132.50 0.0596100
\(713\) 38776.2i 2.03672i
\(714\) −54657.4 −2.86485
\(715\) −4704.81 + 65.7570i −0.246084 + 0.00343940i
\(716\) −14167.3 −0.739465
\(717\) 56930.5i 2.96528i
\(718\) 16743.2 0.870267
\(719\) −12492.1 −0.647951 −0.323975 0.946066i \(-0.605019\pi\)
−0.323975 + 0.946066i \(0.605019\pi\)
\(720\) 18309.7i 0.947723i
\(721\) 2412.02i 0.124589i
\(722\) 24562.3i 1.26609i
\(723\) 27674.7i 1.42356i
\(724\) −609.083 −0.0312657
\(725\) −2902.80 −0.148700
\(726\) 29146.5i 1.48998i
\(727\) −20599.5 −1.05088 −0.525442 0.850829i \(-0.676100\pi\)
−0.525442 + 0.850829i \(0.676100\pi\)
\(728\) −8803.35 + 123.040i −0.448178 + 0.00626398i
\(729\) −30159.7 −1.53227
\(730\) 9749.74i 0.494321i
\(731\) −16509.7 −0.835340
\(732\) 41363.6 2.08858
\(733\) 10452.1i 0.526683i 0.964703 + 0.263342i \(0.0848247\pi\)
−0.964703 + 0.263342i \(0.915175\pi\)
\(734\) 28235.7i 1.41989i
\(735\) 1532.02i 0.0768834i
\(736\) 32853.7i 1.64538i
\(737\) 17016.0 0.850465
\(738\) −75728.9 −3.77726
\(739\) 15791.4i 0.786059i 0.919526 + 0.393030i \(0.128573\pi\)
−0.919526 + 0.393030i \(0.871427\pi\)
\(740\) 5729.70 0.284632
\(741\) 66.3231 + 4745.32i 0.00328804 + 0.235255i
\(742\) 1061.53 0.0525201
\(743\) 16295.2i 0.804592i −0.915510 0.402296i \(-0.868212\pi\)
0.915510 0.402296i \(-0.131788\pi\)
\(744\) 20407.1 1.00559
\(745\) −3552.74 −0.174714
\(746\) 30288.2i 1.48650i
\(747\) 51201.1i 2.50783i
\(748\) 9621.28i 0.470306i
\(749\) 23805.4i 1.16132i
\(750\) 3926.35 0.191160
\(751\) −2781.04 −0.135129 −0.0675643 0.997715i \(-0.521523\pi\)
−0.0675643 + 0.997715i \(0.521523\pi\)
\(752\) 19316.1i 0.936684i
\(753\) −3524.19 −0.170556
\(754\) −277.994 19890.1i −0.0134270 0.960682i
\(755\) 6009.45 0.289677
\(756\) 17794.5i 0.856059i
\(757\) 25968.3 1.24681 0.623403 0.781901i \(-0.285750\pi\)
0.623403 + 0.781901i \(0.285750\pi\)
\(758\) −31053.8 −1.48803
\(759\) 27197.1i 1.30065i
\(760\) 568.624i 0.0271397i
\(761\) 6582.16i 0.313539i 0.987635 + 0.156769i \(0.0501080\pi\)
−0.987635 + 0.156769i \(0.949892\pi\)
\(762\) 54392.4i 2.58587i
\(763\) −33820.2 −1.60468
\(764\) 8504.32 0.402716
\(765\) 20949.9i 0.990126i
\(766\) 10288.4 0.485292
\(767\) 272.840 + 19521.3i 0.0128444 + 0.919000i
\(768\) 46084.9 2.16530
\(769\) 7980.32i 0.374223i 0.982339 + 0.187112i \(0.0599126\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(770\) 7139.67 0.334150
\(771\) 1006.49 0.0470143
\(772\) 13295.0i 0.619816i
\(773\) 14633.6i 0.680899i 0.940263 + 0.340450i \(0.110579\pi\)
−0.940263 + 0.340450i \(0.889421\pi\)
\(774\) 31618.5i 1.46835i
\(775\) 6149.99i 0.285050i
\(776\) −8643.59 −0.399854
\(777\) 35759.4 1.65105
\(778\) 6561.23i 0.302354i
\(779\) 5209.68 0.239610
\(780\) 150.841 + 10792.4i 0.00692431 + 0.495425i
\(781\) −10287.2 −0.471324
\(782\) 51518.9i 2.35590i
\(783\) 19813.3 0.904306
\(784\) 2786.43 0.126933
\(785\) 3386.81i 0.153988i
\(786\) 73315.4i 3.32707i
\(787\) 32406.4i 1.46780i −0.679255 0.733902i \(-0.737697\pi\)
0.679255 0.733902i \(-0.262303\pi\)
\(788\) 25296.0i 1.14357i
\(789\) 21587.6 0.974068
\(790\) 1645.95 0.0741269
\(791\) 12329.9i 0.554236i
\(792\) 9080.67 0.407409
\(793\) 42093.4 588.320i 1.88497 0.0263453i
\(794\) −11136.0 −0.497736
\(795\) 641.337i 0.0286112i
\(796\) −4549.85 −0.202595
\(797\) −43761.2 −1.94492 −0.972461 0.233066i \(-0.925124\pi\)
−0.972461 + 0.233066i \(0.925124\pi\)
\(798\) 7201.14i 0.319445i
\(799\) 22101.5i 0.978593i
\(800\) 5210.67i 0.230281i
\(801\) 5497.29i 0.242493i
\(802\) 22149.6 0.975222
\(803\) 10711.1 0.470720
\(804\) 39033.2i 1.71218i
\(805\) 15336.3 0.671472
\(806\) −42139.9 + 588.970i −1.84158 + 0.0257389i
\(807\) 50677.7 2.21058
\(808\) 2318.87i 0.100962i
\(809\) −20194.7 −0.877638 −0.438819 0.898576i \(-0.644603\pi\)
−0.438819 + 0.898576i \(0.644603\pi\)
\(810\) −3679.91 −0.159628
\(811\) 35223.5i 1.52511i 0.646924 + 0.762554i \(0.276055\pi\)
−0.646924 + 0.762554i \(0.723945\pi\)
\(812\) 12108.3i 0.523297i
\(813\) 29670.0i 1.27992i
\(814\) 15691.5i 0.675659i
\(815\) 10215.4 0.439055
\(816\) 60060.3 2.57663
\(817\) 2175.16i 0.0931446i
\(818\) 18348.8 0.784293
\(819\) 597.251 + 42732.4i 0.0254818 + 1.82319i
\(820\) 11848.5 0.504597
\(821\) 21772.3i 0.925527i 0.886482 + 0.462764i \(0.153142\pi\)
−0.886482 + 0.462764i \(0.846858\pi\)
\(822\) −47997.4 −2.03662
\(823\) −12117.3 −0.513224 −0.256612 0.966514i \(-0.582606\pi\)
−0.256612 + 0.966514i \(0.582606\pi\)
\(824\) 1196.51i 0.0505852i
\(825\) 4313.52i 0.182034i
\(826\) 29624.0i 1.24788i
\(827\) 17732.9i 0.745628i −0.927906 0.372814i \(-0.878393\pi\)
0.927906 0.372814i \(-0.121607\pi\)
\(828\) −39580.3 −1.66124
\(829\) −42202.5 −1.76810 −0.884050 0.467392i \(-0.845194\pi\)
−0.884050 + 0.467392i \(0.845194\pi\)
\(830\) 19969.7i 0.835133i
\(831\) −20891.7 −0.872110
\(832\) −6400.92 + 89.4627i −0.266721 + 0.00372784i
\(833\) 3188.23 0.132612
\(834\) 70549.9i 2.92919i
\(835\) −12952.9 −0.536830
\(836\) 1267.61 0.0524415
\(837\) 41977.4i 1.73351i
\(838\) 33200.0i 1.36859i
\(839\) 24334.6i 1.00134i −0.865639 0.500669i \(-0.833087\pi\)
0.865639 0.500669i \(-0.166913\pi\)
\(840\) 8071.19i 0.331527i
\(841\) −10907.0 −0.447211
\(842\) 7050.14 0.288556
\(843\) 30189.3i 1.23342i
\(844\) 16581.2 0.676241
\(845\) 307.004 + 10980.7i 0.0124985 + 0.447039i
\(846\) 42327.7 1.72016
\(847\) 18056.3i 0.732492i
\(848\) −1166.46 −0.0472363
\(849\) −30853.4 −1.24721
\(850\) 8171.01i 0.329722i
\(851\) 33706.0i 1.35773i
\(852\) 23597.9i 0.948885i
\(853\) 40903.4i 1.64186i −0.571031 0.820929i \(-0.693456\pi\)
0.571031 0.820929i \(-0.306544\pi\)
\(854\) −63877.8 −2.55955
\(855\) 2760.16 0.110404
\(856\) 11808.9i 0.471518i
\(857\) −34239.0 −1.36474 −0.682370 0.731007i \(-0.739051\pi\)
−0.682370 + 0.731007i \(0.739051\pi\)
\(858\) −29556.4 + 413.096i −1.17604 + 0.0164369i
\(859\) 46008.6 1.82747 0.913734 0.406314i \(-0.133186\pi\)
0.913734 + 0.406314i \(0.133186\pi\)
\(860\) 4947.03i 0.196154i
\(861\) 73947.6 2.92698
\(862\) 11613.5 0.458884
\(863\) 1552.40i 0.0612331i 0.999531 + 0.0306166i \(0.00974708\pi\)
−0.999531 + 0.0306166i \(0.990253\pi\)
\(864\) 35566.0i 1.40044i
\(865\) 5462.69i 0.214725i
\(866\) 34595.9i 1.35752i
\(867\) 26499.0 1.03801
\(868\) 25653.1 1.00314
\(869\) 1808.25i 0.0705878i
\(870\) −18235.9 −0.710637
\(871\) −555.175 39721.9i −0.0215974 1.54527i
\(872\) 16776.8 0.651531
\(873\) 41956.9i 1.62661i
\(874\) 6787.63 0.262695
\(875\) −2432.38 −0.0939764
\(876\) 24570.4i 0.947669i
\(877\) 5802.07i 0.223400i −0.993742 0.111700i \(-0.964370\pi\)
0.993742 0.111700i \(-0.0356296\pi\)
\(878\) 2807.67i 0.107921i
\(879\) 80019.1i 3.07051i
\(880\) −7845.42 −0.300533
\(881\) −991.228 −0.0379062 −0.0189531 0.999820i \(-0.506033\pi\)
−0.0189531 + 0.999820i \(0.506033\pi\)
\(882\) 6105.93i 0.233104i
\(883\) 17576.6 0.669874 0.334937 0.942241i \(-0.391285\pi\)
0.334937 + 0.942241i \(0.391285\pi\)
\(884\) −22459.8 + 313.910i −0.854530 + 0.0119434i
\(885\) 17897.7 0.679804
\(886\) 5003.54i 0.189726i
\(887\) −27370.0 −1.03607 −0.518035 0.855360i \(-0.673336\pi\)
−0.518035 + 0.855360i \(0.673336\pi\)
\(888\) −17738.8 −0.670355
\(889\) 33696.1i 1.27124i
\(890\) 2144.08i 0.0807526i
\(891\) 4042.78i 0.152007i
\(892\) 4947.03i 0.185694i
\(893\) −2911.88 −0.109118
\(894\) −22318.9 −0.834961
\(895\) 13218.2i 0.493672i
\(896\) −22732.7 −0.847596
\(897\) −63488.6 + 887.350i −2.36324 + 0.0330298i
\(898\) −7866.13 −0.292312
\(899\) 28563.5i 1.05967i
\(900\) 6277.52 0.232501
\(901\) −1334.67 −0.0493498
\(902\) 32448.7i 1.19781i
\(903\) 30874.8i 1.13782i
\(904\) 6116.35i 0.225030i
\(905\) 568.280i 0.0208732i
\(906\) 37752.4 1.38437
\(907\) −28779.1 −1.05358 −0.526788 0.849997i \(-0.676604\pi\)
−0.526788 + 0.849997i \(0.676604\pi\)
\(908\) 3498.64i 0.127871i
\(909\) −11256.0 −0.410714
\(910\) −232.943 16666.7i −0.00848570 0.607140i
\(911\) 812.241 0.0295398 0.0147699 0.999891i \(-0.495298\pi\)
0.0147699 + 0.999891i \(0.495298\pi\)
\(912\) 7912.96i 0.287307i
\(913\) 21938.9 0.795260
\(914\) 38262.3 1.38469
\(915\) 38592.6i 1.39435i
\(916\) 18491.0i 0.666985i
\(917\) 45418.9i 1.63562i
\(918\) 55772.1i 2.00518i
\(919\) −7982.53 −0.286528 −0.143264 0.989685i \(-0.545760\pi\)
−0.143264 + 0.989685i \(0.545760\pi\)
\(920\) −7607.73 −0.272630
\(921\) 22637.5i 0.809915i
\(922\) −24625.4 −0.879604
\(923\) 335.636 + 24014.2i 0.0119692 + 0.856380i
\(924\) 17992.8 0.640604
\(925\) 5345.86i 0.190022i
\(926\) −25205.9 −0.894510
\(927\) −5807.97 −0.205781
\(928\) 24200.8i 0.856068i
\(929\) 52612.3i 1.85808i 0.369984 + 0.929038i \(0.379363\pi\)
−0.369984 + 0.929038i \(0.620637\pi\)
\(930\) 38635.2i 1.36226i
\(931\) 420.051i 0.0147869i
\(932\) −14720.3 −0.517359
\(933\) −16985.0 −0.595995
\(934\) 41509.0i 1.45419i
\(935\) −8976.74 −0.313979
\(936\) −296.272 21197.8i −0.0103461 0.740248i
\(937\) −34900.3 −1.21680 −0.608401 0.793630i \(-0.708189\pi\)
−0.608401 + 0.793630i \(0.708189\pi\)
\(938\) 60279.0i 2.09827i
\(939\) 35229.2 1.22435
\(940\) −6622.59 −0.229793
\(941\) 4626.31i 0.160269i 0.996784 + 0.0801346i \(0.0255350\pi\)
−0.996784 + 0.0801346i \(0.974465\pi\)
\(942\) 21276.5i 0.735909i
\(943\) 69701.4i 2.40699i
\(944\) 32552.3i 1.12234i
\(945\) 16602.4 0.571511
\(946\) 13548.1 0.465630
\(947\) 22103.4i 0.758463i 0.925302 + 0.379232i \(0.123812\pi\)
−0.925302 + 0.379232i \(0.876188\pi\)
\(948\) 4147.98 0.142110
\(949\) −349.468 25003.9i −0.0119539 0.855282i
\(950\) −1076.53 −0.0367656
\(951\) 5323.88i 0.181534i
\(952\) −16796.7 −0.571832
\(953\) 41498.1 1.41055 0.705276 0.708933i \(-0.250823\pi\)
0.705276 + 0.708933i \(0.250823\pi\)
\(954\) 2556.08i 0.0867465i
\(955\) 7934.60i 0.268856i
\(956\) 35500.7i 1.20102i
\(957\) 20034.1i 0.676708i
\(958\) 28286.0 0.953946
\(959\) 29734.4 1.00122
\(960\) 5868.57i 0.197299i
\(961\) −30724.7 −1.03134
\(962\) 36630.0 511.960i 1.22765 0.0171583i
\(963\) −57321.7 −1.91814
\(964\) 17257.4i 0.576579i
\(965\) 12404.4 0.413793
\(966\) 96345.4 3.20897
\(967\) 42191.4i 1.40309i 0.712627 + 0.701543i \(0.247505\pi\)
−0.712627 + 0.701543i \(0.752495\pi\)
\(968\) 8956.97i 0.297405i
\(969\) 9054.03i 0.300162i
\(970\) 16364.3i 0.541676i
\(971\) −10472.7 −0.346123 −0.173061 0.984911i \(-0.555366\pi\)
−0.173061 + 0.984911i \(0.555366\pi\)
\(972\) 15416.7 0.508735
\(973\) 43705.7i 1.44002i
\(974\) 78024.4 2.56680
\(975\) 10069.4 140.736i 0.330749 0.00462272i
\(976\) 70192.0 2.30204
\(977\) 34586.0i 1.13255i −0.824216 0.566276i \(-0.808384\pi\)
0.824216 0.566276i \(-0.191616\pi\)
\(978\) 64174.8 2.09825
\(979\) −2355.51 −0.0768972
\(980\) 955.335i 0.0311398i
\(981\) 81436.5i 2.65043i
\(982\) 41858.9i 1.36026i
\(983\) 53923.9i 1.74965i −0.484439 0.874825i \(-0.660976\pi\)
0.484439 0.874825i \(-0.339024\pi\)
\(984\) −36682.4 −1.18841
\(985\) 23601.4 0.763455
\(986\) 37950.1i 1.22574i
\(987\) −41332.1 −1.33294
\(988\) −41.3577 2959.09i −0.00133175 0.0952845i
\(989\) 29101.9 0.935678
\(990\) 17191.8i 0.551910i
\(991\) −2349.40 −0.0753090 −0.0376545 0.999291i \(-0.511989\pi\)
−0.0376545 + 0.999291i \(0.511989\pi\)
\(992\) −51272.9 −1.64104
\(993\) 36524.1i 1.16723i
\(994\) 36442.2i 1.16285i
\(995\) 4245.05i 0.135254i
\(996\) 50326.0i 1.60104i
\(997\) −10949.2 −0.347807 −0.173903 0.984763i \(-0.555638\pi\)
−0.173903 + 0.984763i \(0.555638\pi\)
\(998\) −32084.9 −1.01767
\(999\) 36488.7i 1.15561i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.4.c.a.51.11 yes 14
3.2 odd 2 585.4.b.e.181.4 14
4.3 odd 2 1040.4.k.d.961.2 14
5.2 odd 4 325.4.d.c.324.3 14
5.3 odd 4 325.4.d.d.324.12 14
5.4 even 2 325.4.c.e.51.4 14
13.5 odd 4 845.4.a.l.1.6 7
13.8 odd 4 845.4.a.i.1.2 7
13.12 even 2 inner 65.4.c.a.51.4 14
39.38 odd 2 585.4.b.e.181.11 14
52.51 odd 2 1040.4.k.d.961.1 14
65.12 odd 4 325.4.d.d.324.11 14
65.38 odd 4 325.4.d.c.324.4 14
65.64 even 2 325.4.c.e.51.11 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.4 14 13.12 even 2 inner
65.4.c.a.51.11 yes 14 1.1 even 1 trivial
325.4.c.e.51.4 14 5.4 even 2
325.4.c.e.51.11 14 65.64 even 2
325.4.d.c.324.3 14 5.2 odd 4
325.4.d.c.324.4 14 65.38 odd 4
325.4.d.d.324.11 14 65.12 odd 4
325.4.d.d.324.12 14 5.3 odd 4
585.4.b.e.181.4 14 3.2 odd 2
585.4.b.e.181.11 14 39.38 odd 2
845.4.a.i.1.2 7 13.8 odd 4
845.4.a.l.1.6 7 13.5 odd 4
1040.4.k.d.961.1 14 52.51 odd 2
1040.4.k.d.961.2 14 4.3 odd 2