Properties

Label 4-325e2-1.1-c3e2-0-10
Degree $4$
Conductor $105625$
Sign $1$
Analytic cond. $367.704$
Root an. cond. $4.37899$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 15·4-s − 42·9-s − 60·12-s − 92·13-s + 161·16-s − 192·17-s − 204·23-s + 292·27-s − 60·29-s − 630·36-s + 368·39-s − 564·43-s − 644·48-s + 110·49-s + 768·51-s − 1.38e3·52-s − 744·53-s − 1.47e3·61-s + 1.45e3·64-s − 2.88e3·68-s + 816·69-s − 480·79-s + 971·81-s + 240·87-s − 3.06e3·92-s + 444·101-s + ⋯
L(s)  = 1  − 0.769·3-s + 15/8·4-s − 1.55·9-s − 1.44·12-s − 1.96·13-s + 2.51·16-s − 2.73·17-s − 1.84·23-s + 2.08·27-s − 0.384·29-s − 2.91·36-s + 1.51·39-s − 2.00·43-s − 1.93·48-s + 0.320·49-s + 2.10·51-s − 3.68·52-s − 1.92·53-s − 3.09·61-s + 2.84·64-s − 5.13·68-s + 1.42·69-s − 0.683·79-s + 1.33·81-s + 0.295·87-s − 3.46·92-s + 0.437·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(105625\)    =    \(5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(367.704\)
Root analytic conductor: \(4.37899\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 105625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
13$C_2$ \( 1 + 92 T + p^{3} T^{2} \)
good2$C_2^2$ \( 1 - 15 T^{2} + p^{6} T^{4} \)
3$C_2$ \( ( 1 + 2 T + p^{3} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 110 T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 2562 T^{2} + p^{6} T^{4} \)
17$C_2$ \( ( 1 + 96 T + p^{3} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 2 p^{2} T^{2} + p^{6} T^{4} \)
23$C_2$ \( ( 1 + 102 T + p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 + 30 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 15482 T^{2} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 85430 T^{2} + p^{6} T^{4} \)
41$C_2^2$ \( 1 - 97842 T^{2} + p^{6} T^{4} \)
43$C_2$ \( ( 1 + 282 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 88290 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 372 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 387042 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 + 738 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 444710 T^{2} + p^{6} T^{4} \)
71$C_2^2$ \( 1 - 42 p^{2} T^{2} + p^{6} T^{4} \)
73$C_2^2$ \( 1 - 197390 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 240 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1138950 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 + 374958 T^{2} + p^{6} T^{4} \)
97$C_2^2$ \( 1 + 818530 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10402280165983684277881400076, −10.69979843784382227079044281776, −10.17344164674849628340590675193, −9.784261768879918723134591057729, −8.953271166992081260595141395467, −8.635542185649452984911359865494, −7.78536395774619173838981036392, −7.67209833103195052161482905257, −6.81695022730119814822014235657, −6.59105606147073290629119414619, −6.00860695015462316409116195456, −5.84071826011745873108714802504, −4.80164518488584366609914292499, −4.69423705750265306024940767360, −3.39235230899816875740440868770, −2.81394141845569709815353449003, −2.18889921538655509285145514921, −1.88370580233156522827756406761, 0, 0, 1.88370580233156522827756406761, 2.18889921538655509285145514921, 2.81394141845569709815353449003, 3.39235230899816875740440868770, 4.69423705750265306024940767360, 4.80164518488584366609914292499, 5.84071826011745873108714802504, 6.00860695015462316409116195456, 6.59105606147073290629119414619, 6.81695022730119814822014235657, 7.67209833103195052161482905257, 7.78536395774619173838981036392, 8.635542185649452984911359865494, 8.953271166992081260595141395467, 9.784261768879918723134591057729, 10.17344164674849628340590675193, 10.69979843784382227079044281776, 11.10402280165983684277881400076

Graph of the $Z$-function along the critical line