Properties

Label 325.4.d.c.324.14
Level $325$
Weight $4$
Character 325.324
Analytic conductor $19.176$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(324,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.324"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.14
Root \(-4.29153i\) of defining polynomial
Character \(\chi\) \(=\) 325.324
Dual form 325.4.d.c.324.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.29153 q^{2} +5.89541i q^{3} +10.4172 q^{4} +25.3003i q^{6} +34.1818 q^{7} +10.3735 q^{8} -7.75582 q^{9} -20.2972i q^{11} +61.4137i q^{12} +(28.2809 + 37.3790i) q^{13} +146.692 q^{14} -38.8194 q^{16} -75.8275i q^{17} -33.2843 q^{18} +106.383i q^{19} +201.516i q^{21} -87.1059i q^{22} +11.7556i q^{23} +61.1562i q^{24} +(121.368 + 160.413i) q^{26} +113.452i q^{27} +356.079 q^{28} -224.787 q^{29} -126.246i q^{31} -249.583 q^{32} +119.660 q^{33} -325.416i q^{34} -80.7940 q^{36} +9.49313 q^{37} +456.544i q^{38} +(-220.365 + 166.727i) q^{39} +214.584i q^{41} +864.810i q^{42} -308.118i q^{43} -211.440i q^{44} +50.4494i q^{46} +42.4480 q^{47} -228.856i q^{48} +825.396 q^{49} +447.034 q^{51} +(294.608 + 389.385i) q^{52} -112.704i q^{53} +486.884i q^{54} +354.586 q^{56} -627.169 q^{57} -964.678 q^{58} -437.774i q^{59} +440.774 q^{61} -541.787i q^{62} -265.108 q^{63} -760.536 q^{64} +513.525 q^{66} -758.560 q^{67} -789.911i q^{68} -69.3040 q^{69} -693.631i q^{71} -80.4553 q^{72} +113.362 q^{73} +40.7400 q^{74} +1108.21i q^{76} -693.795i q^{77} +(-945.700 + 715.515i) q^{78} +1216.88 q^{79} -878.254 q^{81} +920.893i q^{82} -1117.77 q^{83} +2099.23i q^{84} -1322.30i q^{86} -1325.21i q^{87} -210.554i q^{88} -151.740i q^{89} +(966.692 + 1277.68i) q^{91} +122.460i q^{92} +744.270 q^{93} +182.167 q^{94} -1471.39i q^{96} +179.668 q^{97} +3542.21 q^{98} +157.421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{2} + 56 q^{4} + 108 q^{7} - 48 q^{8} - 158 q^{9} + 6 q^{13} + 152 q^{14} + 280 q^{16} - 272 q^{18} - 344 q^{26} + 572 q^{28} - 588 q^{29} - 1788 q^{32} + 248 q^{33} + 496 q^{36} + 940 q^{37}+ \cdots + 7364 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.29153 1.51728 0.758642 0.651508i \(-0.225863\pi\)
0.758642 + 0.651508i \(0.225863\pi\)
\(3\) 5.89541i 1.13457i 0.823521 + 0.567286i \(0.192007\pi\)
−0.823521 + 0.567286i \(0.807993\pi\)
\(4\) 10.4172 1.30215
\(5\) 0 0
\(6\) 25.3003i 1.72147i
\(7\) 34.1818 1.84564 0.922822 0.385226i \(-0.125877\pi\)
0.922822 + 0.385226i \(0.125877\pi\)
\(8\) 10.3735 0.458450
\(9\) −7.75582 −0.287253
\(10\) 0 0
\(11\) 20.2972i 0.556348i −0.960531 0.278174i \(-0.910271\pi\)
0.960531 0.278174i \(-0.0897293\pi\)
\(12\) 61.4137i 1.47738i
\(13\) 28.2809 + 37.3790i 0.603362 + 0.797467i
\(14\) 146.692 2.80037
\(15\) 0 0
\(16\) −38.8194 −0.606553
\(17\) 75.8275i 1.08182i −0.841082 0.540908i \(-0.818081\pi\)
0.841082 0.540908i \(-0.181919\pi\)
\(18\) −33.2843 −0.435844
\(19\) 106.383i 1.28452i 0.766487 + 0.642259i \(0.222003\pi\)
−0.766487 + 0.642259i \(0.777997\pi\)
\(20\) 0 0
\(21\) 201.516i 2.09402i
\(22\) 87.1059i 0.844139i
\(23\) 11.7556i 0.106574i 0.998579 + 0.0532872i \(0.0169699\pi\)
−0.998579 + 0.0532872i \(0.983030\pi\)
\(24\) 61.1562i 0.520144i
\(25\) 0 0
\(26\) 121.368 + 160.413i 0.915472 + 1.20998i
\(27\) 113.452i 0.808663i
\(28\) 356.079 2.40331
\(29\) −224.787 −1.43937 −0.719686 0.694299i \(-0.755714\pi\)
−0.719686 + 0.694299i \(0.755714\pi\)
\(30\) 0 0
\(31\) 126.246i 0.731432i −0.930726 0.365716i \(-0.880824\pi\)
0.930726 0.365716i \(-0.119176\pi\)
\(32\) −249.583 −1.37876
\(33\) 119.660 0.631217
\(34\) 325.416i 1.64142i
\(35\) 0 0
\(36\) −80.7940 −0.374046
\(37\) 9.49313 0.0421800 0.0210900 0.999778i \(-0.493286\pi\)
0.0210900 + 0.999778i \(0.493286\pi\)
\(38\) 456.544i 1.94898i
\(39\) −220.365 + 166.727i −0.904784 + 0.684558i
\(40\) 0 0
\(41\) 214.584i 0.817375i 0.912674 + 0.408687i \(0.134013\pi\)
−0.912674 + 0.408687i \(0.865987\pi\)
\(42\) 864.810i 3.17722i
\(43\) 308.118i 1.09273i −0.837546 0.546367i \(-0.816010\pi\)
0.837546 0.546367i \(-0.183990\pi\)
\(44\) 211.440i 0.724450i
\(45\) 0 0
\(46\) 50.4494i 0.161704i
\(47\) 42.4480 0.131738 0.0658689 0.997828i \(-0.479018\pi\)
0.0658689 + 0.997828i \(0.479018\pi\)
\(48\) 228.856i 0.688178i
\(49\) 825.396 2.40640
\(50\) 0 0
\(51\) 447.034 1.22740
\(52\) 294.608 + 389.385i 0.785669 + 1.03842i
\(53\) 112.704i 0.292097i −0.989277 0.146048i \(-0.953344\pi\)
0.989277 0.146048i \(-0.0466555\pi\)
\(54\) 486.884i 1.22697i
\(55\) 0 0
\(56\) 354.586 0.846135
\(57\) −627.169 −1.45738
\(58\) −964.678 −2.18394
\(59\) 437.774i 0.965989i −0.875623 0.482994i \(-0.839549\pi\)
0.875623 0.482994i \(-0.160451\pi\)
\(60\) 0 0
\(61\) 440.774 0.925170 0.462585 0.886575i \(-0.346922\pi\)
0.462585 + 0.886575i \(0.346922\pi\)
\(62\) 541.787i 1.10979i
\(63\) −265.108 −0.530166
\(64\) −760.536 −1.48542
\(65\) 0 0
\(66\) 513.525 0.957736
\(67\) −758.560 −1.38318 −0.691588 0.722292i \(-0.743089\pi\)
−0.691588 + 0.722292i \(0.743089\pi\)
\(68\) 789.911i 1.40869i
\(69\) −69.3040 −0.120916
\(70\) 0 0
\(71\) 693.631i 1.15942i −0.814823 0.579710i \(-0.803166\pi\)
0.814823 0.579710i \(-0.196834\pi\)
\(72\) −80.4553 −0.131691
\(73\) 113.362 0.181754 0.0908772 0.995862i \(-0.471033\pi\)
0.0908772 + 0.995862i \(0.471033\pi\)
\(74\) 40.7400 0.0639991
\(75\) 0 0
\(76\) 1108.21i 1.67264i
\(77\) 693.795i 1.02682i
\(78\) −945.700 + 715.515i −1.37281 + 1.03867i
\(79\) 1216.88 1.73304 0.866520 0.499143i \(-0.166352\pi\)
0.866520 + 0.499143i \(0.166352\pi\)
\(80\) 0 0
\(81\) −878.254 −1.20474
\(82\) 920.893i 1.24019i
\(83\) −1117.77 −1.47821 −0.739105 0.673591i \(-0.764751\pi\)
−0.739105 + 0.673591i \(0.764751\pi\)
\(84\) 2099.23i 2.72673i
\(85\) 0 0
\(86\) 1322.30i 1.65799i
\(87\) 1325.21i 1.63307i
\(88\) 210.554i 0.255058i
\(89\) 151.740i 0.180724i −0.995909 0.0903621i \(-0.971198\pi\)
0.995909 0.0903621i \(-0.0288024\pi\)
\(90\) 0 0
\(91\) 966.692 + 1277.68i 1.11359 + 1.47184i
\(92\) 122.460i 0.138776i
\(93\) 744.270 0.829862
\(94\) 182.167 0.199884
\(95\) 0 0
\(96\) 1471.39i 1.56431i
\(97\) 179.668 0.188067 0.0940337 0.995569i \(-0.470024\pi\)
0.0940337 + 0.995569i \(0.470024\pi\)
\(98\) 3542.21 3.65120
\(99\) 157.421i 0.159813i
\(100\) 0 0
\(101\) −219.395 −0.216145 −0.108072 0.994143i \(-0.534468\pi\)
−0.108072 + 0.994143i \(0.534468\pi\)
\(102\) 1918.46 1.86231
\(103\) 1010.41i 0.966591i −0.875457 0.483295i \(-0.839440\pi\)
0.875457 0.483295i \(-0.160560\pi\)
\(104\) 293.373 + 387.752i 0.276611 + 0.365599i
\(105\) 0 0
\(106\) 483.674i 0.443194i
\(107\) 694.878i 0.627817i −0.949453 0.313908i \(-0.898362\pi\)
0.949453 0.313908i \(-0.101638\pi\)
\(108\) 1181.86i 1.05300i
\(109\) 1189.96i 1.04567i −0.852435 0.522833i \(-0.824875\pi\)
0.852435 0.522833i \(-0.175125\pi\)
\(110\) 0 0
\(111\) 55.9659i 0.0478563i
\(112\) −1326.92 −1.11948
\(113\) 93.2049i 0.0775927i −0.999247 0.0387964i \(-0.987648\pi\)
0.999247 0.0387964i \(-0.0123524\pi\)
\(114\) −2691.51 −2.21126
\(115\) 0 0
\(116\) −2341.65 −1.87428
\(117\) −219.342 289.905i −0.173317 0.229075i
\(118\) 1878.72i 1.46568i
\(119\) 2591.92i 1.99665i
\(120\) 0 0
\(121\) 919.024 0.690476
\(122\) 1891.60 1.40375
\(123\) −1265.06 −0.927370
\(124\) 1315.13i 0.952436i
\(125\) 0 0
\(126\) −1137.72 −0.804413
\(127\) 779.785i 0.544841i 0.962178 + 0.272420i \(0.0878241\pi\)
−0.962178 + 0.272420i \(0.912176\pi\)
\(128\) −1267.20 −0.875045
\(129\) 1816.48 1.23979
\(130\) 0 0
\(131\) −1740.41 −1.16076 −0.580382 0.814344i \(-0.697097\pi\)
−0.580382 + 0.814344i \(0.697097\pi\)
\(132\) 1246.53 0.821940
\(133\) 3636.35i 2.37076i
\(134\) −3255.38 −2.09867
\(135\) 0 0
\(136\) 786.599i 0.495958i
\(137\) 932.185 0.581328 0.290664 0.956825i \(-0.406124\pi\)
0.290664 + 0.956825i \(0.406124\pi\)
\(138\) −297.420 −0.183464
\(139\) 1445.62 0.882131 0.441065 0.897475i \(-0.354601\pi\)
0.441065 + 0.897475i \(0.354601\pi\)
\(140\) 0 0
\(141\) 250.248i 0.149466i
\(142\) 2976.74i 1.75917i
\(143\) 758.689 574.023i 0.443670 0.335680i
\(144\) 301.076 0.174234
\(145\) 0 0
\(146\) 486.498 0.275773
\(147\) 4866.05i 2.73024i
\(148\) 98.8920 0.0549248
\(149\) 3510.93i 1.93038i 0.261545 + 0.965191i \(0.415768\pi\)
−0.261545 + 0.965191i \(0.584232\pi\)
\(150\) 0 0
\(151\) 1521.55i 0.820013i 0.912083 + 0.410007i \(0.134474\pi\)
−0.912083 + 0.410007i \(0.865526\pi\)
\(152\) 1103.56i 0.588887i
\(153\) 588.105i 0.310755i
\(154\) 2977.44i 1.55798i
\(155\) 0 0
\(156\) −2295.58 + 1736.83i −1.17817 + 0.891398i
\(157\) 3196.37i 1.62483i −0.583082 0.812413i \(-0.698153\pi\)
0.583082 0.812413i \(-0.301847\pi\)
\(158\) 5222.29 2.62951
\(159\) 664.438 0.331405
\(160\) 0 0
\(161\) 401.827i 0.196698i
\(162\) −3769.05 −1.82793
\(163\) −1363.46 −0.655179 −0.327590 0.944820i \(-0.606236\pi\)
−0.327590 + 0.944820i \(0.606236\pi\)
\(164\) 2235.37i 1.06435i
\(165\) 0 0
\(166\) −4796.95 −2.24286
\(167\) −922.250 −0.427340 −0.213670 0.976906i \(-0.568542\pi\)
−0.213670 + 0.976906i \(0.568542\pi\)
\(168\) 2090.43i 0.960001i
\(169\) −597.382 + 2114.22i −0.271908 + 0.962323i
\(170\) 0 0
\(171\) 825.085i 0.368981i
\(172\) 3209.73i 1.42291i
\(173\) 1361.55i 0.598362i 0.954196 + 0.299181i \(0.0967134\pi\)
−0.954196 + 0.299181i \(0.903287\pi\)
\(174\) 5687.17i 2.47783i
\(175\) 0 0
\(176\) 787.925i 0.337455i
\(177\) 2580.86 1.09598
\(178\) 651.198i 0.274210i
\(179\) −4222.14 −1.76300 −0.881501 0.472182i \(-0.843466\pi\)
−0.881501 + 0.472182i \(0.843466\pi\)
\(180\) 0 0
\(181\) −3487.32 −1.43210 −0.716051 0.698048i \(-0.754052\pi\)
−0.716051 + 0.698048i \(0.754052\pi\)
\(182\) 4148.59 + 5483.21i 1.68964 + 2.23320i
\(183\) 2598.54i 1.04967i
\(184\) 121.947i 0.0488589i
\(185\) 0 0
\(186\) 3194.06 1.25914
\(187\) −1539.09 −0.601867
\(188\) 442.190 0.171543
\(189\) 3878.00i 1.49250i
\(190\) 0 0
\(191\) 1431.56 0.542325 0.271162 0.962534i \(-0.412592\pi\)
0.271162 + 0.962534i \(0.412592\pi\)
\(192\) 4483.67i 1.68532i
\(193\) −131.553 −0.0490641 −0.0245321 0.999699i \(-0.507810\pi\)
−0.0245321 + 0.999699i \(0.507810\pi\)
\(194\) 771.051 0.285352
\(195\) 0 0
\(196\) 8598.33 3.13350
\(197\) −898.804 −0.325062 −0.162531 0.986703i \(-0.551966\pi\)
−0.162531 + 0.986703i \(0.551966\pi\)
\(198\) 675.578i 0.242481i
\(199\) 2240.52 0.798124 0.399062 0.916924i \(-0.369336\pi\)
0.399062 + 0.916924i \(0.369336\pi\)
\(200\) 0 0
\(201\) 4472.02i 1.56931i
\(202\) −941.539 −0.327953
\(203\) −7683.61 −2.65657
\(204\) 4656.85 1.59826
\(205\) 0 0
\(206\) 4336.21i 1.46659i
\(207\) 91.1742i 0.0306138i
\(208\) −1097.85 1451.03i −0.365971 0.483706i
\(209\) 2159.27 0.714640
\(210\) 0 0
\(211\) −2911.67 −0.949989 −0.474995 0.879989i \(-0.657550\pi\)
−0.474995 + 0.879989i \(0.657550\pi\)
\(212\) 1174.07i 0.380354i
\(213\) 4089.24 1.31544
\(214\) 2982.09i 0.952576i
\(215\) 0 0
\(216\) 1176.90i 0.370731i
\(217\) 4315.31i 1.34996i
\(218\) 5106.75i 1.58657i
\(219\) 668.318i 0.206213i
\(220\) 0 0
\(221\) 2834.36 2144.47i 0.862713 0.652727i
\(222\) 240.179i 0.0726116i
\(223\) 1492.95 0.448321 0.224160 0.974552i \(-0.428036\pi\)
0.224160 + 0.974552i \(0.428036\pi\)
\(224\) −8531.19 −2.54471
\(225\) 0 0
\(226\) 399.991i 0.117730i
\(227\) 3318.55 0.970309 0.485155 0.874428i \(-0.338763\pi\)
0.485155 + 0.874428i \(0.338763\pi\)
\(228\) −6533.35 −1.89773
\(229\) 3754.91i 1.08354i 0.840526 + 0.541772i \(0.182246\pi\)
−0.840526 + 0.541772i \(0.817754\pi\)
\(230\) 0 0
\(231\) 4090.20 1.16500
\(232\) −2331.83 −0.659880
\(233\) 6098.90i 1.71482i −0.514636 0.857408i \(-0.672073\pi\)
0.514636 0.857408i \(-0.327927\pi\)
\(234\) −941.311 1244.14i −0.262972 0.347571i
\(235\) 0 0
\(236\) 4560.39i 1.25786i
\(237\) 7174.02i 1.96626i
\(238\) 11123.3i 3.02948i
\(239\) 2603.41i 0.704606i 0.935886 + 0.352303i \(0.114601\pi\)
−0.935886 + 0.352303i \(0.885399\pi\)
\(240\) 0 0
\(241\) 73.6905i 0.0196963i 0.999952 + 0.00984817i \(0.00313482\pi\)
−0.999952 + 0.00984817i \(0.996865\pi\)
\(242\) 3944.02 1.04765
\(243\) 2114.46i 0.558199i
\(244\) 4591.64 1.20471
\(245\) 0 0
\(246\) −5429.04 −1.40708
\(247\) −3976.48 + 3008.60i −1.02436 + 0.775030i
\(248\) 1309.61i 0.335325i
\(249\) 6589.72i 1.67713i
\(250\) 0 0
\(251\) 1764.37 0.443689 0.221845 0.975082i \(-0.428792\pi\)
0.221845 + 0.975082i \(0.428792\pi\)
\(252\) −2761.69 −0.690357
\(253\) 238.605 0.0592924
\(254\) 3346.47i 0.826678i
\(255\) 0 0
\(256\) 646.064 0.157731
\(257\) 6778.90i 1.64535i −0.568508 0.822677i \(-0.692479\pi\)
0.568508 0.822677i \(-0.307521\pi\)
\(258\) 7795.48 1.88111
\(259\) 324.492 0.0778493
\(260\) 0 0
\(261\) 1743.40 0.413464
\(262\) −7469.01 −1.76121
\(263\) 5829.83i 1.36686i 0.730018 + 0.683428i \(0.239512\pi\)
−0.730018 + 0.683428i \(0.760488\pi\)
\(264\) 1241.30 0.289381
\(265\) 0 0
\(266\) 15605.5i 3.59712i
\(267\) 894.572 0.205045
\(268\) −7902.08 −1.80111
\(269\) −1701.60 −0.385682 −0.192841 0.981230i \(-0.561770\pi\)
−0.192841 + 0.981230i \(0.561770\pi\)
\(270\) 0 0
\(271\) 5238.97i 1.17434i 0.809465 + 0.587168i \(0.199757\pi\)
−0.809465 + 0.587168i \(0.800243\pi\)
\(272\) 2943.58i 0.656179i
\(273\) −7532.46 + 5699.04i −1.66991 + 1.26345i
\(274\) 4000.50 0.882040
\(275\) 0 0
\(276\) −721.954 −0.157451
\(277\) 3327.15i 0.721694i −0.932625 0.360847i \(-0.882488\pi\)
0.932625 0.360847i \(-0.117512\pi\)
\(278\) 6203.93 1.33844
\(279\) 979.139i 0.210106i
\(280\) 0 0
\(281\) 7461.49i 1.58404i 0.610495 + 0.792020i \(0.290970\pi\)
−0.610495 + 0.792020i \(0.709030\pi\)
\(282\) 1073.95i 0.226782i
\(283\) 8288.85i 1.74106i 0.492112 + 0.870532i \(0.336225\pi\)
−0.492112 + 0.870532i \(0.663775\pi\)
\(284\) 7225.70i 1.50974i
\(285\) 0 0
\(286\) 3255.93 2463.43i 0.673173 0.509321i
\(287\) 7334.87i 1.50858i
\(288\) 1935.72 0.396053
\(289\) −836.812 −0.170326
\(290\) 0 0
\(291\) 1059.22i 0.213376i
\(292\) 1180.92 0.236672
\(293\) 940.431 0.187510 0.0937552 0.995595i \(-0.470113\pi\)
0.0937552 + 0.995595i \(0.470113\pi\)
\(294\) 20882.8i 4.14254i
\(295\) 0 0
\(296\) 98.4773 0.0193374
\(297\) 2302.76 0.449898
\(298\) 15067.3i 2.92894i
\(299\) −439.412 + 332.458i −0.0849895 + 0.0643029i
\(300\) 0 0
\(301\) 10532.0i 2.01680i
\(302\) 6529.78i 1.24419i
\(303\) 1293.42i 0.245231i
\(304\) 4129.71i 0.779129i
\(305\) 0 0
\(306\) 2523.87i 0.471503i
\(307\) −7526.42 −1.39920 −0.699602 0.714533i \(-0.746639\pi\)
−0.699602 + 0.714533i \(0.746639\pi\)
\(308\) 7227.41i 1.33708i
\(309\) 5956.79 1.09667
\(310\) 0 0
\(311\) 3715.53 0.677454 0.338727 0.940885i \(-0.390004\pi\)
0.338727 + 0.940885i \(0.390004\pi\)
\(312\) −2285.96 + 1729.55i −0.414798 + 0.313835i
\(313\) 5715.69i 1.03217i −0.856536 0.516086i \(-0.827388\pi\)
0.856536 0.516086i \(-0.172612\pi\)
\(314\) 13717.3i 2.46532i
\(315\) 0 0
\(316\) 12676.5 2.25668
\(317\) 3825.01 0.677709 0.338855 0.940839i \(-0.389960\pi\)
0.338855 + 0.940839i \(0.389960\pi\)
\(318\) 2851.45 0.502835
\(319\) 4562.53i 0.800793i
\(320\) 0 0
\(321\) 4096.59 0.712303
\(322\) 1724.45i 0.298447i
\(323\) 8066.73 1.38961
\(324\) −9148.96 −1.56875
\(325\) 0 0
\(326\) −5851.31 −0.994093
\(327\) 7015.31 1.18638
\(328\) 2225.99i 0.374725i
\(329\) 1450.95 0.243141
\(330\) 0 0
\(331\) 3914.20i 0.649981i 0.945717 + 0.324991i \(0.105361\pi\)
−0.945717 + 0.324991i \(0.894639\pi\)
\(332\) −11644.1 −1.92485
\(333\) −73.6270 −0.0121163
\(334\) −3957.86 −0.648397
\(335\) 0 0
\(336\) 7822.72i 1.27013i
\(337\) 4622.42i 0.747179i 0.927594 + 0.373589i \(0.121873\pi\)
−0.927594 + 0.373589i \(0.878127\pi\)
\(338\) −2563.68 + 9073.25i −0.412562 + 1.46012i
\(339\) 549.481 0.0880345
\(340\) 0 0
\(341\) −2562.43 −0.406931
\(342\) 3540.88i 0.559850i
\(343\) 16489.2 2.59572
\(344\) 3196.27i 0.500964i
\(345\) 0 0
\(346\) 5843.12i 0.907885i
\(347\) 8192.01i 1.26735i 0.773600 + 0.633674i \(0.218454\pi\)
−0.773600 + 0.633674i \(0.781546\pi\)
\(348\) 13805.0i 2.12651i
\(349\) 243.024i 0.0372744i 0.999826 + 0.0186372i \(0.00593275\pi\)
−0.999826 + 0.0186372i \(0.994067\pi\)
\(350\) 0 0
\(351\) −4240.73 + 3208.53i −0.644882 + 0.487917i
\(352\) 5065.83i 0.767073i
\(353\) −2766.97 −0.417198 −0.208599 0.978001i \(-0.566890\pi\)
−0.208599 + 0.978001i \(0.566890\pi\)
\(354\) 11075.8 1.66292
\(355\) 0 0
\(356\) 1580.71i 0.235330i
\(357\) 15280.4 2.26534
\(358\) −18119.4 −2.67497
\(359\) 2472.79i 0.363535i 0.983342 + 0.181768i \(0.0581818\pi\)
−0.983342 + 0.181768i \(0.941818\pi\)
\(360\) 0 0
\(361\) −4458.27 −0.649988
\(362\) −14965.9 −2.17291
\(363\) 5418.02i 0.783395i
\(364\) 10070.2 + 13309.9i 1.45007 + 1.91656i
\(365\) 0 0
\(366\) 11151.7i 1.59265i
\(367\) 5263.61i 0.748660i −0.927296 0.374330i \(-0.877873\pi\)
0.927296 0.374330i \(-0.122127\pi\)
\(368\) 456.345i 0.0646430i
\(369\) 1664.27i 0.234793i
\(370\) 0 0
\(371\) 3852.44i 0.539107i
\(372\) 7753.22 1.08061
\(373\) 5633.17i 0.781969i 0.920397 + 0.390984i \(0.127865\pi\)
−0.920397 + 0.390984i \(0.872135\pi\)
\(374\) −6605.03 −0.913203
\(375\) 0 0
\(376\) 440.336 0.0603952
\(377\) −6357.16 8402.30i −0.868463 1.14785i
\(378\) 16642.6i 2.26455i
\(379\) 9079.61i 1.23058i −0.788302 0.615288i \(-0.789040\pi\)
0.788302 0.615288i \(-0.210960\pi\)
\(380\) 0 0
\(381\) −4597.15 −0.618161
\(382\) 6143.58 0.822861
\(383\) 1196.31 0.159604 0.0798022 0.996811i \(-0.474571\pi\)
0.0798022 + 0.996811i \(0.474571\pi\)
\(384\) 7470.66i 0.992801i
\(385\) 0 0
\(386\) −564.562 −0.0744442
\(387\) 2389.71i 0.313891i
\(388\) 1871.64 0.244892
\(389\) −1888.94 −0.246203 −0.123102 0.992394i \(-0.539284\pi\)
−0.123102 + 0.992394i \(0.539284\pi\)
\(390\) 0 0
\(391\) 891.397 0.115294
\(392\) 8562.27 1.10321
\(393\) 10260.4i 1.31697i
\(394\) −3857.24 −0.493211
\(395\) 0 0
\(396\) 1639.89i 0.208100i
\(397\) 9297.50 1.17539 0.587693 0.809084i \(-0.300036\pi\)
0.587693 + 0.809084i \(0.300036\pi\)
\(398\) 9615.27 1.21098
\(399\) −21437.8 −2.68980
\(400\) 0 0
\(401\) 2777.98i 0.345949i 0.984926 + 0.172975i \(0.0553379\pi\)
−0.984926 + 0.172975i \(0.944662\pi\)
\(402\) 19191.8i 2.38109i
\(403\) 4718.94 3570.34i 0.583293 0.441319i
\(404\) −2285.48 −0.281453
\(405\) 0 0
\(406\) −32974.4 −4.03077
\(407\) 192.684i 0.0234668i
\(408\) 4637.32 0.562700
\(409\) 202.305i 0.0244581i −0.999925 0.0122290i \(-0.996107\pi\)
0.999925 0.0122290i \(-0.00389272\pi\)
\(410\) 0 0
\(411\) 5495.61i 0.659558i
\(412\) 10525.7i 1.25865i
\(413\) 14963.9i 1.78287i
\(414\) 391.277i 0.0464498i
\(415\) 0 0
\(416\) −7058.42 9329.16i −0.831894 1.09952i
\(417\) 8522.54i 1.00084i
\(418\) 9266.56 1.08431
\(419\) 14295.5 1.66678 0.833390 0.552685i \(-0.186397\pi\)
0.833390 + 0.552685i \(0.186397\pi\)
\(420\) 0 0
\(421\) 3873.61i 0.448428i 0.974540 + 0.224214i \(0.0719815\pi\)
−0.974540 + 0.224214i \(0.928019\pi\)
\(422\) −12495.5 −1.44140
\(423\) −329.219 −0.0378421
\(424\) 1169.14i 0.133912i
\(425\) 0 0
\(426\) 17549.1 1.99590
\(427\) 15066.5 1.70753
\(428\) 7238.69i 0.817512i
\(429\) 3384.10 + 4472.78i 0.380853 + 0.503375i
\(430\) 0 0
\(431\) 1635.54i 0.182787i 0.995815 + 0.0913937i \(0.0291322\pi\)
−0.995815 + 0.0913937i \(0.970868\pi\)
\(432\) 4404.15i 0.490497i
\(433\) 5504.75i 0.610950i −0.952200 0.305475i \(-0.901185\pi\)
0.952200 0.305475i \(-0.0988152\pi\)
\(434\) 18519.3i 2.04828i
\(435\) 0 0
\(436\) 12396.1i 1.36162i
\(437\) −1250.59 −0.136897
\(438\) 2868.10i 0.312884i
\(439\) −4613.62 −0.501585 −0.250793 0.968041i \(-0.580691\pi\)
−0.250793 + 0.968041i \(0.580691\pi\)
\(440\) 0 0
\(441\) −6401.63 −0.691246
\(442\) 12163.7 9203.05i 1.30898 0.990372i
\(443\) 13293.5i 1.42572i −0.701305 0.712862i \(-0.747399\pi\)
0.701305 0.712862i \(-0.252601\pi\)
\(444\) 583.008i 0.0623161i
\(445\) 0 0
\(446\) 6407.05 0.680230
\(447\) −20698.4 −2.19016
\(448\) −25996.5 −2.74156
\(449\) 7629.93i 0.801957i 0.916088 + 0.400978i \(0.131330\pi\)
−0.916088 + 0.400978i \(0.868670\pi\)
\(450\) 0 0
\(451\) 4355.45 0.454745
\(452\) 970.935i 0.101037i
\(453\) −8970.16 −0.930364
\(454\) 14241.7 1.47223
\(455\) 0 0
\(456\) −6505.96 −0.668135
\(457\) −13439.5 −1.37566 −0.687829 0.725873i \(-0.741436\pi\)
−0.687829 + 0.725873i \(0.741436\pi\)
\(458\) 16114.3i 1.64404i
\(459\) 8602.80 0.874825
\(460\) 0 0
\(461\) 15879.6i 1.60430i −0.597119 0.802152i \(-0.703688\pi\)
0.597119 0.802152i \(-0.296312\pi\)
\(462\) 17553.2 1.76764
\(463\) −14962.5 −1.50187 −0.750937 0.660374i \(-0.770398\pi\)
−0.750937 + 0.660374i \(0.770398\pi\)
\(464\) 8726.08 0.873056
\(465\) 0 0
\(466\) 26173.6i 2.60186i
\(467\) 7204.07i 0.713843i 0.934134 + 0.356922i \(0.116174\pi\)
−0.934134 + 0.356922i \(0.883826\pi\)
\(468\) −2284.93 3020.00i −0.225686 0.298290i
\(469\) −25929.0 −2.55285
\(470\) 0 0
\(471\) 18843.9 1.84348
\(472\) 4541.26i 0.442857i
\(473\) −6253.93 −0.607941
\(474\) 30787.5i 2.98337i
\(475\) 0 0
\(476\) 27000.6i 2.59994i
\(477\) 874.115i 0.0839056i
\(478\) 11172.6i 1.06909i
\(479\) 11072.8i 1.05621i 0.849178 + 0.528107i \(0.177098\pi\)
−0.849178 + 0.528107i \(0.822902\pi\)
\(480\) 0 0
\(481\) 268.474 + 354.844i 0.0254498 + 0.0336372i
\(482\) 316.245i 0.0298850i
\(483\) −2368.93 −0.223168
\(484\) 9573.67 0.899105
\(485\) 0 0
\(486\) 9074.25i 0.846947i
\(487\) 6559.96 0.610391 0.305195 0.952290i \(-0.401278\pi\)
0.305195 + 0.952290i \(0.401278\pi\)
\(488\) 4572.39 0.424144
\(489\) 8038.13i 0.743348i
\(490\) 0 0
\(491\) 5951.42 0.547014 0.273507 0.961870i \(-0.411816\pi\)
0.273507 + 0.961870i \(0.411816\pi\)
\(492\) −13178.4 −1.20758
\(493\) 17045.0i 1.55714i
\(494\) −17065.2 + 12911.5i −1.55425 + 1.17594i
\(495\) 0 0
\(496\) 4900.78i 0.443653i
\(497\) 23709.6i 2.13988i
\(498\) 28280.0i 2.54469i
\(499\) 203.291i 0.0182376i 0.999958 + 0.00911880i \(0.00290264\pi\)
−0.999958 + 0.00911880i \(0.997097\pi\)
\(500\) 0 0
\(501\) 5437.04i 0.484848i
\(502\) 7571.84 0.673203
\(503\) 4109.83i 0.364311i 0.983270 + 0.182155i \(0.0583074\pi\)
−0.983270 + 0.182155i \(0.941693\pi\)
\(504\) −2750.11 −0.243055
\(505\) 0 0
\(506\) 1023.98 0.0899635
\(507\) −12464.2 3521.81i −1.09182 0.308499i
\(508\) 8123.19i 0.709465i
\(509\) 19836.8i 1.72741i −0.503997 0.863705i \(-0.668138\pi\)
0.503997 0.863705i \(-0.331862\pi\)
\(510\) 0 0
\(511\) 3874.93 0.335454
\(512\) 12910.2 1.11437
\(513\) −12069.4 −1.03874
\(514\) 29091.8i 2.49647i
\(515\) 0 0
\(516\) 18922.7 1.61439
\(517\) 861.575i 0.0732922i
\(518\) 1392.57 0.118120
\(519\) −8026.88 −0.678884
\(520\) 0 0
\(521\) −17335.3 −1.45772 −0.728861 0.684661i \(-0.759950\pi\)
−0.728861 + 0.684661i \(0.759950\pi\)
\(522\) 7481.87 0.627342
\(523\) 2886.27i 0.241315i 0.992694 + 0.120658i \(0.0385003\pi\)
−0.992694 + 0.120658i \(0.961500\pi\)
\(524\) −18130.2 −1.51149
\(525\) 0 0
\(526\) 25018.9i 2.07391i
\(527\) −9572.90 −0.791275
\(528\) −4645.14 −0.382867
\(529\) 12028.8 0.988642
\(530\) 0 0
\(531\) 3395.30i 0.277483i
\(532\) 37880.6i 3.08709i
\(533\) −8020.94 + 6068.62i −0.651830 + 0.493173i
\(534\) 3839.08 0.311111
\(535\) 0 0
\(536\) −7868.94 −0.634117
\(537\) 24891.2i 2.00025i
\(538\) −7302.47 −0.585190
\(539\) 16753.2i 1.33880i
\(540\) 0 0
\(541\) 14428.4i 1.14663i 0.819336 + 0.573314i \(0.194342\pi\)
−0.819336 + 0.573314i \(0.805658\pi\)
\(542\) 22483.2i 1.78180i
\(543\) 20559.2i 1.62482i
\(544\) 18925.2i 1.49157i
\(545\) 0 0
\(546\) −32325.8 + 24457.6i −2.53373 + 1.91701i
\(547\) 17024.1i 1.33071i −0.746529 0.665353i \(-0.768281\pi\)
0.746529 0.665353i \(-0.231719\pi\)
\(548\) 9710.77 0.756977
\(549\) −3418.57 −0.265758
\(550\) 0 0
\(551\) 23913.4i 1.84890i
\(552\) −718.927 −0.0554340
\(553\) 41595.3 3.19857
\(554\) 14278.6i 1.09502i
\(555\) 0 0
\(556\) 15059.4 1.14867
\(557\) 12087.4 0.919498 0.459749 0.888049i \(-0.347939\pi\)
0.459749 + 0.888049i \(0.347939\pi\)
\(558\) 4202.00i 0.318790i
\(559\) 11517.2 8713.86i 0.871420 0.659315i
\(560\) 0 0
\(561\) 9073.53i 0.682861i
\(562\) 32021.2i 2.40344i
\(563\) 2618.53i 0.196017i −0.995186 0.0980086i \(-0.968753\pi\)
0.995186 0.0980086i \(-0.0312473\pi\)
\(564\) 2606.89i 0.194627i
\(565\) 0 0
\(566\) 35571.8i 2.64169i
\(567\) −30020.3 −2.22352
\(568\) 7195.40i 0.531536i
\(569\) −6859.30 −0.505372 −0.252686 0.967548i \(-0.581314\pi\)
−0.252686 + 0.967548i \(0.581314\pi\)
\(570\) 0 0
\(571\) −15207.9 −1.11459 −0.557297 0.830314i \(-0.688161\pi\)
−0.557297 + 0.830314i \(0.688161\pi\)
\(572\) 7903.42 5979.72i 0.577725 0.437106i
\(573\) 8439.63i 0.615306i
\(574\) 31477.8i 2.28895i
\(575\) 0 0
\(576\) 5898.58 0.426692
\(577\) −17531.0 −1.26486 −0.632429 0.774618i \(-0.717942\pi\)
−0.632429 + 0.774618i \(0.717942\pi\)
\(578\) −3591.20 −0.258433
\(579\) 775.557i 0.0556668i
\(580\) 0 0
\(581\) −38207.5 −2.72825
\(582\) 4545.66i 0.323752i
\(583\) −2287.58 −0.162508
\(584\) 1175.97 0.0833252
\(585\) 0 0
\(586\) 4035.89 0.284507
\(587\) 5988.25 0.421059 0.210529 0.977588i \(-0.432481\pi\)
0.210529 + 0.977588i \(0.432481\pi\)
\(588\) 50690.6i 3.55518i
\(589\) 13430.4 0.939539
\(590\) 0 0
\(591\) 5298.82i 0.368806i
\(592\) −368.518 −0.0255844
\(593\) 15990.9 1.10737 0.553683 0.832728i \(-0.313222\pi\)
0.553683 + 0.832728i \(0.313222\pi\)
\(594\) 9882.37 0.682624
\(595\) 0 0
\(596\) 36574.1i 2.51365i
\(597\) 13208.8i 0.905528i
\(598\) −1885.75 + 1426.75i −0.128953 + 0.0975658i
\(599\) −8103.88 −0.552781 −0.276390 0.961045i \(-0.589138\pi\)
−0.276390 + 0.961045i \(0.589138\pi\)
\(600\) 0 0
\(601\) 5291.20 0.359122 0.179561 0.983747i \(-0.442532\pi\)
0.179561 + 0.983747i \(0.442532\pi\)
\(602\) 45198.5i 3.06006i
\(603\) 5883.26 0.397321
\(604\) 15850.3i 1.06778i
\(605\) 0 0
\(606\) 5550.75i 0.372086i
\(607\) 11506.8i 0.769431i 0.923035 + 0.384715i \(0.125700\pi\)
−0.923035 + 0.384715i \(0.874300\pi\)
\(608\) 26551.3i 1.77105i
\(609\) 45298.0i 3.01407i
\(610\) 0 0
\(611\) 1200.47 + 1586.67i 0.0794857 + 0.105057i
\(612\) 6126.41i 0.404650i
\(613\) 4997.20 0.329258 0.164629 0.986356i \(-0.447357\pi\)
0.164629 + 0.986356i \(0.447357\pi\)
\(614\) −32299.9 −2.12299
\(615\) 0 0
\(616\) 7197.10i 0.470746i
\(617\) −1546.06 −0.100878 −0.0504392 0.998727i \(-0.516062\pi\)
−0.0504392 + 0.998727i \(0.516062\pi\)
\(618\) 25563.7 1.66395
\(619\) 7719.68i 0.501260i 0.968083 + 0.250630i \(0.0806378\pi\)
−0.968083 + 0.250630i \(0.919362\pi\)
\(620\) 0 0
\(621\) −1333.70 −0.0861827
\(622\) 15945.3 1.02789
\(623\) 5186.76i 0.333553i
\(624\) 8554.42 6472.26i 0.548799 0.415221i
\(625\) 0 0
\(626\) 24529.1i 1.56610i
\(627\) 12729.8i 0.810810i
\(628\) 33297.2i 2.11577i
\(629\) 719.841i 0.0456310i
\(630\) 0 0
\(631\) 7009.39i 0.442218i 0.975249 + 0.221109i \(0.0709676\pi\)
−0.975249 + 0.221109i \(0.929032\pi\)
\(632\) 12623.4 0.794511
\(633\) 17165.5i 1.07783i
\(634\) 16415.1 1.02828
\(635\) 0 0
\(636\) 6921.59 0.431539
\(637\) 23342.9 + 30852.5i 1.45193 + 1.91903i
\(638\) 19580.2i 1.21503i
\(639\) 5379.68i 0.333046i
\(640\) 0 0
\(641\) 3091.60 0.190501 0.0952504 0.995453i \(-0.469635\pi\)
0.0952504 + 0.995453i \(0.469635\pi\)
\(642\) 17580.6 1.08077
\(643\) −5872.84 −0.360190 −0.180095 0.983649i \(-0.557641\pi\)
−0.180095 + 0.983649i \(0.557641\pi\)
\(644\) 4185.92i 0.256131i
\(645\) 0 0
\(646\) 34618.6 2.10844
\(647\) 7029.20i 0.427120i −0.976930 0.213560i \(-0.931494\pi\)
0.976930 0.213560i \(-0.0685058\pi\)
\(648\) −9110.60 −0.552312
\(649\) −8885.59 −0.537426
\(650\) 0 0
\(651\) 25440.5 1.53163
\(652\) −14203.4 −0.853142
\(653\) 4151.74i 0.248806i 0.992232 + 0.124403i \(0.0397015\pi\)
−0.992232 + 0.124403i \(0.960299\pi\)
\(654\) 30106.4 1.80008
\(655\) 0 0
\(656\) 8330.02i 0.495781i
\(657\) −879.219 −0.0522094
\(658\) 6226.79 0.368914
\(659\) −5191.50 −0.306877 −0.153439 0.988158i \(-0.549035\pi\)
−0.153439 + 0.988158i \(0.549035\pi\)
\(660\) 0 0
\(661\) 787.020i 0.0463109i −0.999732 0.0231555i \(-0.992629\pi\)
0.999732 0.0231555i \(-0.00737127\pi\)
\(662\) 16797.9i 0.986206i
\(663\) 12642.5 + 16709.7i 0.740565 + 0.978810i
\(664\) −11595.2 −0.677685
\(665\) 0 0
\(666\) −315.973 −0.0183839
\(667\) 2642.50i 0.153400i
\(668\) −9607.27 −0.556462
\(669\) 8801.57i 0.508652i
\(670\) 0 0
\(671\) 8946.48i 0.514717i
\(672\) 50294.8i 2.88715i
\(673\) 10073.1i 0.576952i 0.957487 + 0.288476i \(0.0931486\pi\)
−0.957487 + 0.288476i \(0.906851\pi\)
\(674\) 19837.2i 1.13368i
\(675\) 0 0
\(676\) −6223.06 + 22024.3i −0.354065 + 1.25309i
\(677\) 6795.48i 0.385778i −0.981221 0.192889i \(-0.938214\pi\)
0.981221 0.192889i \(-0.0617857\pi\)
\(678\) 2358.11 0.133573
\(679\) 6141.38 0.347105
\(680\) 0 0
\(681\) 19564.2i 1.10089i
\(682\) −10996.8 −0.617430
\(683\) −8789.65 −0.492426 −0.246213 0.969216i \(-0.579186\pi\)
−0.246213 + 0.969216i \(0.579186\pi\)
\(684\) 8595.09i 0.480470i
\(685\) 0 0
\(686\) 70763.7 3.93844
\(687\) −22136.7 −1.22936
\(688\) 11961.0i 0.662801i
\(689\) 4212.78 3187.38i 0.232938 0.176240i
\(690\) 0 0
\(691\) 35940.9i 1.97866i 0.145687 + 0.989331i \(0.453461\pi\)
−0.145687 + 0.989331i \(0.546539\pi\)
\(692\) 14183.5i 0.779158i
\(693\) 5380.95i 0.294957i
\(694\) 35156.2i 1.92293i
\(695\) 0 0
\(696\) 13747.1i 0.748681i
\(697\) 16271.4 0.884249
\(698\) 1042.94i 0.0565559i
\(699\) 35955.5 1.94558
\(700\) 0 0
\(701\) 8533.98 0.459806 0.229903 0.973214i \(-0.426159\pi\)
0.229903 + 0.973214i \(0.426159\pi\)
\(702\) −18199.2 + 13769.5i −0.978470 + 0.740308i
\(703\) 1009.90i 0.0541810i
\(704\) 15436.7i 0.826412i
\(705\) 0 0
\(706\) −11874.5 −0.633009
\(707\) −7499.31 −0.398926
\(708\) 26885.3 1.42714
\(709\) 16404.0i 0.868923i 0.900690 + 0.434462i \(0.143061\pi\)
−0.900690 + 0.434462i \(0.856939\pi\)
\(710\) 0 0
\(711\) −9437.93 −0.497820
\(712\) 1574.08i 0.0828529i
\(713\) 1484.09 0.0779519
\(714\) 65576.4 3.43716
\(715\) 0 0
\(716\) −43982.9 −2.29570
\(717\) −15348.2 −0.799426
\(718\) 10612.1i 0.551586i
\(719\) −1640.70 −0.0851012 −0.0425506 0.999094i \(-0.513548\pi\)
−0.0425506 + 0.999094i \(0.513548\pi\)
\(720\) 0 0
\(721\) 34537.7i 1.78398i
\(722\) −19132.8 −0.986217
\(723\) −434.435 −0.0223469
\(724\) −36328.2 −1.86481
\(725\) 0 0
\(726\) 23251.6i 1.18863i
\(727\) 3373.78i 0.172114i 0.996290 + 0.0860569i \(0.0274267\pi\)
−0.996290 + 0.0860569i \(0.972573\pi\)
\(728\) 10028.0 + 13254.1i 0.510526 + 0.674765i
\(729\) −11247.3 −0.571422
\(730\) 0 0
\(731\) −23363.8 −1.18214
\(732\) 27069.6i 1.36683i
\(733\) −26029.1 −1.31161 −0.655803 0.754932i \(-0.727670\pi\)
−0.655803 + 0.754932i \(0.727670\pi\)
\(734\) 22588.9i 1.13593i
\(735\) 0 0
\(736\) 2933.99i 0.146941i
\(737\) 15396.6i 0.769528i
\(738\) 7142.28i 0.356248i
\(739\) 32836.8i 1.63454i 0.576258 + 0.817268i \(0.304512\pi\)
−0.576258 + 0.817268i \(0.695488\pi\)
\(740\) 0 0
\(741\) −17736.9 23443.0i −0.879327 1.16221i
\(742\) 16532.8i 0.817978i
\(743\) −7026.50 −0.346941 −0.173471 0.984839i \(-0.555498\pi\)
−0.173471 + 0.984839i \(0.555498\pi\)
\(744\) 7720.71 0.380450
\(745\) 0 0
\(746\) 24174.9i 1.18647i
\(747\) 8669.24 0.424620
\(748\) −16033.0 −0.783722
\(749\) 23752.2i 1.15873i
\(750\) 0 0
\(751\) 19114.4 0.928756 0.464378 0.885637i \(-0.346278\pi\)
0.464378 + 0.885637i \(0.346278\pi\)
\(752\) −1647.81 −0.0799060
\(753\) 10401.7i 0.503397i
\(754\) −27281.9 36058.7i −1.31771 1.74162i
\(755\) 0 0
\(756\) 40398.0i 1.94347i
\(757\) 1293.50i 0.0621046i 0.999518 + 0.0310523i \(0.00988584\pi\)
−0.999518 + 0.0310523i \(0.990114\pi\)
\(758\) 38965.4i 1.86713i
\(759\) 1406.68i 0.0672715i
\(760\) 0 0
\(761\) 28509.3i 1.35803i 0.734125 + 0.679014i \(0.237593\pi\)
−0.734125 + 0.679014i \(0.762407\pi\)
\(762\) −19728.8 −0.937926
\(763\) 40675.0i 1.92993i
\(764\) 14912.9 0.706189
\(765\) 0 0
\(766\) 5133.99 0.242165
\(767\) 16363.6 12380.6i 0.770345 0.582841i
\(768\) 3808.81i 0.178957i
\(769\) 2327.55i 0.109147i 0.998510 + 0.0545733i \(0.0173798\pi\)
−0.998510 + 0.0545733i \(0.982620\pi\)
\(770\) 0 0
\(771\) 39964.4 1.86677
\(772\) −1370.41 −0.0638889
\(773\) 2598.20 0.120893 0.0604467 0.998171i \(-0.480747\pi\)
0.0604467 + 0.998171i \(0.480747\pi\)
\(774\) 10255.5i 0.476262i
\(775\) 0 0
\(776\) 1863.79 0.0862194
\(777\) 1913.01i 0.0883256i
\(778\) −8106.43 −0.373560
\(779\) −22828.0 −1.04993
\(780\) 0 0
\(781\) −14078.8 −0.645041
\(782\) 3825.45 0.174933
\(783\) 25502.5i 1.16397i
\(784\) −32041.4 −1.45961
\(785\) 0 0
\(786\) 44032.8i 1.99822i
\(787\) −1799.68 −0.0815140 −0.0407570 0.999169i \(-0.512977\pi\)
−0.0407570 + 0.999169i \(0.512977\pi\)
\(788\) −9363.03 −0.423280
\(789\) −34369.2 −1.55080
\(790\) 0 0
\(791\) 3185.91i 0.143209i
\(792\) 1633.02i 0.0732660i
\(793\) 12465.5 + 16475.7i 0.558213 + 0.737793i
\(794\) 39900.5 1.78339
\(795\) 0 0
\(796\) 23340.0 1.03928
\(797\) 13328.9i 0.592388i 0.955128 + 0.296194i \(0.0957174\pi\)
−0.955128 + 0.296194i \(0.904283\pi\)
\(798\) −92000.8 −4.08119
\(799\) 3218.73i 0.142516i
\(800\) 0 0
\(801\) 1176.87i 0.0519135i
\(802\) 11921.8i 0.524904i
\(803\) 2300.94i 0.101119i
\(804\) 46586.0i 2.04348i
\(805\) 0 0
\(806\) 20251.5 15322.2i 0.885022 0.669606i
\(807\) 10031.6i 0.437584i
\(808\) −2275.90 −0.0990914
\(809\) 6514.79 0.283125 0.141562 0.989929i \(-0.454787\pi\)
0.141562 + 0.989929i \(0.454787\pi\)
\(810\) 0 0
\(811\) 7474.15i 0.323617i 0.986822 + 0.161808i \(0.0517326\pi\)
−0.986822 + 0.161808i \(0.948267\pi\)
\(812\) −80041.8 −3.45926
\(813\) −30885.9 −1.33237
\(814\) 826.908i 0.0356058i
\(815\) 0 0
\(816\) −17353.6 −0.744482
\(817\) 32778.4 1.40364
\(818\) 868.199i 0.0371099i
\(819\) −7497.49 9909.48i −0.319882 0.422790i
\(820\) 0 0
\(821\) 20393.6i 0.866922i −0.901172 0.433461i \(-0.857292\pi\)
0.901172 0.433461i \(-0.142708\pi\)
\(822\) 23584.6i 1.00074i
\(823\) 32999.0i 1.39766i 0.715288 + 0.698829i \(0.246295\pi\)
−0.715288 + 0.698829i \(0.753705\pi\)
\(824\) 10481.5i 0.443133i
\(825\) 0 0
\(826\) 64218.1i 2.70512i
\(827\) 9715.21 0.408502 0.204251 0.978919i \(-0.434524\pi\)
0.204251 + 0.978919i \(0.434524\pi\)
\(828\) 949.781i 0.0398637i
\(829\) −29994.8 −1.25665 −0.628324 0.777951i \(-0.716259\pi\)
−0.628324 + 0.777951i \(0.716259\pi\)
\(830\) 0 0
\(831\) 19614.9 0.818814
\(832\) −21508.6 28428.1i −0.896248 1.18458i
\(833\) 62587.7i 2.60328i
\(834\) 36574.7i 1.51856i
\(835\) 0 0
\(836\) 22493.6 0.930569
\(837\) 14322.9 0.591482
\(838\) 61349.5 2.52898
\(839\) 7057.85i 0.290422i 0.989401 + 0.145211i \(0.0463861\pi\)
−0.989401 + 0.145211i \(0.953614\pi\)
\(840\) 0 0
\(841\) 26140.0 1.07179
\(842\) 16623.7i 0.680393i
\(843\) −43988.5 −1.79721
\(844\) −30331.5 −1.23703
\(845\) 0 0
\(846\) −1412.85 −0.0574172
\(847\) 31413.9 1.27437
\(848\) 4375.11i 0.177172i
\(849\) −48866.2 −1.97536
\(850\) 0 0
\(851\) 111.597i 0.00449531i
\(852\) 42598.4 1.71291
\(853\) 9202.00 0.369368 0.184684 0.982798i \(-0.440874\pi\)
0.184684 + 0.982798i \(0.440874\pi\)
\(854\) 64658.1 2.59082
\(855\) 0 0
\(856\) 7208.34i 0.287822i
\(857\) 41288.6i 1.64573i −0.568235 0.822866i \(-0.692374\pi\)
0.568235 0.822866i \(-0.307626\pi\)
\(858\) 14522.9 + 19195.1i 0.577862 + 0.763763i
\(859\) 33717.1 1.33925 0.669623 0.742702i \(-0.266456\pi\)
0.669623 + 0.742702i \(0.266456\pi\)
\(860\) 0 0
\(861\) −43242.0 −1.71160
\(862\) 7018.98i 0.277341i
\(863\) 8063.90 0.318075 0.159037 0.987273i \(-0.449161\pi\)
0.159037 + 0.987273i \(0.449161\pi\)
\(864\) 28315.7i 1.11495i
\(865\) 0 0
\(866\) 23623.8i 0.926985i
\(867\) 4933.35i 0.193247i
\(868\) 44953.5i 1.75786i
\(869\) 24699.3i 0.964174i
\(870\) 0 0
\(871\) −21452.8 28354.2i −0.834557 1.10304i
\(872\) 12344.1i 0.479386i
\(873\) −1393.47 −0.0540229
\(874\) −5366.94 −0.207711
\(875\) 0 0
\(876\) 6962.01i 0.268521i
\(877\) −16211.6 −0.624203 −0.312102 0.950049i \(-0.601033\pi\)
−0.312102 + 0.950049i \(0.601033\pi\)
\(878\) −19799.5 −0.761047
\(879\) 5544.22i 0.212744i
\(880\) 0 0
\(881\) 9159.69 0.350281 0.175141 0.984543i \(-0.443962\pi\)
0.175141 + 0.984543i \(0.443962\pi\)
\(882\) −27472.8 −1.04882
\(883\) 20476.8i 0.780408i −0.920728 0.390204i \(-0.872405\pi\)
0.920728 0.390204i \(-0.127595\pi\)
\(884\) 29526.1 22339.4i 1.12338 0.849949i
\(885\) 0 0
\(886\) 57049.6i 2.16323i
\(887\) 7491.56i 0.283587i 0.989896 + 0.141794i \(0.0452869\pi\)
−0.989896 + 0.141794i \(0.954713\pi\)
\(888\) 580.564i 0.0219397i
\(889\) 26654.5i 1.00558i
\(890\) 0 0
\(891\) 17826.1i 0.670254i
\(892\) 15552.4 0.583782
\(893\) 4515.73i 0.169220i
\(894\) −88827.7 −3.32309
\(895\) 0 0
\(896\) −43315.2 −1.61502
\(897\) −1959.98 2590.51i −0.0729563 0.0964267i
\(898\) 32744.0i 1.21680i
\(899\) 28378.3i 1.05280i
\(900\) 0 0
\(901\) −8546.09 −0.315995
\(902\) 18691.5 0.689978
\(903\) 62090.6 2.28820
\(904\) 966.864i 0.0355724i
\(905\) 0 0
\(906\) −38495.7 −1.41163
\(907\) 50090.1i 1.83375i 0.399170 + 0.916877i \(0.369298\pi\)
−0.399170 + 0.916877i \(0.630702\pi\)
\(908\) 34570.1 1.26349
\(909\) 1701.59 0.0620881
\(910\) 0 0
\(911\) −1350.63 −0.0491202 −0.0245601 0.999698i \(-0.507819\pi\)
−0.0245601 + 0.999698i \(0.507819\pi\)
\(912\) 24346.3 0.883977
\(913\) 22687.6i 0.822399i
\(914\) −57676.2 −2.08726
\(915\) 0 0
\(916\) 39115.7i 1.41094i
\(917\) −59490.3 −2.14236
\(918\) 36919.2 1.32736
\(919\) 38062.2 1.36622 0.683111 0.730315i \(-0.260627\pi\)
0.683111 + 0.730315i \(0.260627\pi\)
\(920\) 0 0
\(921\) 44371.3i 1.58750i
\(922\) 68147.6i 2.43419i
\(923\) 25927.2 19616.5i 0.924599 0.699550i
\(924\) 42608.5 1.51701
\(925\) 0 0
\(926\) −64212.1 −2.27877
\(927\) 7836.57i 0.277656i
\(928\) 56102.8 1.98455
\(929\) 18698.6i 0.660366i −0.943917 0.330183i \(-0.892890\pi\)
0.943917 0.330183i \(-0.107110\pi\)
\(930\) 0 0
\(931\) 87807.8i 3.09107i
\(932\) 63533.6i 2.23295i
\(933\) 21904.5i 0.768620i
\(934\) 30916.5i 1.08310i
\(935\) 0 0
\(936\) −2275.35 3007.34i −0.0794573 0.105019i
\(937\) 8664.13i 0.302076i −0.988528 0.151038i \(-0.951738\pi\)
0.988528 0.151038i \(-0.0482615\pi\)
\(938\) −111275. −3.87340
\(939\) 33696.3 1.17107
\(940\) 0 0
\(941\) 17787.5i 0.616212i 0.951352 + 0.308106i \(0.0996951\pi\)
−0.951352 + 0.308106i \(0.900305\pi\)
\(942\) 80869.0 2.79709
\(943\) −2522.56 −0.0871112
\(944\) 16994.1i 0.585924i
\(945\) 0 0
\(946\) −26838.9 −0.922419
\(947\) 48570.3 1.66665 0.833327 0.552780i \(-0.186433\pi\)
0.833327 + 0.552780i \(0.186433\pi\)
\(948\) 74733.3i 2.56036i
\(949\) 3205.99 + 4237.38i 0.109664 + 0.144943i
\(950\) 0 0
\(951\) 22550.0i 0.768910i
\(952\) 26887.4i 0.915362i
\(953\) 33701.1i 1.14553i 0.819721 + 0.572763i \(0.194128\pi\)
−0.819721 + 0.572763i \(0.805872\pi\)
\(954\) 3751.29i 0.127309i
\(955\) 0 0
\(956\) 27120.3i 0.917503i
\(957\) −26898.0 −0.908557
\(958\) 47519.0i 1.60258i
\(959\) 31863.8 1.07292
\(960\) 0 0
\(961\) 13853.0 0.465007
\(962\) 1152.16 + 1522.82i 0.0386146 + 0.0510372i
\(963\) 5389.35i 0.180342i
\(964\) 767.649i 0.0256476i
\(965\) 0 0
\(966\) −10166.3 −0.338610
\(967\) 11377.7 0.378367 0.189183 0.981942i \(-0.439416\pi\)
0.189183 + 0.981942i \(0.439416\pi\)
\(968\) 9533.53 0.316549
\(969\) 47556.7i 1.57662i
\(970\) 0 0
\(971\) 29025.7 0.959299 0.479650 0.877460i \(-0.340764\pi\)
0.479650 + 0.877460i \(0.340764\pi\)
\(972\) 22026.7i 0.726860i
\(973\) 49414.0 1.62810
\(974\) 28152.3 0.926136
\(975\) 0 0
\(976\) −17110.6 −0.561165
\(977\) 2482.90 0.0813051 0.0406525 0.999173i \(-0.487056\pi\)
0.0406525 + 0.999173i \(0.487056\pi\)
\(978\) 34495.9i 1.12787i
\(979\) −3079.90 −0.100546
\(980\) 0 0
\(981\) 9229.13i 0.300371i
\(982\) 25540.7 0.829976
\(983\) 38919.6 1.26281 0.631405 0.775453i \(-0.282479\pi\)
0.631405 + 0.775453i \(0.282479\pi\)
\(984\) −13123.1 −0.425153
\(985\) 0 0
\(986\) 73149.1i 2.36262i
\(987\) 8553.94i 0.275861i
\(988\) −41423.8 + 31341.2i −1.33387 + 1.00921i
\(989\) 3622.11 0.116457
\(990\) 0 0
\(991\) 20092.5 0.644054 0.322027 0.946730i \(-0.395636\pi\)
0.322027 + 0.946730i \(0.395636\pi\)
\(992\) 31508.8i 1.00847i
\(993\) −23075.8 −0.737450
\(994\) 101750.i 3.24680i
\(995\) 0 0
\(996\) 68646.5i 2.18388i
\(997\) 54046.2i 1.71681i −0.512973 0.858405i \(-0.671456\pi\)
0.512973 0.858405i \(-0.328544\pi\)
\(998\) 872.430i 0.0276716i
\(999\) 1077.02i 0.0341094i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.4.d.c.324.14 14
5.2 odd 4 65.4.c.a.51.13 yes 14
5.3 odd 4 325.4.c.e.51.2 14
5.4 even 2 325.4.d.d.324.1 14
13.12 even 2 325.4.d.d.324.2 14
15.2 even 4 585.4.b.e.181.2 14
20.7 even 4 1040.4.k.d.961.3 14
65.12 odd 4 65.4.c.a.51.2 14
65.38 odd 4 325.4.c.e.51.13 14
65.47 even 4 845.4.a.l.1.1 7
65.57 even 4 845.4.a.i.1.7 7
65.64 even 2 inner 325.4.d.c.324.13 14
195.77 even 4 585.4.b.e.181.13 14
260.207 even 4 1040.4.k.d.961.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.2 14 65.12 odd 4
65.4.c.a.51.13 yes 14 5.2 odd 4
325.4.c.e.51.2 14 5.3 odd 4
325.4.c.e.51.13 14 65.38 odd 4
325.4.d.c.324.13 14 65.64 even 2 inner
325.4.d.c.324.14 14 1.1 even 1 trivial
325.4.d.d.324.1 14 5.4 even 2
325.4.d.d.324.2 14 13.12 even 2
585.4.b.e.181.2 14 15.2 even 4
585.4.b.e.181.13 14 195.77 even 4
845.4.a.i.1.7 7 65.57 even 4
845.4.a.l.1.1 7 65.47 even 4
1040.4.k.d.961.3 14 20.7 even 4
1040.4.k.d.961.4 14 260.207 even 4