Properties

Label 325.4.c.a
Level $325$
Weight $4$
Character orbit 325.c
Analytic conductor $19.176$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(51,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.51"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - 2 q^{3} + 7 q^{4} - 2 i q^{6} - 24 i q^{7} + 15 i q^{8} - 23 q^{9} - 10 i q^{11} - 14 q^{12} + (9 i - 46) q^{13} + 24 q^{14} + 41 q^{16} - 96 q^{17} - 23 i q^{18} + 114 i q^{19} + 48 i q^{21} + \cdots + 230 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 14 q^{4} - 46 q^{9} - 28 q^{12} - 92 q^{13} + 48 q^{14} + 82 q^{16} - 192 q^{17} + 20 q^{22} - 204 q^{23} - 18 q^{26} + 200 q^{27} - 60 q^{29} - 322 q^{36} - 228 q^{38} + 184 q^{39} - 96 q^{42}+ \cdots + 1088 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
1.00000i
1.00000i
1.00000i −2.00000 7.00000 0 2.00000i 24.0000i 15.0000i −23.0000 0
51.2 1.00000i −2.00000 7.00000 0 2.00000i 24.0000i 15.0000i −23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.4.c.a 2
5.b even 2 1 325.4.c.c 2
5.c odd 4 1 65.4.d.a 2
5.c odd 4 1 65.4.d.b yes 2
13.b even 2 1 inner 325.4.c.a 2
65.d even 2 1 325.4.c.c 2
65.h odd 4 1 65.4.d.a 2
65.h odd 4 1 65.4.d.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.4.d.a 2 5.c odd 4 1
65.4.d.a 2 65.h odd 4 1
65.4.d.b yes 2 5.c odd 4 1
65.4.d.b yes 2 65.h odd 4 1
325.4.c.a 2 1.a even 1 1 trivial
325.4.c.a 2 13.b even 2 1 inner
325.4.c.c 2 5.b even 2 1
325.4.c.c 2 65.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(325, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{3} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T + 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 576 \) Copy content Toggle raw display
$11$ \( T^{2} + 100 \) Copy content Toggle raw display
$13$ \( T^{2} + 92T + 2197 \) Copy content Toggle raw display
$17$ \( (T + 96)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 12996 \) Copy content Toggle raw display
$23$ \( (T + 102)^{2} \) Copy content Toggle raw display
$29$ \( (T + 30)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 44100 \) Copy content Toggle raw display
$37$ \( T^{2} + 15876 \) Copy content Toggle raw display
$41$ \( T^{2} + 40000 \) Copy content Toggle raw display
$43$ \( (T + 282)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 295936 \) Copy content Toggle raw display
$53$ \( (T + 372)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 23716 \) Copy content Toggle raw display
$61$ \( (T + 738)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 156816 \) Copy content Toggle raw display
$71$ \( T^{2} + 504100 \) Copy content Toggle raw display
$73$ \( T^{2} + 580644 \) Copy content Toggle raw display
$79$ \( (T + 240)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4624 \) Copy content Toggle raw display
$89$ \( T^{2} + 1784896 \) Copy content Toggle raw display
$97$ \( T^{2} + 2643876 \) Copy content Toggle raw display
show more
show less