Properties

Label 325.4.c.e.51.13
Level $325$
Weight $4$
Character 325.51
Analytic conductor $19.176$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(51,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.51"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.13
Root \(4.29153i\) of defining polynomial
Character \(\chi\) \(=\) 325.51
Dual form 325.4.c.e.51.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.29153i q^{2} -5.89541 q^{3} -10.4172 q^{4} -25.3003i q^{6} +34.1818i q^{7} -10.3735i q^{8} +7.75582 q^{9} +20.2972i q^{11} +61.4137 q^{12} +(-37.3790 - 28.2809i) q^{13} -146.692 q^{14} -38.8194 q^{16} -75.8275 q^{17} +33.2843i q^{18} +106.383i q^{19} -201.516i q^{21} -87.1059 q^{22} -11.7556 q^{23} +61.1562i q^{24} +(121.368 - 160.413i) q^{26} +113.452 q^{27} -356.079i q^{28} +224.787 q^{29} +126.246i q^{31} -249.583i q^{32} -119.660i q^{33} -325.416i q^{34} -80.7940 q^{36} +9.49313i q^{37} -456.544 q^{38} +(220.365 + 166.727i) q^{39} -214.584i q^{41} +864.810 q^{42} +308.118 q^{43} -211.440i q^{44} -50.4494i q^{46} +42.4480i q^{47} +228.856 q^{48} -825.396 q^{49} +447.034 q^{51} +(389.385 + 294.608i) q^{52} +112.704 q^{53} +486.884i q^{54} +354.586 q^{56} -627.169i q^{57} +964.678i q^{58} -437.774i q^{59} +440.774 q^{61} -541.787 q^{62} +265.108i q^{63} +760.536 q^{64} +513.525 q^{66} -758.560i q^{67} +789.911 q^{68} +69.3040 q^{69} +693.631i q^{71} -80.4553i q^{72} -113.362i q^{73} -40.7400 q^{74} -1108.21i q^{76} -693.795 q^{77} +(-715.515 + 945.700i) q^{78} -1216.88 q^{79} -878.254 q^{81} +920.893 q^{82} +1117.77i q^{83} +2099.23i q^{84} +1322.30i q^{86} -1325.21 q^{87} +210.554 q^{88} -151.740i q^{89} +(966.692 - 1277.68i) q^{91} +122.460 q^{92} -744.270i q^{93} -182.167 q^{94} +1471.39i q^{96} +179.668i q^{97} -3542.21i q^{98} +157.421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 56 q^{4} + 158 q^{9} + 108 q^{12} + 4 q^{13} - 152 q^{14} + 280 q^{16} + 100 q^{17} - 648 q^{22} + 532 q^{23} - 344 q^{26} + 48 q^{27} + 588 q^{29} + 496 q^{36} - 148 q^{38} - 260 q^{39} + 620 q^{42}+ \cdots + 2656 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.29153i 1.51728i 0.651508 + 0.758642i \(0.274137\pi\)
−0.651508 + 0.758642i \(0.725863\pi\)
\(3\) −5.89541 −1.13457 −0.567286 0.823521i \(-0.692007\pi\)
−0.567286 + 0.823521i \(0.692007\pi\)
\(4\) −10.4172 −1.30215
\(5\) 0 0
\(6\) 25.3003i 1.72147i
\(7\) 34.1818i 1.84564i 0.385226 + 0.922822i \(0.374123\pi\)
−0.385226 + 0.922822i \(0.625877\pi\)
\(8\) 10.3735i 0.458450i
\(9\) 7.75582 0.287253
\(10\) 0 0
\(11\) 20.2972i 0.556348i 0.960531 + 0.278174i \(0.0897293\pi\)
−0.960531 + 0.278174i \(0.910271\pi\)
\(12\) 61.4137 1.47738
\(13\) −37.3790 28.2809i −0.797467 0.603362i
\(14\) −146.692 −2.80037
\(15\) 0 0
\(16\) −38.8194 −0.606553
\(17\) −75.8275 −1.08182 −0.540908 0.841082i \(-0.681919\pi\)
−0.540908 + 0.841082i \(0.681919\pi\)
\(18\) 33.2843i 0.435844i
\(19\) 106.383i 1.28452i 0.766487 + 0.642259i \(0.222003\pi\)
−0.766487 + 0.642259i \(0.777997\pi\)
\(20\) 0 0
\(21\) 201.516i 2.09402i
\(22\) −87.1059 −0.844139
\(23\) −11.7556 −0.106574 −0.0532872 0.998579i \(-0.516970\pi\)
−0.0532872 + 0.998579i \(0.516970\pi\)
\(24\) 61.1562i 0.520144i
\(25\) 0 0
\(26\) 121.368 160.413i 0.915472 1.20998i
\(27\) 113.452 0.808663
\(28\) 356.079i 2.40331i
\(29\) 224.787 1.43937 0.719686 0.694299i \(-0.244286\pi\)
0.719686 + 0.694299i \(0.244286\pi\)
\(30\) 0 0
\(31\) 126.246i 0.731432i 0.930726 + 0.365716i \(0.119176\pi\)
−0.930726 + 0.365716i \(0.880824\pi\)
\(32\) 249.583i 1.37876i
\(33\) 119.660i 0.631217i
\(34\) 325.416i 1.64142i
\(35\) 0 0
\(36\) −80.7940 −0.374046
\(37\) 9.49313i 0.0421800i 0.999778 + 0.0210900i \(0.00671366\pi\)
−0.999778 + 0.0210900i \(0.993286\pi\)
\(38\) −456.544 −1.94898
\(39\) 220.365 + 166.727i 0.904784 + 0.684558i
\(40\) 0 0
\(41\) 214.584i 0.817375i −0.912674 0.408687i \(-0.865987\pi\)
0.912674 0.408687i \(-0.134013\pi\)
\(42\) 864.810 3.17722
\(43\) 308.118 1.09273 0.546367 0.837546i \(-0.316010\pi\)
0.546367 + 0.837546i \(0.316010\pi\)
\(44\) 211.440i 0.724450i
\(45\) 0 0
\(46\) 50.4494i 0.161704i
\(47\) 42.4480i 0.131738i 0.997828 + 0.0658689i \(0.0209819\pi\)
−0.997828 + 0.0658689i \(0.979018\pi\)
\(48\) 228.856 0.688178
\(49\) −825.396 −2.40640
\(50\) 0 0
\(51\) 447.034 1.22740
\(52\) 389.385 + 294.608i 1.03842 + 0.785669i
\(53\) 112.704 0.292097 0.146048 0.989277i \(-0.453344\pi\)
0.146048 + 0.989277i \(0.453344\pi\)
\(54\) 486.884i 1.22697i
\(55\) 0 0
\(56\) 354.586 0.846135
\(57\) 627.169i 1.45738i
\(58\) 964.678i 2.18394i
\(59\) 437.774i 0.965989i −0.875623 0.482994i \(-0.839549\pi\)
0.875623 0.482994i \(-0.160451\pi\)
\(60\) 0 0
\(61\) 440.774 0.925170 0.462585 0.886575i \(-0.346922\pi\)
0.462585 + 0.886575i \(0.346922\pi\)
\(62\) −541.787 −1.10979
\(63\) 265.108i 0.530166i
\(64\) 760.536 1.48542
\(65\) 0 0
\(66\) 513.525 0.957736
\(67\) 758.560i 1.38318i −0.722292 0.691588i \(-0.756911\pi\)
0.722292 0.691588i \(-0.243089\pi\)
\(68\) 789.911 1.40869
\(69\) 69.3040 0.120916
\(70\) 0 0
\(71\) 693.631i 1.15942i 0.814823 + 0.579710i \(0.196834\pi\)
−0.814823 + 0.579710i \(0.803166\pi\)
\(72\) 80.4553i 0.131691i
\(73\) 113.362i 0.181754i −0.995862 0.0908772i \(-0.971033\pi\)
0.995862 0.0908772i \(-0.0289671\pi\)
\(74\) −40.7400 −0.0639991
\(75\) 0 0
\(76\) 1108.21i 1.67264i
\(77\) −693.795 −1.02682
\(78\) −715.515 + 945.700i −1.03867 + 1.37281i
\(79\) −1216.88 −1.73304 −0.866520 0.499143i \(-0.833648\pi\)
−0.866520 + 0.499143i \(0.833648\pi\)
\(80\) 0 0
\(81\) −878.254 −1.20474
\(82\) 920.893 1.24019
\(83\) 1117.77i 1.47821i 0.673591 + 0.739105i \(0.264751\pi\)
−0.673591 + 0.739105i \(0.735249\pi\)
\(84\) 2099.23i 2.72673i
\(85\) 0 0
\(86\) 1322.30i 1.65799i
\(87\) −1325.21 −1.63307
\(88\) 210.554 0.255058
\(89\) 151.740i 0.180724i −0.995909 0.0903621i \(-0.971198\pi\)
0.995909 0.0903621i \(-0.0288024\pi\)
\(90\) 0 0
\(91\) 966.692 1277.68i 1.11359 1.47184i
\(92\) 122.460 0.138776
\(93\) 744.270i 0.829862i
\(94\) −182.167 −0.199884
\(95\) 0 0
\(96\) 1471.39i 1.56431i
\(97\) 179.668i 0.188067i 0.995569 + 0.0940337i \(0.0299761\pi\)
−0.995569 + 0.0940337i \(0.970024\pi\)
\(98\) 3542.21i 3.65120i
\(99\) 157.421i 0.159813i
\(100\) 0 0
\(101\) −219.395 −0.216145 −0.108072 0.994143i \(-0.534468\pi\)
−0.108072 + 0.994143i \(0.534468\pi\)
\(102\) 1918.46i 1.86231i
\(103\) 1010.41 0.966591 0.483295 0.875457i \(-0.339440\pi\)
0.483295 + 0.875457i \(0.339440\pi\)
\(104\) −293.373 + 387.752i −0.276611 + 0.365599i
\(105\) 0 0
\(106\) 483.674i 0.443194i
\(107\) −694.878 −0.627817 −0.313908 0.949453i \(-0.601638\pi\)
−0.313908 + 0.949453i \(0.601638\pi\)
\(108\) −1181.86 −1.05300
\(109\) 1189.96i 1.04567i −0.852435 0.522833i \(-0.824875\pi\)
0.852435 0.522833i \(-0.175125\pi\)
\(110\) 0 0
\(111\) 55.9659i 0.0478563i
\(112\) 1326.92i 1.11948i
\(113\) 93.2049 0.0775927 0.0387964 0.999247i \(-0.487648\pi\)
0.0387964 + 0.999247i \(0.487648\pi\)
\(114\) 2691.51 2.21126
\(115\) 0 0
\(116\) −2341.65 −1.87428
\(117\) −289.905 219.342i −0.229075 0.173317i
\(118\) 1878.72 1.46568
\(119\) 2591.92i 1.99665i
\(120\) 0 0
\(121\) 919.024 0.690476
\(122\) 1891.60i 1.40375i
\(123\) 1265.06i 0.927370i
\(124\) 1315.13i 0.952436i
\(125\) 0 0
\(126\) −1137.72 −0.804413
\(127\) 779.785 0.544841 0.272420 0.962178i \(-0.412176\pi\)
0.272420 + 0.962178i \(0.412176\pi\)
\(128\) 1267.20i 0.875045i
\(129\) −1816.48 −1.23979
\(130\) 0 0
\(131\) −1740.41 −1.16076 −0.580382 0.814344i \(-0.697097\pi\)
−0.580382 + 0.814344i \(0.697097\pi\)
\(132\) 1246.53i 0.821940i
\(133\) −3636.35 −2.37076
\(134\) 3255.38 2.09867
\(135\) 0 0
\(136\) 786.599i 0.495958i
\(137\) 932.185i 0.581328i 0.956825 + 0.290664i \(0.0938762\pi\)
−0.956825 + 0.290664i \(0.906124\pi\)
\(138\) 297.420i 0.183464i
\(139\) −1445.62 −0.882131 −0.441065 0.897475i \(-0.645399\pi\)
−0.441065 + 0.897475i \(0.645399\pi\)
\(140\) 0 0
\(141\) 250.248i 0.149466i
\(142\) −2976.74 −1.75917
\(143\) 574.023 758.689i 0.335680 0.443670i
\(144\) −301.076 −0.174234
\(145\) 0 0
\(146\) 486.498 0.275773
\(147\) 4866.05 2.73024
\(148\) 98.8920i 0.0549248i
\(149\) 3510.93i 1.93038i 0.261545 + 0.965191i \(0.415768\pi\)
−0.261545 + 0.965191i \(0.584232\pi\)
\(150\) 0 0
\(151\) 1521.55i 0.820013i −0.912083 0.410007i \(-0.865526\pi\)
0.912083 0.410007i \(-0.134474\pi\)
\(152\) 1103.56 0.588887
\(153\) −588.105 −0.310755
\(154\) 2977.44i 1.55798i
\(155\) 0 0
\(156\) −2295.58 1736.83i −1.17817 0.891398i
\(157\) −3196.37 −1.62483 −0.812413 0.583082i \(-0.801847\pi\)
−0.812413 + 0.583082i \(0.801847\pi\)
\(158\) 5222.29i 2.62951i
\(159\) −664.438 −0.331405
\(160\) 0 0
\(161\) 401.827i 0.196698i
\(162\) 3769.05i 1.82793i
\(163\) 1363.46i 0.655179i 0.944820 + 0.327590i \(0.106236\pi\)
−0.944820 + 0.327590i \(0.893764\pi\)
\(164\) 2235.37i 1.06435i
\(165\) 0 0
\(166\) −4796.95 −2.24286
\(167\) 922.250i 0.427340i −0.976906 0.213670i \(-0.931458\pi\)
0.976906 0.213670i \(-0.0685418\pi\)
\(168\) −2090.43 −0.960001
\(169\) 597.382 + 2114.22i 0.271908 + 0.962323i
\(170\) 0 0
\(171\) 825.085i 0.368981i
\(172\) −3209.73 −1.42291
\(173\) −1361.55 −0.598362 −0.299181 0.954196i \(-0.596713\pi\)
−0.299181 + 0.954196i \(0.596713\pi\)
\(174\) 5687.17i 2.47783i
\(175\) 0 0
\(176\) 787.925i 0.337455i
\(177\) 2580.86i 1.09598i
\(178\) 651.198 0.274210
\(179\) 4222.14 1.76300 0.881501 0.472182i \(-0.156534\pi\)
0.881501 + 0.472182i \(0.156534\pi\)
\(180\) 0 0
\(181\) −3487.32 −1.43210 −0.716051 0.698048i \(-0.754052\pi\)
−0.716051 + 0.698048i \(0.754052\pi\)
\(182\) 5483.21 + 4148.59i 2.23320 + 1.68964i
\(183\) −2598.54 −1.04967
\(184\) 121.947i 0.0488589i
\(185\) 0 0
\(186\) 3194.06 1.25914
\(187\) 1539.09i 0.601867i
\(188\) 442.190i 0.171543i
\(189\) 3878.00i 1.49250i
\(190\) 0 0
\(191\) 1431.56 0.542325 0.271162 0.962534i \(-0.412592\pi\)
0.271162 + 0.962534i \(0.412592\pi\)
\(192\) −4483.67 −1.68532
\(193\) 131.553i 0.0490641i 0.999699 + 0.0245321i \(0.00780958\pi\)
−0.999699 + 0.0245321i \(0.992190\pi\)
\(194\) −771.051 −0.285352
\(195\) 0 0
\(196\) 8598.33 3.13350
\(197\) 898.804i 0.325062i −0.986703 0.162531i \(-0.948034\pi\)
0.986703 0.162531i \(-0.0519657\pi\)
\(198\) −675.578 −0.242481
\(199\) −2240.52 −0.798124 −0.399062 0.916924i \(-0.630664\pi\)
−0.399062 + 0.916924i \(0.630664\pi\)
\(200\) 0 0
\(201\) 4472.02i 1.56931i
\(202\) 941.539i 0.327953i
\(203\) 7683.61i 2.65657i
\(204\) −4656.85 −1.59826
\(205\) 0 0
\(206\) 4336.21i 1.46659i
\(207\) −91.1742 −0.0306138
\(208\) 1451.03 + 1097.85i 0.483706 + 0.365971i
\(209\) −2159.27 −0.714640
\(210\) 0 0
\(211\) −2911.67 −0.949989 −0.474995 0.879989i \(-0.657550\pi\)
−0.474995 + 0.879989i \(0.657550\pi\)
\(212\) −1174.07 −0.380354
\(213\) 4089.24i 1.31544i
\(214\) 2982.09i 0.952576i
\(215\) 0 0
\(216\) 1176.90i 0.370731i
\(217\) −4315.31 −1.34996
\(218\) 5106.75 1.58657
\(219\) 668.318i 0.206213i
\(220\) 0 0
\(221\) 2834.36 + 2144.47i 0.862713 + 0.652727i
\(222\) 240.179 0.0726116
\(223\) 1492.95i 0.448321i −0.974552 0.224160i \(-0.928036\pi\)
0.974552 0.224160i \(-0.0719640\pi\)
\(224\) 8531.19 2.54471
\(225\) 0 0
\(226\) 399.991i 0.117730i
\(227\) 3318.55i 0.970309i 0.874428 + 0.485155i \(0.161237\pi\)
−0.874428 + 0.485155i \(0.838763\pi\)
\(228\) 6533.35i 1.89773i
\(229\) 3754.91i 1.08354i 0.840526 + 0.541772i \(0.182246\pi\)
−0.840526 + 0.541772i \(0.817754\pi\)
\(230\) 0 0
\(231\) 4090.20 1.16500
\(232\) 2331.83i 0.659880i
\(233\) 6098.90 1.71482 0.857408 0.514636i \(-0.172073\pi\)
0.857408 + 0.514636i \(0.172073\pi\)
\(234\) 941.311 1244.14i 0.262972 0.347571i
\(235\) 0 0
\(236\) 4560.39i 1.25786i
\(237\) 7174.02 1.96626
\(238\) 11123.3 3.02948
\(239\) 2603.41i 0.704606i 0.935886 + 0.352303i \(0.114601\pi\)
−0.935886 + 0.352303i \(0.885399\pi\)
\(240\) 0 0
\(241\) 73.6905i 0.0196963i −0.999952 0.00984817i \(-0.996865\pi\)
0.999952 0.00984817i \(-0.00313482\pi\)
\(242\) 3944.02i 1.04765i
\(243\) 2114.46 0.558199
\(244\) −4591.64 −1.20471
\(245\) 0 0
\(246\) −5429.04 −1.40708
\(247\) 3008.60 3976.48i 0.775030 1.02436i
\(248\) 1309.61 0.335325
\(249\) 6589.72i 1.67713i
\(250\) 0 0
\(251\) 1764.37 0.443689 0.221845 0.975082i \(-0.428792\pi\)
0.221845 + 0.975082i \(0.428792\pi\)
\(252\) 2761.69i 0.690357i
\(253\) 238.605i 0.0592924i
\(254\) 3346.47i 0.826678i
\(255\) 0 0
\(256\) 646.064 0.157731
\(257\) −6778.90 −1.64535 −0.822677 0.568508i \(-0.807521\pi\)
−0.822677 + 0.568508i \(0.807521\pi\)
\(258\) 7795.48i 1.88111i
\(259\) −324.492 −0.0778493
\(260\) 0 0
\(261\) 1743.40 0.413464
\(262\) 7469.01i 1.76121i
\(263\) −5829.83 −1.36686 −0.683428 0.730018i \(-0.739512\pi\)
−0.683428 + 0.730018i \(0.739512\pi\)
\(264\) −1241.30 −0.289381
\(265\) 0 0
\(266\) 15605.5i 3.59712i
\(267\) 894.572i 0.205045i
\(268\) 7902.08i 1.80111i
\(269\) 1701.60 0.385682 0.192841 0.981230i \(-0.438230\pi\)
0.192841 + 0.981230i \(0.438230\pi\)
\(270\) 0 0
\(271\) 5238.97i 1.17434i −0.809465 0.587168i \(-0.800243\pi\)
0.809465 0.587168i \(-0.199757\pi\)
\(272\) 2943.58 0.656179
\(273\) −5699.04 + 7532.46i −1.26345 + 1.66991i
\(274\) −4000.50 −0.882040
\(275\) 0 0
\(276\) −721.954 −0.157451
\(277\) −3327.15 −0.721694 −0.360847 0.932625i \(-0.617512\pi\)
−0.360847 + 0.932625i \(0.617512\pi\)
\(278\) 6203.93i 1.33844i
\(279\) 979.139i 0.210106i
\(280\) 0 0
\(281\) 7461.49i 1.58404i −0.610495 0.792020i \(-0.709030\pi\)
0.610495 0.792020i \(-0.290970\pi\)
\(282\) 1073.95 0.226782
\(283\) −8288.85 −1.74106 −0.870532 0.492112i \(-0.836225\pi\)
−0.870532 + 0.492112i \(0.836225\pi\)
\(284\) 7225.70i 1.50974i
\(285\) 0 0
\(286\) 3255.93 + 2463.43i 0.673173 + 0.509321i
\(287\) 7334.87 1.50858
\(288\) 1935.72i 0.396053i
\(289\) 836.812 0.170326
\(290\) 0 0
\(291\) 1059.22i 0.213376i
\(292\) 1180.92i 0.236672i
\(293\) 940.431i 0.187510i −0.995595 0.0937552i \(-0.970113\pi\)
0.995595 0.0937552i \(-0.0298871\pi\)
\(294\) 20882.8i 4.14254i
\(295\) 0 0
\(296\) 98.4773 0.0193374
\(297\) 2302.76i 0.449898i
\(298\) −15067.3 −2.92894
\(299\) 439.412 + 332.458i 0.0849895 + 0.0643029i
\(300\) 0 0
\(301\) 10532.0i 2.01680i
\(302\) 6529.78 1.24419
\(303\) 1293.42 0.245231
\(304\) 4129.71i 0.779129i
\(305\) 0 0
\(306\) 2523.87i 0.471503i
\(307\) 7526.42i 1.39920i −0.714533 0.699602i \(-0.753361\pi\)
0.714533 0.699602i \(-0.246639\pi\)
\(308\) 7227.41 1.33708
\(309\) −5956.79 −1.09667
\(310\) 0 0
\(311\) 3715.53 0.677454 0.338727 0.940885i \(-0.390004\pi\)
0.338727 + 0.940885i \(0.390004\pi\)
\(312\) 1729.55 2285.96i 0.313835 0.414798i
\(313\) 5715.69 1.03217 0.516086 0.856536i \(-0.327388\pi\)
0.516086 + 0.856536i \(0.327388\pi\)
\(314\) 13717.3i 2.46532i
\(315\) 0 0
\(316\) 12676.5 2.25668
\(317\) 3825.01i 0.677709i 0.940839 + 0.338855i \(0.110040\pi\)
−0.940839 + 0.338855i \(0.889960\pi\)
\(318\) 2851.45i 0.502835i
\(319\) 4562.53i 0.800793i
\(320\) 0 0
\(321\) 4096.59 0.712303
\(322\) 1724.45 0.298447
\(323\) 8066.73i 1.38961i
\(324\) 9148.96 1.56875
\(325\) 0 0
\(326\) −5851.31 −0.994093
\(327\) 7015.31i 1.18638i
\(328\) −2225.99 −0.374725
\(329\) −1450.95 −0.243141
\(330\) 0 0
\(331\) 3914.20i 0.649981i −0.945717 0.324991i \(-0.894639\pi\)
0.945717 0.324991i \(-0.105361\pi\)
\(332\) 11644.1i 1.92485i
\(333\) 73.6270i 0.0121163i
\(334\) 3957.86 0.648397
\(335\) 0 0
\(336\) 7822.72i 1.27013i
\(337\) 4622.42 0.747179 0.373589 0.927594i \(-0.378127\pi\)
0.373589 + 0.927594i \(0.378127\pi\)
\(338\) −9073.25 + 2563.68i −1.46012 + 0.412562i
\(339\) −549.481 −0.0880345
\(340\) 0 0
\(341\) −2562.43 −0.406931
\(342\) −3540.88 −0.559850
\(343\) 16489.2i 2.59572i
\(344\) 3196.27i 0.500964i
\(345\) 0 0
\(346\) 5843.12i 0.907885i
\(347\) 8192.01 1.26735 0.633674 0.773600i \(-0.281546\pi\)
0.633674 + 0.773600i \(0.281546\pi\)
\(348\) 13805.0 2.12651
\(349\) 243.024i 0.0372744i 0.999826 + 0.0186372i \(0.00593275\pi\)
−0.999826 + 0.0186372i \(0.994067\pi\)
\(350\) 0 0
\(351\) −4240.73 3208.53i −0.644882 0.487917i
\(352\) 5065.83 0.767073
\(353\) 2766.97i 0.417198i 0.978001 + 0.208599i \(0.0668904\pi\)
−0.978001 + 0.208599i \(0.933110\pi\)
\(354\) −11075.8 −1.66292
\(355\) 0 0
\(356\) 1580.71i 0.235330i
\(357\) 15280.4i 2.26534i
\(358\) 18119.4i 2.67497i
\(359\) 2472.79i 0.363535i 0.983342 + 0.181768i \(0.0581818\pi\)
−0.983342 + 0.181768i \(0.941818\pi\)
\(360\) 0 0
\(361\) −4458.27 −0.649988
\(362\) 14965.9i 2.17291i
\(363\) −5418.02 −0.783395
\(364\) −10070.2 + 13309.9i −1.45007 + 1.91656i
\(365\) 0 0
\(366\) 11151.7i 1.59265i
\(367\) −5263.61 −0.748660 −0.374330 0.927296i \(-0.622127\pi\)
−0.374330 + 0.927296i \(0.622127\pi\)
\(368\) 456.345 0.0646430
\(369\) 1664.27i 0.234793i
\(370\) 0 0
\(371\) 3852.44i 0.539107i
\(372\) 7753.22i 1.08061i
\(373\) −5633.17 −0.781969 −0.390984 0.920397i \(-0.627865\pi\)
−0.390984 + 0.920397i \(0.627865\pi\)
\(374\) 6605.03 0.913203
\(375\) 0 0
\(376\) 440.336 0.0603952
\(377\) −8402.30 6357.16i −1.14785 0.868463i
\(378\) −16642.6 −2.26455
\(379\) 9079.61i 1.23058i −0.788302 0.615288i \(-0.789040\pi\)
0.788302 0.615288i \(-0.210960\pi\)
\(380\) 0 0
\(381\) −4597.15 −0.618161
\(382\) 6143.58i 0.822861i
\(383\) 1196.31i 0.159604i −0.996811 0.0798022i \(-0.974571\pi\)
0.996811 0.0798022i \(-0.0254289\pi\)
\(384\) 7470.66i 0.992801i
\(385\) 0 0
\(386\) −564.562 −0.0744442
\(387\) 2389.71 0.313891
\(388\) 1871.64i 0.244892i
\(389\) 1888.94 0.246203 0.123102 0.992394i \(-0.460716\pi\)
0.123102 + 0.992394i \(0.460716\pi\)
\(390\) 0 0
\(391\) 891.397 0.115294
\(392\) 8562.27i 1.10321i
\(393\) 10260.4 1.31697
\(394\) 3857.24 0.493211
\(395\) 0 0
\(396\) 1639.89i 0.208100i
\(397\) 9297.50i 1.17539i 0.809084 + 0.587693i \(0.199964\pi\)
−0.809084 + 0.587693i \(0.800036\pi\)
\(398\) 9615.27i 1.21098i
\(399\) 21437.8 2.68980
\(400\) 0 0
\(401\) 2777.98i 0.345949i −0.984926 0.172975i \(-0.944662\pi\)
0.984926 0.172975i \(-0.0553379\pi\)
\(402\) −19191.8 −2.38109
\(403\) 3570.34 4718.94i 0.441319 0.583293i
\(404\) 2285.48 0.281453
\(405\) 0 0
\(406\) −32974.4 −4.03077
\(407\) −192.684 −0.0234668
\(408\) 4637.32i 0.562700i
\(409\) 202.305i 0.0244581i −0.999925 0.0122290i \(-0.996107\pi\)
0.999925 0.0122290i \(-0.00389272\pi\)
\(410\) 0 0
\(411\) 5495.61i 0.659558i
\(412\) −10525.7 −1.25865
\(413\) 14963.9 1.78287
\(414\) 391.277i 0.0464498i
\(415\) 0 0
\(416\) −7058.42 + 9329.16i −0.831894 + 1.09952i
\(417\) 8522.54 1.00084
\(418\) 9266.56i 1.08431i
\(419\) −14295.5 −1.66678 −0.833390 0.552685i \(-0.813603\pi\)
−0.833390 + 0.552685i \(0.813603\pi\)
\(420\) 0 0
\(421\) 3873.61i 0.448428i −0.974540 0.224214i \(-0.928019\pi\)
0.974540 0.224214i \(-0.0719815\pi\)
\(422\) 12495.5i 1.44140i
\(423\) 329.219i 0.0378421i
\(424\) 1169.14i 0.133912i
\(425\) 0 0
\(426\) 17549.1 1.99590
\(427\) 15066.5i 1.70753i
\(428\) 7238.69 0.817512
\(429\) −3384.10 + 4472.78i −0.380853 + 0.503375i
\(430\) 0 0
\(431\) 1635.54i 0.182787i −0.995815 0.0913937i \(-0.970868\pi\)
0.995815 0.0913937i \(-0.0291322\pi\)
\(432\) −4404.15 −0.490497
\(433\) 5504.75 0.610950 0.305475 0.952200i \(-0.401185\pi\)
0.305475 + 0.952200i \(0.401185\pi\)
\(434\) 18519.3i 2.04828i
\(435\) 0 0
\(436\) 12396.1i 1.36162i
\(437\) 1250.59i 0.136897i
\(438\) −2868.10 −0.312884
\(439\) 4613.62 0.501585 0.250793 0.968041i \(-0.419309\pi\)
0.250793 + 0.968041i \(0.419309\pi\)
\(440\) 0 0
\(441\) −6401.63 −0.691246
\(442\) −9203.05 + 12163.7i −0.990372 + 1.30898i
\(443\) 13293.5 1.42572 0.712862 0.701305i \(-0.247399\pi\)
0.712862 + 0.701305i \(0.247399\pi\)
\(444\) 583.008i 0.0623161i
\(445\) 0 0
\(446\) 6407.05 0.680230
\(447\) 20698.4i 2.19016i
\(448\) 25996.5i 2.74156i
\(449\) 7629.93i 0.801957i 0.916088 + 0.400978i \(0.131330\pi\)
−0.916088 + 0.400978i \(0.868670\pi\)
\(450\) 0 0
\(451\) 4355.45 0.454745
\(452\) −970.935 −0.101037
\(453\) 8970.16i 0.930364i
\(454\) −14241.7 −1.47223
\(455\) 0 0
\(456\) −6505.96 −0.668135
\(457\) 13439.5i 1.37566i −0.725873 0.687829i \(-0.758564\pi\)
0.725873 0.687829i \(-0.241436\pi\)
\(458\) −16114.3 −1.64404
\(459\) −8602.80 −0.874825
\(460\) 0 0
\(461\) 15879.6i 1.60430i 0.597119 + 0.802152i \(0.296312\pi\)
−0.597119 + 0.802152i \(0.703688\pi\)
\(462\) 17553.2i 1.76764i
\(463\) 14962.5i 1.50187i 0.660374 + 0.750937i \(0.270398\pi\)
−0.660374 + 0.750937i \(0.729602\pi\)
\(464\) −8726.08 −0.873056
\(465\) 0 0
\(466\) 26173.6i 2.60186i
\(467\) 7204.07 0.713843 0.356922 0.934134i \(-0.383826\pi\)
0.356922 + 0.934134i \(0.383826\pi\)
\(468\) 3020.00 + 2284.93i 0.298290 + 0.225686i
\(469\) 25929.0 2.55285
\(470\) 0 0
\(471\) 18843.9 1.84348
\(472\) −4541.26 −0.442857
\(473\) 6253.93i 0.607941i
\(474\) 30787.5i 2.98337i
\(475\) 0 0
\(476\) 27000.6i 2.59994i
\(477\) 874.115 0.0839056
\(478\) −11172.6 −1.06909
\(479\) 11072.8i 1.05621i 0.849178 + 0.528107i \(0.177098\pi\)
−0.849178 + 0.528107i \(0.822902\pi\)
\(480\) 0 0
\(481\) 268.474 354.844i 0.0254498 0.0336372i
\(482\) 316.245 0.0298850
\(483\) 2368.93i 0.223168i
\(484\) −9573.67 −0.899105
\(485\) 0 0
\(486\) 9074.25i 0.846947i
\(487\) 6559.96i 0.610391i 0.952290 + 0.305195i \(0.0987218\pi\)
−0.952290 + 0.305195i \(0.901278\pi\)
\(488\) 4572.39i 0.424144i
\(489\) 8038.13i 0.743348i
\(490\) 0 0
\(491\) 5951.42 0.547014 0.273507 0.961870i \(-0.411816\pi\)
0.273507 + 0.961870i \(0.411816\pi\)
\(492\) 13178.4i 1.20758i
\(493\) −17045.0 −1.55714
\(494\) 17065.2 + 12911.5i 1.55425 + 1.17594i
\(495\) 0 0
\(496\) 4900.78i 0.443653i
\(497\) −23709.6 −2.13988
\(498\) 28280.0 2.54469
\(499\) 203.291i 0.0182376i 0.999958 + 0.00911880i \(0.00290264\pi\)
−0.999958 + 0.00911880i \(0.997097\pi\)
\(500\) 0 0
\(501\) 5437.04i 0.484848i
\(502\) 7571.84i 0.673203i
\(503\) −4109.83 −0.364311 −0.182155 0.983270i \(-0.558307\pi\)
−0.182155 + 0.983270i \(0.558307\pi\)
\(504\) 2750.11 0.243055
\(505\) 0 0
\(506\) 1023.98 0.0899635
\(507\) −3521.81 12464.2i −0.308499 1.09182i
\(508\) −8123.19 −0.709465
\(509\) 19836.8i 1.72741i −0.503997 0.863705i \(-0.668138\pi\)
0.503997 0.863705i \(-0.331862\pi\)
\(510\) 0 0
\(511\) 3874.93 0.335454
\(512\) 12910.2i 1.11437i
\(513\) 12069.4i 1.03874i
\(514\) 29091.8i 2.49647i
\(515\) 0 0
\(516\) 18922.7 1.61439
\(517\) −861.575 −0.0732922
\(518\) 1392.57i 0.118120i
\(519\) 8026.88 0.678884
\(520\) 0 0
\(521\) −17335.3 −1.45772 −0.728861 0.684661i \(-0.759950\pi\)
−0.728861 + 0.684661i \(0.759950\pi\)
\(522\) 7481.87i 0.627342i
\(523\) −2886.27 −0.241315 −0.120658 0.992694i \(-0.538500\pi\)
−0.120658 + 0.992694i \(0.538500\pi\)
\(524\) 18130.2 1.51149
\(525\) 0 0
\(526\) 25018.9i 2.07391i
\(527\) 9572.90i 0.791275i
\(528\) 4645.14i 0.382867i
\(529\) −12028.8 −0.988642
\(530\) 0 0
\(531\) 3395.30i 0.277483i
\(532\) 37880.6 3.08709
\(533\) −6068.62 + 8020.94i −0.493173 + 0.651830i
\(534\) −3839.08 −0.311111
\(535\) 0 0
\(536\) −7868.94 −0.634117
\(537\) −24891.2 −2.00025
\(538\) 7302.47i 0.585190i
\(539\) 16753.2i 1.33880i
\(540\) 0 0
\(541\) 14428.4i 1.14663i −0.819336 0.573314i \(-0.805658\pi\)
0.819336 0.573314i \(-0.194342\pi\)
\(542\) 22483.2 1.78180
\(543\) 20559.2 1.62482
\(544\) 18925.2i 1.49157i
\(545\) 0 0
\(546\) −32325.8 24457.6i −2.53373 1.91701i
\(547\) −17024.1 −1.33071 −0.665353 0.746529i \(-0.731719\pi\)
−0.665353 + 0.746529i \(0.731719\pi\)
\(548\) 9710.77i 0.756977i
\(549\) 3418.57 0.265758
\(550\) 0 0
\(551\) 23913.4i 1.84890i
\(552\) 718.927i 0.0554340i
\(553\) 41595.3i 3.19857i
\(554\) 14278.6i 1.09502i
\(555\) 0 0
\(556\) 15059.4 1.14867
\(557\) 12087.4i 0.919498i 0.888049 + 0.459749i \(0.152061\pi\)
−0.888049 + 0.459749i \(0.847939\pi\)
\(558\) −4202.00 −0.318790
\(559\) −11517.2 8713.86i −0.871420 0.659315i
\(560\) 0 0
\(561\) 9073.53i 0.682861i
\(562\) 32021.2 2.40344
\(563\) 2618.53 0.196017 0.0980086 0.995186i \(-0.468753\pi\)
0.0980086 + 0.995186i \(0.468753\pi\)
\(564\) 2606.89i 0.194627i
\(565\) 0 0
\(566\) 35571.8i 2.64169i
\(567\) 30020.3i 2.22352i
\(568\) 7195.40 0.531536
\(569\) 6859.30 0.505372 0.252686 0.967548i \(-0.418686\pi\)
0.252686 + 0.967548i \(0.418686\pi\)
\(570\) 0 0
\(571\) −15207.9 −1.11459 −0.557297 0.830314i \(-0.688161\pi\)
−0.557297 + 0.830314i \(0.688161\pi\)
\(572\) −5979.72 + 7903.42i −0.437106 + 0.577725i
\(573\) −8439.63 −0.615306
\(574\) 31477.8i 2.28895i
\(575\) 0 0
\(576\) 5898.58 0.426692
\(577\) 17531.0i 1.26486i −0.774618 0.632429i \(-0.782058\pi\)
0.774618 0.632429i \(-0.217942\pi\)
\(578\) 3591.20i 0.258433i
\(579\) 775.557i 0.0556668i
\(580\) 0 0
\(581\) −38207.5 −2.72825
\(582\) 4545.66 0.323752
\(583\) 2287.58i 0.162508i
\(584\) −1175.97 −0.0833252
\(585\) 0 0
\(586\) 4035.89 0.284507
\(587\) 5988.25i 0.421059i 0.977588 + 0.210529i \(0.0675188\pi\)
−0.977588 + 0.210529i \(0.932481\pi\)
\(588\) −50690.6 −3.55518
\(589\) −13430.4 −0.939539
\(590\) 0 0
\(591\) 5298.82i 0.368806i
\(592\) 368.518i 0.0255844i
\(593\) 15990.9i 1.10737i −0.832728 0.553683i \(-0.813222\pi\)
0.832728 0.553683i \(-0.186778\pi\)
\(594\) −9882.37 −0.682624
\(595\) 0 0
\(596\) 36574.1i 2.51365i
\(597\) 13208.8 0.905528
\(598\) −1426.75 + 1885.75i −0.0975658 + 0.128953i
\(599\) 8103.88 0.552781 0.276390 0.961045i \(-0.410862\pi\)
0.276390 + 0.961045i \(0.410862\pi\)
\(600\) 0 0
\(601\) 5291.20 0.359122 0.179561 0.983747i \(-0.442532\pi\)
0.179561 + 0.983747i \(0.442532\pi\)
\(602\) −45198.5 −3.06006
\(603\) 5883.26i 0.397321i
\(604\) 15850.3i 1.06778i
\(605\) 0 0
\(606\) 5550.75i 0.372086i
\(607\) 11506.8 0.769431 0.384715 0.923035i \(-0.374300\pi\)
0.384715 + 0.923035i \(0.374300\pi\)
\(608\) 26551.3 1.77105
\(609\) 45298.0i 3.01407i
\(610\) 0 0
\(611\) 1200.47 1586.67i 0.0794857 0.105057i
\(612\) 6126.41 0.404650
\(613\) 4997.20i 0.329258i −0.986356 0.164629i \(-0.947357\pi\)
0.986356 0.164629i \(-0.0526426\pi\)
\(614\) 32299.9 2.12299
\(615\) 0 0
\(616\) 7197.10i 0.470746i
\(617\) 1546.06i 0.100878i −0.998727 0.0504392i \(-0.983938\pi\)
0.998727 0.0504392i \(-0.0160621\pi\)
\(618\) 25563.7i 1.66395i
\(619\) 7719.68i 0.501260i 0.968083 + 0.250630i \(0.0806378\pi\)
−0.968083 + 0.250630i \(0.919362\pi\)
\(620\) 0 0
\(621\) −1333.70 −0.0861827
\(622\) 15945.3i 1.02789i
\(623\) 5186.76 0.333553
\(624\) −8554.42 6472.26i −0.548799 0.415221i
\(625\) 0 0
\(626\) 24529.1i 1.56610i
\(627\) 12729.8 0.810810
\(628\) 33297.2 2.11577
\(629\) 719.841i 0.0456310i
\(630\) 0 0
\(631\) 7009.39i 0.442218i −0.975249 0.221109i \(-0.929032\pi\)
0.975249 0.221109i \(-0.0709676\pi\)
\(632\) 12623.4i 0.794511i
\(633\) 17165.5 1.07783
\(634\) −16415.1 −1.02828
\(635\) 0 0
\(636\) 6921.59 0.431539
\(637\) 30852.5 + 23342.9i 1.91903 + 1.45193i
\(638\) −19580.2 −1.21503
\(639\) 5379.68i 0.333046i
\(640\) 0 0
\(641\) 3091.60 0.190501 0.0952504 0.995453i \(-0.469635\pi\)
0.0952504 + 0.995453i \(0.469635\pi\)
\(642\) 17580.6i 1.08077i
\(643\) 5872.84i 0.360190i 0.983649 + 0.180095i \(0.0576405\pi\)
−0.983649 + 0.180095i \(0.942359\pi\)
\(644\) 4185.92i 0.256131i
\(645\) 0 0
\(646\) 34618.6 2.10844
\(647\) −7029.20 −0.427120 −0.213560 0.976930i \(-0.568506\pi\)
−0.213560 + 0.976930i \(0.568506\pi\)
\(648\) 9110.60i 0.552312i
\(649\) 8885.59 0.537426
\(650\) 0 0
\(651\) 25440.5 1.53163
\(652\) 14203.4i 0.853142i
\(653\) −4151.74 −0.248806 −0.124403 0.992232i \(-0.539701\pi\)
−0.124403 + 0.992232i \(0.539701\pi\)
\(654\) −30106.4 −1.80008
\(655\) 0 0
\(656\) 8330.02i 0.495781i
\(657\) 879.219i 0.0522094i
\(658\) 6226.79i 0.368914i
\(659\) 5191.50 0.306877 0.153439 0.988158i \(-0.450965\pi\)
0.153439 + 0.988158i \(0.450965\pi\)
\(660\) 0 0
\(661\) 787.020i 0.0463109i 0.999732 + 0.0231555i \(0.00737127\pi\)
−0.999732 + 0.0231555i \(0.992629\pi\)
\(662\) 16797.9 0.986206
\(663\) −16709.7 12642.5i −0.978810 0.740565i
\(664\) 11595.2 0.677685
\(665\) 0 0
\(666\) −315.973 −0.0183839
\(667\) −2642.50 −0.153400
\(668\) 9607.27i 0.556462i
\(669\) 8801.57i 0.508652i
\(670\) 0 0
\(671\) 8946.48i 0.514717i
\(672\) −50294.8 −2.88715
\(673\) −10073.1 −0.576952 −0.288476 0.957487i \(-0.593149\pi\)
−0.288476 + 0.957487i \(0.593149\pi\)
\(674\) 19837.2i 1.13368i
\(675\) 0 0
\(676\) −6223.06 22024.3i −0.354065 1.25309i
\(677\) −6795.48 −0.385778 −0.192889 0.981221i \(-0.561786\pi\)
−0.192889 + 0.981221i \(0.561786\pi\)
\(678\) 2358.11i 0.133573i
\(679\) −6141.38 −0.347105
\(680\) 0 0
\(681\) 19564.2i 1.10089i
\(682\) 10996.8i 0.617430i
\(683\) 8789.65i 0.492426i 0.969216 + 0.246213i \(0.0791862\pi\)
−0.969216 + 0.246213i \(0.920814\pi\)
\(684\) 8595.09i 0.480470i
\(685\) 0 0
\(686\) 70763.7 3.93844
\(687\) 22136.7i 1.22936i
\(688\) −11961.0 −0.662801
\(689\) −4212.78 3187.38i −0.232938 0.176240i
\(690\) 0 0
\(691\) 35940.9i 1.97866i −0.145687 0.989331i \(-0.546539\pi\)
0.145687 0.989331i \(-0.453461\pi\)
\(692\) 14183.5 0.779158
\(693\) −5380.95 −0.294957
\(694\) 35156.2i 1.92293i
\(695\) 0 0
\(696\) 13747.1i 0.748681i
\(697\) 16271.4i 0.884249i
\(698\) −1042.94 −0.0565559
\(699\) −35955.5 −1.94558
\(700\) 0 0
\(701\) 8533.98 0.459806 0.229903 0.973214i \(-0.426159\pi\)
0.229903 + 0.973214i \(0.426159\pi\)
\(702\) 13769.5 18199.2i 0.740308 0.978470i
\(703\) −1009.90 −0.0541810
\(704\) 15436.7i 0.826412i
\(705\) 0 0
\(706\) −11874.5 −0.633009
\(707\) 7499.31i 0.398926i
\(708\) 26885.3i 1.42714i
\(709\) 16404.0i 0.868923i 0.900690 + 0.434462i \(0.143061\pi\)
−0.900690 + 0.434462i \(0.856939\pi\)
\(710\) 0 0
\(711\) −9437.93 −0.497820
\(712\) −1574.08 −0.0828529
\(713\) 1484.09i 0.0779519i
\(714\) −65576.4 −3.43716
\(715\) 0 0
\(716\) −43982.9 −2.29570
\(717\) 15348.2i 0.799426i
\(718\) −10612.1 −0.551586
\(719\) 1640.70 0.0851012 0.0425506 0.999094i \(-0.486452\pi\)
0.0425506 + 0.999094i \(0.486452\pi\)
\(720\) 0 0
\(721\) 34537.7i 1.78398i
\(722\) 19132.8i 0.986217i
\(723\) 434.435i 0.0223469i
\(724\) 36328.2 1.86481
\(725\) 0 0
\(726\) 23251.6i 1.18863i
\(727\) 3373.78 0.172114 0.0860569 0.996290i \(-0.472573\pi\)
0.0860569 + 0.996290i \(0.472573\pi\)
\(728\) −13254.1 10028.0i −0.674765 0.510526i
\(729\) 11247.3 0.571422
\(730\) 0 0
\(731\) −23363.8 −1.18214
\(732\) 27069.6 1.36683
\(733\) 26029.1i 1.31161i 0.754932 + 0.655803i \(0.227670\pi\)
−0.754932 + 0.655803i \(0.772330\pi\)
\(734\) 22588.9i 1.13593i
\(735\) 0 0
\(736\) 2933.99i 0.146941i
\(737\) 15396.6 0.769528
\(738\) 7142.28 0.356248
\(739\) 32836.8i 1.63454i 0.576258 + 0.817268i \(0.304512\pi\)
−0.576258 + 0.817268i \(0.695488\pi\)
\(740\) 0 0
\(741\) −17736.9 + 23443.0i −0.879327 + 1.16221i
\(742\) −16532.8 −0.817978
\(743\) 7026.50i 0.346941i 0.984839 + 0.173471i \(0.0554982\pi\)
−0.984839 + 0.173471i \(0.944502\pi\)
\(744\) −7720.71 −0.380450
\(745\) 0 0
\(746\) 24174.9i 1.18647i
\(747\) 8669.24i 0.424620i
\(748\) 16033.0i 0.783722i
\(749\) 23752.2i 1.15873i
\(750\) 0 0
\(751\) 19114.4 0.928756 0.464378 0.885637i \(-0.346278\pi\)
0.464378 + 0.885637i \(0.346278\pi\)
\(752\) 1647.81i 0.0799060i
\(753\) −10401.7 −0.503397
\(754\) 27281.9 36058.7i 1.31771 1.74162i
\(755\) 0 0
\(756\) 40398.0i 1.94347i
\(757\) 1293.50 0.0621046 0.0310523 0.999518i \(-0.490114\pi\)
0.0310523 + 0.999518i \(0.490114\pi\)
\(758\) 38965.4 1.86713
\(759\) 1406.68i 0.0672715i
\(760\) 0 0
\(761\) 28509.3i 1.35803i −0.734125 0.679014i \(-0.762407\pi\)
0.734125 0.679014i \(-0.237593\pi\)
\(762\) 19728.8i 0.937926i
\(763\) 40675.0 1.92993
\(764\) −14912.9 −0.706189
\(765\) 0 0
\(766\) 5133.99 0.242165
\(767\) −12380.6 + 16363.6i −0.582841 + 0.770345i
\(768\) −3808.81 −0.178957
\(769\) 2327.55i 0.109147i 0.998510 + 0.0545733i \(0.0173798\pi\)
−0.998510 + 0.0545733i \(0.982620\pi\)
\(770\) 0 0
\(771\) 39964.4 1.86677
\(772\) 1370.41i 0.0638889i
\(773\) 2598.20i 0.120893i −0.998171 0.0604467i \(-0.980747\pi\)
0.998171 0.0604467i \(-0.0192525\pi\)
\(774\) 10255.5i 0.476262i
\(775\) 0 0
\(776\) 1863.79 0.0862194
\(777\) 1913.01 0.0883256
\(778\) 8106.43i 0.373560i
\(779\) 22828.0 1.04993
\(780\) 0 0
\(781\) −14078.8 −0.645041
\(782\) 3825.45i 0.174933i
\(783\) 25502.5 1.16397
\(784\) 32041.4 1.45961
\(785\) 0 0
\(786\) 44032.8i 1.99822i
\(787\) 1799.68i 0.0815140i −0.999169 0.0407570i \(-0.987023\pi\)
0.999169 0.0407570i \(-0.0129769\pi\)
\(788\) 9363.03i 0.423280i
\(789\) 34369.2 1.55080
\(790\) 0 0
\(791\) 3185.91i 0.143209i
\(792\) 1633.02 0.0732660
\(793\) −16475.7 12465.5i −0.737793 0.558213i
\(794\) −39900.5 −1.78339
\(795\) 0 0
\(796\) 23340.0 1.03928
\(797\) 13328.9 0.592388 0.296194 0.955128i \(-0.404283\pi\)
0.296194 + 0.955128i \(0.404283\pi\)
\(798\) 92000.8i 4.08119i
\(799\) 3218.73i 0.142516i
\(800\) 0 0
\(801\) 1176.87i 0.0519135i
\(802\) 11921.8 0.524904
\(803\) 2300.94 0.101119
\(804\) 46586.0i 2.04348i
\(805\) 0 0
\(806\) 20251.5 + 15322.2i 0.885022 + 0.669606i
\(807\) −10031.6 −0.437584
\(808\) 2275.90i 0.0990914i
\(809\) −6514.79 −0.283125 −0.141562 0.989929i \(-0.545213\pi\)
−0.141562 + 0.989929i \(0.545213\pi\)
\(810\) 0 0
\(811\) 7474.15i 0.323617i −0.986822 0.161808i \(-0.948267\pi\)
0.986822 0.161808i \(-0.0517326\pi\)
\(812\) 80041.8i 3.45926i
\(813\) 30885.9i 1.33237i
\(814\) 826.908i 0.0356058i
\(815\) 0 0
\(816\) −17353.6 −0.744482
\(817\) 32778.4i 1.40364i
\(818\) 868.199 0.0371099
\(819\) 7497.49 9909.48i 0.319882 0.422790i
\(820\) 0 0
\(821\) 20393.6i 0.866922i 0.901172 + 0.433461i \(0.142708\pi\)
−0.901172 + 0.433461i \(0.857292\pi\)
\(822\) 23584.6 1.00074
\(823\) −32999.0 −1.39766 −0.698829 0.715288i \(-0.746295\pi\)
−0.698829 + 0.715288i \(0.746295\pi\)
\(824\) 10481.5i 0.443133i
\(825\) 0 0
\(826\) 64218.1i 2.70512i
\(827\) 9715.21i 0.408502i 0.978919 + 0.204251i \(0.0654758\pi\)
−0.978919 + 0.204251i \(0.934524\pi\)
\(828\) 949.781 0.0398637
\(829\) 29994.8 1.25665 0.628324 0.777951i \(-0.283741\pi\)
0.628324 + 0.777951i \(0.283741\pi\)
\(830\) 0 0
\(831\) 19614.9 0.818814
\(832\) −28428.1 21508.6i −1.18458 0.896248i
\(833\) 62587.7 2.60328
\(834\) 36574.7i 1.51856i
\(835\) 0 0
\(836\) 22493.6 0.930569
\(837\) 14322.9i 0.591482i
\(838\) 61349.5i 2.52898i
\(839\) 7057.85i 0.290422i 0.989401 + 0.145211i \(0.0463861\pi\)
−0.989401 + 0.145211i \(0.953614\pi\)
\(840\) 0 0
\(841\) 26140.0 1.07179
\(842\) 16623.7 0.680393
\(843\) 43988.5i 1.79721i
\(844\) 30331.5 1.23703
\(845\) 0 0
\(846\) −1412.85 −0.0574172
\(847\) 31413.9i 1.27437i
\(848\) −4375.11 −0.177172
\(849\) 48866.2 1.97536
\(850\) 0 0
\(851\) 111.597i 0.00449531i
\(852\) 42598.4i 1.71291i
\(853\) 9202.00i 0.369368i −0.982798 0.184684i \(-0.940874\pi\)
0.982798 0.184684i \(-0.0591261\pi\)
\(854\) −64658.1 −2.59082
\(855\) 0 0
\(856\) 7208.34i 0.287822i
\(857\) −41288.6 −1.64573 −0.822866 0.568235i \(-0.807626\pi\)
−0.822866 + 0.568235i \(0.807626\pi\)
\(858\) −19195.1 14522.9i −0.763763 0.577862i
\(859\) −33717.1 −1.33925 −0.669623 0.742702i \(-0.733544\pi\)
−0.669623 + 0.742702i \(0.733544\pi\)
\(860\) 0 0
\(861\) −43242.0 −1.71160
\(862\) 7018.98 0.277341
\(863\) 8063.90i 0.318075i −0.987273 0.159037i \(-0.949161\pi\)
0.987273 0.159037i \(-0.0508390\pi\)
\(864\) 28315.7i 1.11495i
\(865\) 0 0
\(866\) 23623.8i 0.926985i
\(867\) −4933.35 −0.193247
\(868\) 44953.5 1.75786
\(869\) 24699.3i 0.964174i
\(870\) 0 0
\(871\) −21452.8 + 28354.2i −0.834557 + 1.10304i
\(872\) −12344.1 −0.479386
\(873\) 1393.47i 0.0540229i
\(874\) 5366.94 0.207711
\(875\) 0 0
\(876\) 6962.01i 0.268521i
\(877\) 16211.6i 0.624203i −0.950049 0.312102i \(-0.898967\pi\)
0.950049 0.312102i \(-0.101033\pi\)
\(878\) 19799.5i 0.761047i
\(879\) 5544.22i 0.212744i
\(880\) 0 0
\(881\) 9159.69 0.350281 0.175141 0.984543i \(-0.443962\pi\)
0.175141 + 0.984543i \(0.443962\pi\)
\(882\) 27472.8i 1.04882i
\(883\) 20476.8 0.780408 0.390204 0.920728i \(-0.372405\pi\)
0.390204 + 0.920728i \(0.372405\pi\)
\(884\) −29526.1 22339.4i −1.12338 0.849949i
\(885\) 0 0
\(886\) 57049.6i 2.16323i
\(887\) 7491.56 0.283587 0.141794 0.989896i \(-0.454713\pi\)
0.141794 + 0.989896i \(0.454713\pi\)
\(888\) −580.564 −0.0219397
\(889\) 26654.5i 1.00558i
\(890\) 0 0
\(891\) 17826.1i 0.670254i
\(892\) 15552.4i 0.583782i
\(893\) −4515.73 −0.169220
\(894\) 88827.7 3.32309
\(895\) 0 0
\(896\) −43315.2 −1.61502
\(897\) −2590.51 1959.98i −0.0964267 0.0729563i
\(898\) −32744.0 −1.21680
\(899\) 28378.3i 1.05280i
\(900\) 0 0
\(901\) −8546.09 −0.315995
\(902\) 18691.5i 0.689978i
\(903\) 62090.6i 2.28820i
\(904\) 966.864i 0.0355724i
\(905\) 0 0
\(906\) −38495.7 −1.41163
\(907\) 50090.1 1.83375 0.916877 0.399170i \(-0.130702\pi\)
0.916877 + 0.399170i \(0.130702\pi\)
\(908\) 34570.1i 1.26349i
\(909\) −1701.59 −0.0620881
\(910\) 0 0
\(911\) −1350.63 −0.0491202 −0.0245601 0.999698i \(-0.507819\pi\)
−0.0245601 + 0.999698i \(0.507819\pi\)
\(912\) 24346.3i 0.883977i
\(913\) −22687.6 −0.822399
\(914\) 57676.2 2.08726
\(915\) 0 0
\(916\) 39115.7i 1.41094i
\(917\) 59490.3i 2.14236i
\(918\) 36919.2i 1.32736i
\(919\) −38062.2 −1.36622 −0.683111 0.730315i \(-0.739373\pi\)
−0.683111 + 0.730315i \(0.739373\pi\)
\(920\) 0 0
\(921\) 44371.3i 1.58750i
\(922\) −68147.6 −2.43419
\(923\) 19616.5 25927.2i 0.699550 0.924599i
\(924\) −42608.5 −1.51701
\(925\) 0 0
\(926\) −64212.1 −2.27877
\(927\) 7836.57 0.277656
\(928\) 56102.8i 1.98455i
\(929\) 18698.6i 0.660366i −0.943917 0.330183i \(-0.892890\pi\)
0.943917 0.330183i \(-0.107110\pi\)
\(930\) 0 0
\(931\) 87807.8i 3.09107i
\(932\) −63533.6 −2.23295
\(933\) −21904.5 −0.768620
\(934\) 30916.5i 1.08310i
\(935\) 0 0
\(936\) −2275.35 + 3007.34i −0.0794573 + 0.105019i
\(937\) −8664.13 −0.302076 −0.151038 0.988528i \(-0.548262\pi\)
−0.151038 + 0.988528i \(0.548262\pi\)
\(938\) 111275.i 3.87340i
\(939\) −33696.3 −1.17107
\(940\) 0 0
\(941\) 17787.5i 0.616212i −0.951352 0.308106i \(-0.900305\pi\)
0.951352 0.308106i \(-0.0996951\pi\)
\(942\) 80869.0i 2.79709i
\(943\) 2522.56i 0.0871112i
\(944\) 16994.1i 0.585924i
\(945\) 0 0
\(946\) −26838.9 −0.922419
\(947\) 48570.3i 1.66665i 0.552780 + 0.833327i \(0.313567\pi\)
−0.552780 + 0.833327i \(0.686433\pi\)
\(948\) −74733.3 −2.56036
\(949\) −3205.99 + 4237.38i −0.109664 + 0.144943i
\(950\) 0 0
\(951\) 22550.0i 0.768910i
\(952\) −26887.4 −0.915362
\(953\) −33701.1 −1.14553 −0.572763 0.819721i \(-0.694128\pi\)
−0.572763 + 0.819721i \(0.694128\pi\)
\(954\) 3751.29i 0.127309i
\(955\) 0 0
\(956\) 27120.3i 0.917503i
\(957\) 26898.0i 0.908557i
\(958\) −47519.0 −1.60258
\(959\) −31863.8 −1.07292
\(960\) 0 0
\(961\) 13853.0 0.465007
\(962\) 1522.82 + 1152.16i 0.0510372 + 0.0386146i
\(963\) −5389.35 −0.180342
\(964\) 767.649i 0.0256476i
\(965\) 0 0
\(966\) −10166.3 −0.338610
\(967\) 11377.7i 0.378367i 0.981942 + 0.189183i \(0.0605841\pi\)
−0.981942 + 0.189183i \(0.939416\pi\)
\(968\) 9533.53i 0.316549i
\(969\) 47556.7i 1.57662i
\(970\) 0 0
\(971\) 29025.7 0.959299 0.479650 0.877460i \(-0.340764\pi\)
0.479650 + 0.877460i \(0.340764\pi\)
\(972\) −22026.7 −0.726860
\(973\) 49414.0i 1.62810i
\(974\) −28152.3 −0.926136
\(975\) 0 0
\(976\) −17110.6 −0.561165
\(977\) 2482.90i 0.0813051i 0.999173 + 0.0406525i \(0.0129437\pi\)
−0.999173 + 0.0406525i \(0.987056\pi\)
\(978\) 34495.9 1.12787
\(979\) 3079.90 0.100546
\(980\) 0 0
\(981\) 9229.13i 0.300371i
\(982\) 25540.7i 0.829976i
\(983\) 38919.6i 1.26281i −0.775453 0.631405i \(-0.782479\pi\)
0.775453 0.631405i \(-0.217521\pi\)
\(984\) 13123.1 0.425153
\(985\) 0 0
\(986\) 73149.1i 2.36262i
\(987\) 8553.94 0.275861
\(988\) −31341.2 + 41423.8i −1.00921 + 1.33387i
\(989\) −3622.11 −0.116457
\(990\) 0 0
\(991\) 20092.5 0.644054 0.322027 0.946730i \(-0.395636\pi\)
0.322027 + 0.946730i \(0.395636\pi\)
\(992\) 31508.8 1.00847
\(993\) 23075.8i 0.737450i
\(994\) 101750.i 3.24680i
\(995\) 0 0
\(996\) 68646.5i 2.18388i
\(997\) −54046.2 −1.71681 −0.858405 0.512973i \(-0.828544\pi\)
−0.858405 + 0.512973i \(0.828544\pi\)
\(998\) −872.430 −0.0276716
\(999\) 1077.02i 0.0341094i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.4.c.e.51.13 14
5.2 odd 4 325.4.d.d.324.2 14
5.3 odd 4 325.4.d.c.324.13 14
5.4 even 2 65.4.c.a.51.2 14
13.12 even 2 inner 325.4.c.e.51.2 14
15.14 odd 2 585.4.b.e.181.13 14
20.19 odd 2 1040.4.k.d.961.4 14
65.12 odd 4 325.4.d.c.324.14 14
65.34 odd 4 845.4.a.i.1.7 7
65.38 odd 4 325.4.d.d.324.1 14
65.44 odd 4 845.4.a.l.1.1 7
65.64 even 2 65.4.c.a.51.13 yes 14
195.194 odd 2 585.4.b.e.181.2 14
260.259 odd 2 1040.4.k.d.961.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.2 14 5.4 even 2
65.4.c.a.51.13 yes 14 65.64 even 2
325.4.c.e.51.2 14 13.12 even 2 inner
325.4.c.e.51.13 14 1.1 even 1 trivial
325.4.d.c.324.13 14 5.3 odd 4
325.4.d.c.324.14 14 65.12 odd 4
325.4.d.d.324.1 14 65.38 odd 4
325.4.d.d.324.2 14 5.2 odd 4
585.4.b.e.181.2 14 195.194 odd 2
585.4.b.e.181.13 14 15.14 odd 2
845.4.a.i.1.7 7 65.34 odd 4
845.4.a.l.1.1 7 65.44 odd 4
1040.4.k.d.961.3 14 260.259 odd 2
1040.4.k.d.961.4 14 20.19 odd 2