Properties

Label 325.3.j.d.151.8
Level $325$
Weight $3$
Character 325.151
Analytic conductor $8.856$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(151,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,-6,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{17} + 336 x^{16} - 90 x^{15} + 18 x^{14} - 654 x^{13} + 30550 x^{12} - 9690 x^{11} + \cdots + 46656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 151.8
Root \(-1.88633 + 1.88633i\) of defining polynomial
Character \(\chi\) \(=\) 325.151
Dual form 325.3.j.d.226.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.88633 + 1.88633i) q^{2} -0.793970 q^{3} +3.11650i q^{4} +(-1.49769 - 1.49769i) q^{6} +(-8.42514 + 8.42514i) q^{7} +(1.66658 - 1.66658i) q^{8} -8.36961 q^{9} +(-1.45602 + 1.45602i) q^{11} -2.47441i q^{12} +(-11.6660 + 5.73623i) q^{13} -31.7852 q^{14} +18.7534 q^{16} +2.73950i q^{17} +(-15.7879 - 15.7879i) q^{18} +(-2.87005 - 2.87005i) q^{19} +(6.68931 - 6.68931i) q^{21} -5.49308 q^{22} +41.2582i q^{23} +(-1.32321 + 1.32321i) q^{24} +(-32.8264 - 11.1855i) q^{26} +13.7909 q^{27} +(-26.2569 - 26.2569i) q^{28} -22.4912 q^{29} +(-25.5438 - 25.5438i) q^{31} +(28.7089 + 28.7089i) q^{32} +(1.15604 - 1.15604i) q^{33} +(-5.16762 + 5.16762i) q^{34} -26.0839i q^{36} +(22.4179 - 22.4179i) q^{37} -10.8277i q^{38} +(9.26246 - 4.55439i) q^{39} +(35.3618 + 35.3618i) q^{41} +25.2365 q^{42} +4.97904i q^{43} +(-4.53769 - 4.53769i) q^{44} +(-77.8267 + 77.8267i) q^{46} +(16.0871 - 16.0871i) q^{47} -14.8897 q^{48} -92.9659i q^{49} -2.17508i q^{51} +(-17.8770 - 36.3571i) q^{52} +55.8281 q^{53} +(26.0143 + 26.0143i) q^{54} +28.0823i q^{56} +(2.27873 + 2.27873i) q^{57} +(-42.4259 - 42.4259i) q^{58} +(-30.7740 + 30.7740i) q^{59} -4.68989 q^{61} -96.3681i q^{62} +(70.5151 - 70.5151i) q^{63} +33.2953i q^{64} +4.36134 q^{66} +(64.9102 + 64.9102i) q^{67} -8.53766 q^{68} -32.7578i q^{69} +(2.47898 + 2.47898i) q^{71} +(-13.9486 + 13.9486i) q^{72} +(-75.2167 + 75.2167i) q^{73} +84.5750 q^{74} +(8.94451 - 8.94451i) q^{76} -24.5344i q^{77} +(26.0632 + 8.88097i) q^{78} +67.8838 q^{79} +64.3769 q^{81} +133.408i q^{82} +(91.5991 + 91.5991i) q^{83} +(20.8472 + 20.8472i) q^{84} +(-9.39212 + 9.39212i) q^{86} +17.8573 q^{87} +4.85314i q^{88} +(-45.9488 + 45.9488i) q^{89} +(49.9592 - 146.616i) q^{91} -128.581 q^{92} +(20.2810 + 20.2810i) q^{93} +60.6913 q^{94} +(-22.7940 - 22.7940i) q^{96} +(-111.655 - 111.655i) q^{97} +(175.365 - 175.365i) q^{98} +(12.1863 - 12.1863i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{6} + 20 q^{7} - 18 q^{8} + 72 q^{9} + 6 q^{11} + 6 q^{13} - 24 q^{14} - 128 q^{16} - 58 q^{18} - 20 q^{19} + 90 q^{21} + 24 q^{22} - 28 q^{24} - 12 q^{27} + 278 q^{28} - 40 q^{29} - 32 q^{31}+ \cdots - 410 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.88633 + 1.88633i 0.943166 + 0.943166i 0.998470 0.0553034i \(-0.0176126\pi\)
−0.0553034 + 0.998470i \(0.517613\pi\)
\(3\) −0.793970 −0.264657 −0.132328 0.991206i \(-0.542245\pi\)
−0.132328 + 0.991206i \(0.542245\pi\)
\(4\) 3.11650i 0.779125i
\(5\) 0 0
\(6\) −1.49769 1.49769i −0.249615 0.249615i
\(7\) −8.42514 + 8.42514i −1.20359 + 1.20359i −0.230525 + 0.973066i \(0.574044\pi\)
−0.973066 + 0.230525i \(0.925956\pi\)
\(8\) 1.66658 1.66658i 0.208322 0.208322i
\(9\) −8.36961 −0.929957
\(10\) 0 0
\(11\) −1.45602 + 1.45602i −0.132366 + 0.132366i −0.770186 0.637820i \(-0.779836\pi\)
0.637820 + 0.770186i \(0.279836\pi\)
\(12\) 2.47441i 0.206201i
\(13\) −11.6660 + 5.73623i −0.897385 + 0.441249i
\(14\) −31.7852 −2.27037
\(15\) 0 0
\(16\) 18.7534 1.17209
\(17\) 2.73950i 0.161147i 0.996749 + 0.0805737i \(0.0256752\pi\)
−0.996749 + 0.0805737i \(0.974325\pi\)
\(18\) −15.7879 15.7879i −0.877104 0.877104i
\(19\) −2.87005 2.87005i −0.151055 0.151055i 0.627534 0.778589i \(-0.284064\pi\)
−0.778589 + 0.627534i \(0.784064\pi\)
\(20\) 0 0
\(21\) 6.68931 6.68931i 0.318538 0.318538i
\(22\) −5.49308 −0.249685
\(23\) 41.2582i 1.79384i 0.442197 + 0.896918i \(0.354199\pi\)
−0.442197 + 0.896918i \(0.645801\pi\)
\(24\) −1.32321 + 1.32321i −0.0551338 + 0.0551338i
\(25\) 0 0
\(26\) −32.8264 11.1855i −1.26255 0.430212i
\(27\) 13.7909 0.510776
\(28\) −26.2569 26.2569i −0.937748 0.937748i
\(29\) −22.4912 −0.775559 −0.387780 0.921752i \(-0.626758\pi\)
−0.387780 + 0.921752i \(0.626758\pi\)
\(30\) 0 0
\(31\) −25.5438 25.5438i −0.823993 0.823993i 0.162685 0.986678i \(-0.447984\pi\)
−0.986678 + 0.162685i \(0.947984\pi\)
\(32\) 28.7089 + 28.7089i 0.897153 + 0.897153i
\(33\) 1.15604 1.15604i 0.0350314 0.0350314i
\(34\) −5.16762 + 5.16762i −0.151989 + 0.151989i
\(35\) 0 0
\(36\) 26.0839i 0.724552i
\(37\) 22.4179 22.4179i 0.605888 0.605888i −0.335981 0.941869i \(-0.609068\pi\)
0.941869 + 0.335981i \(0.109068\pi\)
\(38\) 10.8277i 0.284940i
\(39\) 9.26246 4.55439i 0.237499 0.116779i
\(40\) 0 0
\(41\) 35.3618 + 35.3618i 0.862483 + 0.862483i 0.991626 0.129143i \(-0.0412225\pi\)
−0.129143 + 0.991626i \(0.541223\pi\)
\(42\) 25.2365 0.600869
\(43\) 4.97904i 0.115792i 0.998323 + 0.0578958i \(0.0184391\pi\)
−0.998323 + 0.0578958i \(0.981561\pi\)
\(44\) −4.53769 4.53769i −0.103129 0.103129i
\(45\) 0 0
\(46\) −77.8267 + 77.8267i −1.69189 + 1.69189i
\(47\) 16.0871 16.0871i 0.342279 0.342279i −0.514945 0.857223i \(-0.672188\pi\)
0.857223 + 0.514945i \(0.172188\pi\)
\(48\) −14.8897 −0.310201
\(49\) 92.9659i 1.89726i
\(50\) 0 0
\(51\) 2.17508i 0.0426487i
\(52\) −17.8770 36.3571i −0.343788 0.699175i
\(53\) 55.8281 1.05336 0.526680 0.850063i \(-0.323436\pi\)
0.526680 + 0.850063i \(0.323436\pi\)
\(54\) 26.0143 + 26.0143i 0.481746 + 0.481746i
\(55\) 0 0
\(56\) 28.0823i 0.501469i
\(57\) 2.27873 + 2.27873i 0.0399778 + 0.0399778i
\(58\) −42.4259 42.4259i −0.731481 0.731481i
\(59\) −30.7740 + 30.7740i −0.521592 + 0.521592i −0.918052 0.396460i \(-0.870239\pi\)
0.396460 + 0.918052i \(0.370239\pi\)
\(60\) 0 0
\(61\) −4.68989 −0.0768835 −0.0384417 0.999261i \(-0.512239\pi\)
−0.0384417 + 0.999261i \(0.512239\pi\)
\(62\) 96.3681i 1.55432i
\(63\) 70.5151 70.5151i 1.11929 1.11929i
\(64\) 33.2953i 0.520239i
\(65\) 0 0
\(66\) 4.36134 0.0660809
\(67\) 64.9102 + 64.9102i 0.968809 + 0.968809i 0.999528 0.0307193i \(-0.00977980\pi\)
−0.0307193 + 0.999528i \(0.509780\pi\)
\(68\) −8.53766 −0.125554
\(69\) 32.7578i 0.474751i
\(70\) 0 0
\(71\) 2.47898 + 2.47898i 0.0349153 + 0.0349153i 0.724349 0.689434i \(-0.242141\pi\)
−0.689434 + 0.724349i \(0.742141\pi\)
\(72\) −13.9486 + 13.9486i −0.193730 + 0.193730i
\(73\) −75.2167 + 75.2167i −1.03037 + 1.03037i −0.0308411 + 0.999524i \(0.509819\pi\)
−0.999524 + 0.0308411i \(0.990181\pi\)
\(74\) 84.5750 1.14291
\(75\) 0 0
\(76\) 8.94451 8.94451i 0.117691 0.117691i
\(77\) 24.5344i 0.318628i
\(78\) 26.0632 + 8.88097i 0.334143 + 0.113859i
\(79\) 67.8838 0.859289 0.429644 0.902998i \(-0.358639\pi\)
0.429644 + 0.902998i \(0.358639\pi\)
\(80\) 0 0
\(81\) 64.3769 0.794777
\(82\) 133.408i 1.62693i
\(83\) 91.5991 + 91.5991i 1.10360 + 1.10360i 0.993972 + 0.109631i \(0.0349669\pi\)
0.109631 + 0.993972i \(0.465033\pi\)
\(84\) 20.8472 + 20.8472i 0.248181 + 0.248181i
\(85\) 0 0
\(86\) −9.39212 + 9.39212i −0.109211 + 0.109211i
\(87\) 17.8573 0.205257
\(88\) 4.85314i 0.0551493i
\(89\) −45.9488 + 45.9488i −0.516278 + 0.516278i −0.916443 0.400165i \(-0.868953\pi\)
0.400165 + 0.916443i \(0.368953\pi\)
\(90\) 0 0
\(91\) 49.9592 146.616i 0.549002 1.61117i
\(92\) −128.581 −1.39762
\(93\) 20.2810 + 20.2810i 0.218075 + 0.218075i
\(94\) 60.6913 0.645652
\(95\) 0 0
\(96\) −22.7940 22.7940i −0.237437 0.237437i
\(97\) −111.655 111.655i −1.15108 1.15108i −0.986336 0.164747i \(-0.947319\pi\)
−0.164747 0.986336i \(-0.552681\pi\)
\(98\) 175.365 175.365i 1.78943 1.78943i
\(99\) 12.1863 12.1863i 0.123094 0.123094i
\(100\) 0 0
\(101\) 86.9229i 0.860622i −0.902681 0.430311i \(-0.858404\pi\)
0.902681 0.430311i \(-0.141596\pi\)
\(102\) 4.10293 4.10293i 0.0402248 0.0402248i
\(103\) 170.779i 1.65805i 0.559210 + 0.829026i \(0.311105\pi\)
−0.559210 + 0.829026i \(0.688895\pi\)
\(104\) −9.88242 + 29.0021i −0.0950232 + 0.278867i
\(105\) 0 0
\(106\) 105.310 + 105.310i 0.993494 + 0.993494i
\(107\) −186.534 −1.74331 −0.871653 0.490124i \(-0.836951\pi\)
−0.871653 + 0.490124i \(0.836951\pi\)
\(108\) 42.9795i 0.397958i
\(109\) 15.2852 + 15.2852i 0.140231 + 0.140231i 0.773737 0.633506i \(-0.218385\pi\)
−0.633506 + 0.773737i \(0.718385\pi\)
\(110\) 0 0
\(111\) −17.7991 + 17.7991i −0.160352 + 0.160352i
\(112\) −158.000 + 158.000i −1.41072 + 1.41072i
\(113\) −192.529 −1.70379 −0.851897 0.523709i \(-0.824548\pi\)
−0.851897 + 0.523709i \(0.824548\pi\)
\(114\) 8.59689i 0.0754114i
\(115\) 0 0
\(116\) 70.0938i 0.604257i
\(117\) 97.6399 48.0100i 0.834529 0.410342i
\(118\) −116.100 −0.983897
\(119\) −23.0807 23.0807i −0.193956 0.193956i
\(120\) 0 0
\(121\) 116.760i 0.964959i
\(122\) −8.84669 8.84669i −0.0725139 0.0725139i
\(123\) −28.0762 28.0762i −0.228262 0.228262i
\(124\) 79.6072 79.6072i 0.641993 0.641993i
\(125\) 0 0
\(126\) 266.030 2.11135
\(127\) 71.8541i 0.565780i −0.959152 0.282890i \(-0.908707\pi\)
0.959152 0.282890i \(-0.0912932\pi\)
\(128\) 52.0295 52.0295i 0.406481 0.406481i
\(129\) 3.95320i 0.0306450i
\(130\) 0 0
\(131\) 110.108 0.840517 0.420258 0.907405i \(-0.361939\pi\)
0.420258 + 0.907405i \(0.361939\pi\)
\(132\) 3.60279 + 3.60279i 0.0272939 + 0.0272939i
\(133\) 48.3611 0.363617
\(134\) 244.884i 1.82750i
\(135\) 0 0
\(136\) 4.56559 + 4.56559i 0.0335705 + 0.0335705i
\(137\) −86.8356 + 86.8356i −0.633837 + 0.633837i −0.949028 0.315191i \(-0.897931\pi\)
0.315191 + 0.949028i \(0.397931\pi\)
\(138\) 61.7921 61.7921i 0.447769 0.447769i
\(139\) 171.504 1.23384 0.616922 0.787024i \(-0.288379\pi\)
0.616922 + 0.787024i \(0.288379\pi\)
\(140\) 0 0
\(141\) −12.7727 + 12.7727i −0.0905864 + 0.0905864i
\(142\) 9.35237i 0.0658618i
\(143\) 8.63388 25.3380i 0.0603768 0.177189i
\(144\) −156.959 −1.08999
\(145\) 0 0
\(146\) −283.767 −1.94361
\(147\) 73.8121i 0.502123i
\(148\) 69.8652 + 69.8652i 0.472062 + 0.472062i
\(149\) 6.63306 + 6.63306i 0.0445172 + 0.0445172i 0.729015 0.684498i \(-0.239978\pi\)
−0.684498 + 0.729015i \(0.739978\pi\)
\(150\) 0 0
\(151\) −51.6100 + 51.6100i −0.341788 + 0.341788i −0.857039 0.515251i \(-0.827699\pi\)
0.515251 + 0.857039i \(0.327699\pi\)
\(152\) −9.56631 −0.0629363
\(153\) 22.9286i 0.149860i
\(154\) 46.2800 46.2800i 0.300519 0.300519i
\(155\) 0 0
\(156\) 14.1938 + 28.8664i 0.0909857 + 0.185041i
\(157\) 62.2106 0.396246 0.198123 0.980177i \(-0.436516\pi\)
0.198123 + 0.980177i \(0.436516\pi\)
\(158\) 128.051 + 128.051i 0.810452 + 0.810452i
\(159\) −44.3258 −0.278779
\(160\) 0 0
\(161\) −347.606 347.606i −2.15904 2.15904i
\(162\) 121.436 + 121.436i 0.749606 + 0.749606i
\(163\) −53.1930 + 53.1930i −0.326338 + 0.326338i −0.851192 0.524854i \(-0.824120\pi\)
0.524854 + 0.851192i \(0.324120\pi\)
\(164\) −110.205 + 110.205i −0.671982 + 0.671982i
\(165\) 0 0
\(166\) 345.573i 2.08176i
\(167\) 104.584 104.584i 0.626251 0.626251i −0.320871 0.947123i \(-0.603976\pi\)
0.947123 + 0.320871i \(0.103976\pi\)
\(168\) 22.2965i 0.132717i
\(169\) 103.191 133.838i 0.610599 0.791940i
\(170\) 0 0
\(171\) 24.0212 + 24.0212i 0.140475 + 0.140475i
\(172\) −15.5172 −0.0902161
\(173\) 280.273i 1.62008i −0.586377 0.810038i \(-0.699446\pi\)
0.586377 0.810038i \(-0.300554\pi\)
\(174\) 33.6849 + 33.6849i 0.193591 + 0.193591i
\(175\) 0 0
\(176\) −27.3054 + 27.3054i −0.155144 + 0.155144i
\(177\) 24.4336 24.4336i 0.138043 0.138043i
\(178\) −173.349 −0.973873
\(179\) 228.150i 1.27458i −0.770625 0.637289i \(-0.780056\pi\)
0.770625 0.637289i \(-0.219944\pi\)
\(180\) 0 0
\(181\) 170.242i 0.940564i −0.882516 0.470282i \(-0.844152\pi\)
0.882516 0.470282i \(-0.155848\pi\)
\(182\) 370.806 182.327i 2.03740 1.00180i
\(183\) 3.72363 0.0203477
\(184\) 68.7600 + 68.7600i 0.373695 + 0.373695i
\(185\) 0 0
\(186\) 76.5134i 0.411362i
\(187\) −3.98878 3.98878i −0.0213304 0.0213304i
\(188\) 50.1355 + 50.1355i 0.266678 + 0.266678i
\(189\) −116.191 + 116.191i −0.614765 + 0.614765i
\(190\) 0 0
\(191\) 292.083 1.52923 0.764616 0.644487i \(-0.222929\pi\)
0.764616 + 0.644487i \(0.222929\pi\)
\(192\) 26.4355i 0.137685i
\(193\) −87.6005 + 87.6005i −0.453888 + 0.453888i −0.896643 0.442754i \(-0.854001\pi\)
0.442754 + 0.896643i \(0.354001\pi\)
\(194\) 421.237i 2.17132i
\(195\) 0 0
\(196\) 289.728 1.47820
\(197\) −14.9848 14.9848i −0.0760648 0.0760648i 0.668051 0.744116i \(-0.267129\pi\)
−0.744116 + 0.668051i \(0.767129\pi\)
\(198\) 45.9749 0.232197
\(199\) 78.4716i 0.394330i 0.980370 + 0.197165i \(0.0631734\pi\)
−0.980370 + 0.197165i \(0.936827\pi\)
\(200\) 0 0
\(201\) −51.5367 51.5367i −0.256402 0.256402i
\(202\) 163.965 163.965i 0.811710 0.811710i
\(203\) 189.492 189.492i 0.933456 0.933456i
\(204\) 6.77865 0.0332287
\(205\) 0 0
\(206\) −322.147 + 322.147i −1.56382 + 1.56382i
\(207\) 345.315i 1.66819i
\(208\) −218.778 + 107.574i −1.05182 + 0.517183i
\(209\) 8.35771 0.0399890
\(210\) 0 0
\(211\) −107.184 −0.507979 −0.253990 0.967207i \(-0.581743\pi\)
−0.253990 + 0.967207i \(0.581743\pi\)
\(212\) 173.988i 0.820699i
\(213\) −1.96824 1.96824i −0.00924055 0.00924055i
\(214\) −351.864 351.864i −1.64423 1.64423i
\(215\) 0 0
\(216\) 22.9837 22.9837i 0.106406 0.106406i
\(217\) 430.420 1.98350
\(218\) 57.6658i 0.264522i
\(219\) 59.7198 59.7198i 0.272693 0.272693i
\(220\) 0 0
\(221\) −15.7144 31.9591i −0.0711060 0.144611i
\(222\) −67.1500 −0.302478
\(223\) −155.987 155.987i −0.699491 0.699491i 0.264809 0.964301i \(-0.414691\pi\)
−0.964301 + 0.264809i \(0.914691\pi\)
\(224\) −483.753 −2.15961
\(225\) 0 0
\(226\) −363.173 363.173i −1.60696 1.60696i
\(227\) −109.822 109.822i −0.483798 0.483798i 0.422544 0.906342i \(-0.361137\pi\)
−0.906342 + 0.422544i \(0.861137\pi\)
\(228\) −7.10167 + 7.10167i −0.0311477 + 0.0311477i
\(229\) −268.576 + 268.576i −1.17282 + 1.17282i −0.191284 + 0.981535i \(0.561265\pi\)
−0.981535 + 0.191284i \(0.938735\pi\)
\(230\) 0 0
\(231\) 19.4795i 0.0843270i
\(232\) −37.4833 + 37.4833i −0.161566 + 0.161566i
\(233\) 144.819i 0.621542i 0.950485 + 0.310771i \(0.100587\pi\)
−0.950485 + 0.310771i \(0.899413\pi\)
\(234\) 274.744 + 93.6185i 1.17412 + 0.400079i
\(235\) 0 0
\(236\) −95.9070 95.9070i −0.406386 0.406386i
\(237\) −53.8977 −0.227416
\(238\) 87.0758i 0.365865i
\(239\) 164.817 + 164.817i 0.689612 + 0.689612i 0.962146 0.272534i \(-0.0878617\pi\)
−0.272534 + 0.962146i \(0.587862\pi\)
\(240\) 0 0
\(241\) −254.475 + 254.475i −1.05591 + 1.05591i −0.0575708 + 0.998341i \(0.518336\pi\)
−0.998341 + 0.0575708i \(0.981664\pi\)
\(242\) −220.248 + 220.248i −0.910116 + 0.910116i
\(243\) −175.232 −0.721119
\(244\) 14.6160i 0.0599018i
\(245\) 0 0
\(246\) 105.922i 0.430578i
\(247\) 49.9453 + 17.0187i 0.202208 + 0.0689018i
\(248\) −85.1413 −0.343312
\(249\) −72.7269 72.7269i −0.292076 0.292076i
\(250\) 0 0
\(251\) 111.483i 0.444157i −0.975029 0.222078i \(-0.928716\pi\)
0.975029 0.222078i \(-0.0712841\pi\)
\(252\) 219.760 + 219.760i 0.872065 + 0.872065i
\(253\) −60.0729 60.0729i −0.237442 0.237442i
\(254\) 135.541 135.541i 0.533625 0.533625i
\(255\) 0 0
\(256\) 329.471 1.28700
\(257\) 102.707i 0.399636i 0.979833 + 0.199818i \(0.0640351\pi\)
−0.979833 + 0.199818i \(0.935965\pi\)
\(258\) 7.45706 7.45706i 0.0289033 0.0289033i
\(259\) 377.747i 1.45848i
\(260\) 0 0
\(261\) 188.243 0.721236
\(262\) 207.700 + 207.700i 0.792747 + 0.792747i
\(263\) 60.7931 0.231153 0.115576 0.993299i \(-0.463129\pi\)
0.115576 + 0.993299i \(0.463129\pi\)
\(264\) 3.85325i 0.0145956i
\(265\) 0 0
\(266\) 91.2251 + 91.2251i 0.342952 + 0.342952i
\(267\) 36.4820 36.4820i 0.136637 0.136637i
\(268\) −202.293 + 202.293i −0.754823 + 0.754823i
\(269\) −413.362 −1.53666 −0.768330 0.640053i \(-0.778912\pi\)
−0.768330 + 0.640053i \(0.778912\pi\)
\(270\) 0 0
\(271\) 33.0802 33.0802i 0.122067 0.122067i −0.643434 0.765501i \(-0.722491\pi\)
0.765501 + 0.643434i \(0.222491\pi\)
\(272\) 51.3751i 0.188879i
\(273\) −39.6661 + 116.409i −0.145297 + 0.426406i
\(274\) −327.602 −1.19563
\(275\) 0 0
\(276\) 102.090 0.369890
\(277\) 395.394i 1.42742i 0.700444 + 0.713708i \(0.252985\pi\)
−0.700444 + 0.713708i \(0.747015\pi\)
\(278\) 323.514 + 323.514i 1.16372 + 1.16372i
\(279\) 213.791 + 213.791i 0.766278 + 0.766278i
\(280\) 0 0
\(281\) −126.116 + 126.116i −0.448810 + 0.448810i −0.894959 0.446149i \(-0.852795\pi\)
0.446149 + 0.894959i \(0.352795\pi\)
\(282\) −48.1870 −0.170876
\(283\) 426.703i 1.50779i −0.656998 0.753893i \(-0.728174\pi\)
0.656998 0.753893i \(-0.271826\pi\)
\(284\) −7.72575 + 7.72575i −0.0272033 + 0.0272033i
\(285\) 0 0
\(286\) 64.0823 31.5096i 0.224064 0.110173i
\(287\) −595.856 −2.07615
\(288\) −240.282 240.282i −0.834314 0.834314i
\(289\) 281.495 0.974032
\(290\) 0 0
\(291\) 88.6507 + 88.6507i 0.304642 + 0.304642i
\(292\) −234.413 234.413i −0.802783 0.802783i
\(293\) 15.6125 15.6125i 0.0532849 0.0532849i −0.679962 0.733247i \(-0.738004\pi\)
0.733247 + 0.679962i \(0.238004\pi\)
\(294\) −139.234 + 139.234i −0.473586 + 0.473586i
\(295\) 0 0
\(296\) 74.7221i 0.252440i
\(297\) −20.0799 + 20.0799i −0.0676091 + 0.0676091i
\(298\) 25.0243i 0.0839743i
\(299\) −236.667 481.319i −0.791528 1.60976i
\(300\) 0 0
\(301\) −41.9491 41.9491i −0.139366 0.139366i
\(302\) −194.707 −0.644725
\(303\) 69.0141i 0.227769i
\(304\) −53.8233 53.8233i −0.177050 0.177050i
\(305\) 0 0
\(306\) 43.2509 43.2509i 0.141343 0.141343i
\(307\) −360.117 + 360.117i −1.17302 + 1.17302i −0.191534 + 0.981486i \(0.561346\pi\)
−0.981486 + 0.191534i \(0.938654\pi\)
\(308\) 76.4613 0.248251
\(309\) 135.594i 0.438815i
\(310\) 0 0
\(311\) 209.072i 0.672257i −0.941816 0.336128i \(-0.890882\pi\)
0.941816 0.336128i \(-0.109118\pi\)
\(312\) 7.84634 23.0268i 0.0251485 0.0738039i
\(313\) −333.747 −1.06628 −0.533142 0.846026i \(-0.678989\pi\)
−0.533142 + 0.846026i \(0.678989\pi\)
\(314\) 117.350 + 117.350i 0.373726 + 0.373726i
\(315\) 0 0
\(316\) 211.560i 0.669493i
\(317\) 158.818 + 158.818i 0.501002 + 0.501002i 0.911749 0.410747i \(-0.134732\pi\)
−0.410747 + 0.911749i \(0.634732\pi\)
\(318\) −83.6133 83.6133i −0.262935 0.262935i
\(319\) 32.7477 32.7477i 0.102657 0.102657i
\(320\) 0 0
\(321\) 148.102 0.461377
\(322\) 1311.40i 4.07268i
\(323\) 7.86251 7.86251i 0.0243421 0.0243421i
\(324\) 200.631i 0.619230i
\(325\) 0 0
\(326\) −200.679 −0.615581
\(327\) −12.1360 12.1360i −0.0371130 0.0371130i
\(328\) 117.866 0.359349
\(329\) 271.072i 0.823928i
\(330\) 0 0
\(331\) 328.694 + 328.694i 0.993032 + 0.993032i 0.999976 0.00694351i \(-0.00221021\pi\)
−0.00694351 + 0.999976i \(0.502210\pi\)
\(332\) −285.468 + 285.468i −0.859845 + 0.859845i
\(333\) −187.629 + 187.629i −0.563450 + 0.563450i
\(334\) 394.560 1.18132
\(335\) 0 0
\(336\) 125.447 125.447i 0.373355 0.373355i
\(337\) 239.044i 0.709329i 0.934994 + 0.354664i \(0.115405\pi\)
−0.934994 + 0.354664i \(0.884595\pi\)
\(338\) 447.116 57.8095i 1.32283 0.171034i
\(339\) 152.862 0.450921
\(340\) 0 0
\(341\) 74.3846 0.218137
\(342\) 90.6239i 0.264982i
\(343\) 370.419 + 370.419i 1.07994 + 1.07994i
\(344\) 8.29794 + 8.29794i 0.0241219 + 0.0241219i
\(345\) 0 0
\(346\) 528.688 528.688i 1.52800 1.52800i
\(347\) 5.90128 0.0170066 0.00850329 0.999964i \(-0.497293\pi\)
0.00850329 + 0.999964i \(0.497293\pi\)
\(348\) 55.6524i 0.159921i
\(349\) 11.5942 11.5942i 0.0332212 0.0332212i −0.690301 0.723522i \(-0.742522\pi\)
0.723522 + 0.690301i \(0.242522\pi\)
\(350\) 0 0
\(351\) −160.885 + 79.1081i −0.458363 + 0.225379i
\(352\) −83.6015 −0.237504
\(353\) −129.927 129.927i −0.368066 0.368066i 0.498705 0.866772i \(-0.333809\pi\)
−0.866772 + 0.498705i \(0.833809\pi\)
\(354\) 92.1798 0.260395
\(355\) 0 0
\(356\) −143.199 143.199i −0.402245 0.402245i
\(357\) 18.3254 + 18.3254i 0.0513316 + 0.0513316i
\(358\) 430.366 430.366i 1.20214 1.20214i
\(359\) 273.927 273.927i 0.763027 0.763027i −0.213841 0.976868i \(-0.568597\pi\)
0.976868 + 0.213841i \(0.0685975\pi\)
\(360\) 0 0
\(361\) 344.526i 0.954365i
\(362\) 321.133 321.133i 0.887108 0.887108i
\(363\) 92.7039i 0.255383i
\(364\) 456.929 + 155.698i 1.25530 + 0.427741i
\(365\) 0 0
\(366\) 7.02401 + 7.02401i 0.0191913 + 0.0191913i
\(367\) −125.394 −0.341673 −0.170836 0.985299i \(-0.554647\pi\)
−0.170836 + 0.985299i \(0.554647\pi\)
\(368\) 773.733i 2.10254i
\(369\) −295.965 295.965i −0.802072 0.802072i
\(370\) 0 0
\(371\) −470.360 + 470.360i −1.26782 + 1.26782i
\(372\) −63.2057 + 63.2057i −0.169908 + 0.169908i
\(373\) 503.396 1.34959 0.674793 0.738007i \(-0.264233\pi\)
0.674793 + 0.738007i \(0.264233\pi\)
\(374\) 15.0483i 0.0402361i
\(375\) 0 0
\(376\) 53.6208i 0.142608i
\(377\) 262.383 129.015i 0.695975 0.342214i
\(378\) −438.348 −1.15965
\(379\) 464.950 + 464.950i 1.22678 + 1.22678i 0.965175 + 0.261606i \(0.0842522\pi\)
0.261606 + 0.965175i \(0.415748\pi\)
\(380\) 0 0
\(381\) 57.0500i 0.149738i
\(382\) 550.966 + 550.966i 1.44232 + 1.44232i
\(383\) 317.070 + 317.070i 0.827858 + 0.827858i 0.987220 0.159362i \(-0.0509437\pi\)
−0.159362 + 0.987220i \(0.550944\pi\)
\(384\) −41.3099 + 41.3099i −0.107578 + 0.107578i
\(385\) 0 0
\(386\) −330.487 −0.856184
\(387\) 41.6726i 0.107681i
\(388\) 347.973 347.973i 0.896837 0.896837i
\(389\) 92.1151i 0.236800i −0.992966 0.118400i \(-0.962224\pi\)
0.992966 0.118400i \(-0.0377765\pi\)
\(390\) 0 0
\(391\) −113.027 −0.289072
\(392\) −154.935 154.935i −0.395242 0.395242i
\(393\) −87.4222 −0.222448
\(394\) 56.5325i 0.143483i
\(395\) 0 0
\(396\) 37.9787 + 37.9787i 0.0959058 + 0.0959058i
\(397\) 454.524 454.524i 1.14490 1.14490i 0.157356 0.987542i \(-0.449703\pi\)
0.987542 0.157356i \(-0.0502969\pi\)
\(398\) −148.023 + 148.023i −0.371918 + 0.371918i
\(399\) −38.3973 −0.0962338
\(400\) 0 0
\(401\) −289.770 + 289.770i −0.722618 + 0.722618i −0.969138 0.246520i \(-0.920713\pi\)
0.246520 + 0.969138i \(0.420713\pi\)
\(402\) 194.431i 0.483659i
\(403\) 444.519 + 151.469i 1.10302 + 0.375853i
\(404\) 270.895 0.670532
\(405\) 0 0
\(406\) 714.888 1.76081
\(407\) 65.2817i 0.160397i
\(408\) −3.62494 3.62494i −0.00888466 0.00888466i
\(409\) −13.9909 13.9909i −0.0342075 0.0342075i 0.689796 0.724004i \(-0.257700\pi\)
−0.724004 + 0.689796i \(0.757700\pi\)
\(410\) 0 0
\(411\) 68.9449 68.9449i 0.167749 0.167749i
\(412\) −532.234 −1.29183
\(413\) 518.550i 1.25557i
\(414\) 651.379 651.379i 1.57338 1.57338i
\(415\) 0 0
\(416\) −499.599 170.237i −1.20096 0.409224i
\(417\) −136.169 −0.326545
\(418\) 15.7654 + 15.7654i 0.0377163 + 0.0377163i
\(419\) 151.917 0.362569 0.181285 0.983431i \(-0.441974\pi\)
0.181285 + 0.983431i \(0.441974\pi\)
\(420\) 0 0
\(421\) 364.648 + 364.648i 0.866147 + 0.866147i 0.992043 0.125897i \(-0.0401807\pi\)
−0.125897 + 0.992043i \(0.540181\pi\)
\(422\) −202.184 202.184i −0.479109 0.479109i
\(423\) −134.643 + 134.643i −0.318305 + 0.318305i
\(424\) 93.0418 93.0418i 0.219438 0.219438i
\(425\) 0 0
\(426\) 7.42550i 0.0174308i
\(427\) 39.5130 39.5130i 0.0925363 0.0925363i
\(428\) 581.332i 1.35825i
\(429\) −6.85504 + 20.1176i −0.0159791 + 0.0468942i
\(430\) 0 0
\(431\) 488.245 + 488.245i 1.13282 + 1.13282i 0.989707 + 0.143112i \(0.0457109\pi\)
0.143112 + 0.989707i \(0.454289\pi\)
\(432\) 258.628 0.598675
\(433\) 295.143i 0.681624i −0.940132 0.340812i \(-0.889298\pi\)
0.940132 0.340812i \(-0.110702\pi\)
\(434\) 811.914 + 811.914i 1.87077 + 1.87077i
\(435\) 0 0
\(436\) −47.6362 + 47.6362i −0.109257 + 0.109257i
\(437\) 118.413 118.413i 0.270968 0.270968i
\(438\) 225.303 0.514390
\(439\) 54.2049i 0.123473i −0.998092 0.0617367i \(-0.980336\pi\)
0.998092 0.0617367i \(-0.0196639\pi\)
\(440\) 0 0
\(441\) 778.088i 1.76437i
\(442\) 30.6428 89.9281i 0.0693276 0.203457i
\(443\) 414.826 0.936403 0.468201 0.883622i \(-0.344902\pi\)
0.468201 + 0.883622i \(0.344902\pi\)
\(444\) −55.4709 55.4709i −0.124934 0.124934i
\(445\) 0 0
\(446\) 588.485i 1.31947i
\(447\) −5.26645 5.26645i −0.0117818 0.0117818i
\(448\) −280.518 280.518i −0.626156 0.626156i
\(449\) 64.8500 64.8500i 0.144432 0.144432i −0.631193 0.775625i \(-0.717435\pi\)
0.775625 + 0.631193i \(0.217435\pi\)
\(450\) 0 0
\(451\) −102.975 −0.228326
\(452\) 600.016i 1.32747i
\(453\) 40.9768 40.9768i 0.0904564 0.0904564i
\(454\) 414.322i 0.912604i
\(455\) 0 0
\(456\) 7.59536 0.0166565
\(457\) 104.290 + 104.290i 0.228206 + 0.228206i 0.811943 0.583737i \(-0.198410\pi\)
−0.583737 + 0.811943i \(0.698410\pi\)
\(458\) −1013.25 −2.21233
\(459\) 37.7804i 0.0823102i
\(460\) 0 0
\(461\) −175.305 175.305i −0.380271 0.380271i 0.490929 0.871200i \(-0.336658\pi\)
−0.871200 + 0.490929i \(0.836658\pi\)
\(462\) −36.7449 + 36.7449i −0.0795344 + 0.0795344i
\(463\) 236.061 236.061i 0.509851 0.509851i −0.404629 0.914481i \(-0.632599\pi\)
0.914481 + 0.404629i \(0.132599\pi\)
\(464\) −421.787 −0.909024
\(465\) 0 0
\(466\) −273.177 + 273.177i −0.586217 + 0.586217i
\(467\) 411.919i 0.882054i 0.897494 + 0.441027i \(0.145386\pi\)
−0.897494 + 0.441027i \(0.854614\pi\)
\(468\) 149.623 + 304.295i 0.319708 + 0.650202i
\(469\) −1093.75 −2.33210
\(470\) 0 0
\(471\) −49.3933 −0.104869
\(472\) 102.574i 0.217318i
\(473\) −7.24958 7.24958i −0.0153268 0.0153268i
\(474\) −101.669 101.669i −0.214491 0.214491i
\(475\) 0 0
\(476\) 71.9310 71.9310i 0.151116 0.151116i
\(477\) −467.260 −0.979580
\(478\) 621.801i 1.30084i
\(479\) 121.114 121.114i 0.252848 0.252848i −0.569289 0.822137i \(-0.692781\pi\)
0.822137 + 0.569289i \(0.192781\pi\)
\(480\) 0 0
\(481\) −132.933 + 390.121i −0.276367 + 0.811062i
\(482\) −960.048 −1.99180
\(483\) 275.989 + 275.989i 0.571406 + 0.571406i
\(484\) −363.882 −0.751823
\(485\) 0 0
\(486\) −330.546 330.546i −0.680135 0.680135i
\(487\) 500.824 + 500.824i 1.02839 + 1.02839i 0.999585 + 0.0288012i \(0.00916897\pi\)
0.0288012 + 0.999585i \(0.490831\pi\)
\(488\) −7.81606 + 7.81606i −0.0160165 + 0.0160165i
\(489\) 42.2337 42.2337i 0.0863674 0.0863674i
\(490\) 0 0
\(491\) 541.358i 1.10256i 0.834320 + 0.551281i \(0.185861\pi\)
−0.834320 + 0.551281i \(0.814139\pi\)
\(492\) 87.4995 87.4995i 0.177845 0.177845i
\(493\) 61.6148i 0.124979i
\(494\) 62.1104 + 126.316i 0.125730 + 0.255701i
\(495\) 0 0
\(496\) −479.033 479.033i −0.965793 0.965793i
\(497\) −41.7715 −0.0840474
\(498\) 274.374i 0.550952i
\(499\) 406.898 + 406.898i 0.815427 + 0.815427i 0.985442 0.170015i \(-0.0543815\pi\)
−0.170015 + 0.985442i \(0.554382\pi\)
\(500\) 0 0
\(501\) −83.0365 + 83.0365i −0.165742 + 0.165742i
\(502\) 210.295 210.295i 0.418914 0.418914i
\(503\) −295.334 −0.587146 −0.293573 0.955937i \(-0.594844\pi\)
−0.293573 + 0.955937i \(0.594844\pi\)
\(504\) 235.038i 0.466345i
\(505\) 0 0
\(506\) 226.635i 0.447895i
\(507\) −81.9308 + 106.263i −0.161599 + 0.209592i
\(508\) 223.933 0.440814
\(509\) −6.08665 6.08665i −0.0119581 0.0119581i 0.701102 0.713061i \(-0.252692\pi\)
−0.713061 + 0.701102i \(0.752692\pi\)
\(510\) 0 0
\(511\) 1267.42i 2.48028i
\(512\) 413.374 + 413.374i 0.807371 + 0.807371i
\(513\) −39.5807 39.5807i −0.0771554 0.0771554i
\(514\) −193.739 + 193.739i −0.376923 + 0.376923i
\(515\) 0 0
\(516\) 12.3202 0.0238763
\(517\) 46.8463i 0.0906119i
\(518\) −712.556 + 712.556i −1.37559 + 1.37559i
\(519\) 222.528i 0.428764i
\(520\) 0 0
\(521\) 583.890 1.12071 0.560356 0.828252i \(-0.310664\pi\)
0.560356 + 0.828252i \(0.310664\pi\)
\(522\) 355.088 + 355.088i 0.680246 + 0.680246i
\(523\) 531.245 1.01577 0.507883 0.861426i \(-0.330428\pi\)
0.507883 + 0.861426i \(0.330428\pi\)
\(524\) 343.150i 0.654867i
\(525\) 0 0
\(526\) 114.676 + 114.676i 0.218015 + 0.218015i
\(527\) 69.9773 69.9773i 0.132784 0.132784i
\(528\) 21.6797 21.6797i 0.0410600 0.0410600i
\(529\) −1173.24 −2.21785
\(530\) 0 0
\(531\) 257.566 257.566i 0.485059 0.485059i
\(532\) 150.717i 0.283303i
\(533\) −615.375 209.688i −1.15455 0.393410i
\(534\) 137.634 0.257742
\(535\) 0 0
\(536\) 216.356 0.403648
\(537\) 181.144i 0.337326i
\(538\) −779.738 779.738i −1.44933 1.44933i
\(539\) 135.360 + 135.360i 0.251132 + 0.251132i
\(540\) 0 0
\(541\) 693.346 693.346i 1.28160 1.28160i 0.341844 0.939757i \(-0.388949\pi\)
0.939757 0.341844i \(-0.111051\pi\)
\(542\) 124.801 0.230259
\(543\) 135.167i 0.248926i
\(544\) −78.6482 + 78.6482i −0.144574 + 0.144574i
\(545\) 0 0
\(546\) −294.409 + 144.762i −0.539211 + 0.265133i
\(547\) 372.319 0.680657 0.340328 0.940307i \(-0.389462\pi\)
0.340328 + 0.940307i \(0.389462\pi\)
\(548\) −270.623 270.623i −0.493838 0.493838i
\(549\) 39.2526 0.0714983
\(550\) 0 0
\(551\) 64.5509 + 64.5509i 0.117152 + 0.117152i
\(552\) −54.5933 54.5933i −0.0989010 0.0989010i
\(553\) −571.930 + 571.930i −1.03423 + 1.03423i
\(554\) −745.845 + 745.845i −1.34629 + 1.34629i
\(555\) 0 0
\(556\) 534.493i 0.961318i
\(557\) 30.1943 30.1943i 0.0542088 0.0542088i −0.679483 0.733692i \(-0.737796\pi\)
0.733692 + 0.679483i \(0.237796\pi\)
\(558\) 806.564i 1.44545i
\(559\) −28.5609 58.0855i −0.0510928 0.103910i
\(560\) 0 0
\(561\) 3.16697 + 3.16697i 0.00564522 + 0.00564522i
\(562\) −475.792 −0.846606
\(563\) 254.215i 0.451536i 0.974181 + 0.225768i \(0.0724891\pi\)
−0.974181 + 0.225768i \(0.927511\pi\)
\(564\) −39.8060 39.8060i −0.0705781 0.0705781i
\(565\) 0 0
\(566\) 804.904 804.904i 1.42209 1.42209i
\(567\) −542.384 + 542.384i −0.956586 + 0.956586i
\(568\) 8.26283 0.0145472
\(569\) 913.655i 1.60572i −0.596168 0.802860i \(-0.703311\pi\)
0.596168 0.802860i \(-0.296689\pi\)
\(570\) 0 0
\(571\) 580.894i 1.01733i 0.860965 + 0.508664i \(0.169860\pi\)
−0.860965 + 0.508664i \(0.830140\pi\)
\(572\) 78.9659 + 26.9075i 0.138052 + 0.0470410i
\(573\) −231.905 −0.404721
\(574\) −1123.98 1123.98i −1.95816 1.95816i
\(575\) 0 0
\(576\) 278.669i 0.483800i
\(577\) 50.8969 + 50.8969i 0.0882095 + 0.0882095i 0.749835 0.661625i \(-0.230133\pi\)
−0.661625 + 0.749835i \(0.730133\pi\)
\(578\) 530.993 + 530.993i 0.918674 + 0.918674i
\(579\) 69.5521 69.5521i 0.120125 0.120125i
\(580\) 0 0
\(581\) −1543.47 −2.65657
\(582\) 334.449i 0.574655i
\(583\) −81.2869 + 81.2869i −0.139429 + 0.139429i
\(584\) 250.709i 0.429296i
\(585\) 0 0
\(586\) 58.9006 0.100513
\(587\) −344.992 344.992i −0.587720 0.587720i 0.349294 0.937013i \(-0.386422\pi\)
−0.937013 + 0.349294i \(0.886422\pi\)
\(588\) −230.035 −0.391217
\(589\) 146.624i 0.248937i
\(590\) 0 0
\(591\) 11.8975 + 11.8975i 0.0201311 + 0.0201311i
\(592\) 420.412 420.412i 0.710155 0.710155i
\(593\) −103.349 + 103.349i −0.174282 + 0.174282i −0.788858 0.614576i \(-0.789327\pi\)
0.614576 + 0.788858i \(0.289327\pi\)
\(594\) −75.7548 −0.127533
\(595\) 0 0
\(596\) −20.6719 + 20.6719i −0.0346845 + 0.0346845i
\(597\) 62.3041i 0.104362i
\(598\) 461.495 1354.36i 0.771730 2.26481i
\(599\) −477.029 −0.796376 −0.398188 0.917304i \(-0.630361\pi\)
−0.398188 + 0.917304i \(0.630361\pi\)
\(600\) 0 0
\(601\) 230.164 0.382968 0.191484 0.981496i \(-0.438670\pi\)
0.191484 + 0.981496i \(0.438670\pi\)
\(602\) 158.260i 0.262890i
\(603\) −543.273 543.273i −0.900950 0.900950i
\(604\) −160.842 160.842i −0.266295 0.266295i
\(605\) 0 0
\(606\) −130.184 + 130.184i −0.214824 + 0.214824i
\(607\) −532.535 −0.877323 −0.438661 0.898652i \(-0.644547\pi\)
−0.438661 + 0.898652i \(0.644547\pi\)
\(608\) 164.792i 0.271039i
\(609\) −150.451 + 150.451i −0.247045 + 0.247045i
\(610\) 0 0
\(611\) −95.3929 + 279.952i −0.156126 + 0.458186i
\(612\) 71.4569 0.116760
\(613\) 769.790 + 769.790i 1.25577 + 1.25577i 0.953091 + 0.302683i \(0.0978825\pi\)
0.302683 + 0.953091i \(0.402117\pi\)
\(614\) −1358.60 −2.21271
\(615\) 0 0
\(616\) −40.8884 40.8884i −0.0663772 0.0663772i
\(617\) −730.372 730.372i −1.18375 1.18375i −0.978766 0.204981i \(-0.934287\pi\)
−0.204981 0.978766i \(-0.565713\pi\)
\(618\) 255.775 255.775i 0.413875 0.413875i
\(619\) −297.357 + 297.357i −0.480383 + 0.480383i −0.905254 0.424871i \(-0.860319\pi\)
0.424871 + 0.905254i \(0.360319\pi\)
\(620\) 0 0
\(621\) 568.990i 0.916248i
\(622\) 394.379 394.379i 0.634050 0.634050i
\(623\) 774.250i 1.24278i
\(624\) 173.703 85.4105i 0.278370 0.136876i
\(625\) 0 0
\(626\) −629.557 629.557i −1.00568 1.00568i
\(627\) −6.63577 −0.0105834
\(628\) 193.879i 0.308725i
\(629\) 61.4138 + 61.4138i 0.0976372 + 0.0976372i
\(630\) 0 0
\(631\) 440.375 440.375i 0.697900 0.697900i −0.266057 0.963957i \(-0.585721\pi\)
0.963957 + 0.266057i \(0.0857210\pi\)
\(632\) 113.134 113.134i 0.179009 0.179009i
\(633\) 85.1006 0.134440
\(634\) 599.166i 0.945057i
\(635\) 0 0
\(636\) 138.141i 0.217204i
\(637\) 533.274 + 1084.54i 0.837165 + 1.70258i
\(638\) 123.546 0.193646
\(639\) −20.7481 20.7481i −0.0324697 0.0324697i
\(640\) 0 0
\(641\) 576.939i 0.900060i 0.893013 + 0.450030i \(0.148587\pi\)
−0.893013 + 0.450030i \(0.851413\pi\)
\(642\) 279.370 + 279.370i 0.435155 + 0.435155i
\(643\) −459.481 459.481i −0.714589 0.714589i 0.252903 0.967492i \(-0.418615\pi\)
−0.967492 + 0.252903i \(0.918615\pi\)
\(644\) 1083.31 1083.31i 1.68217 1.68217i
\(645\) 0 0
\(646\) 29.6626 0.0459174
\(647\) 543.648i 0.840260i 0.907464 + 0.420130i \(0.138016\pi\)
−0.907464 + 0.420130i \(0.861984\pi\)
\(648\) 107.289 107.289i 0.165569 0.165569i
\(649\) 89.6151i 0.138082i
\(650\) 0 0
\(651\) −341.740 −0.524947
\(652\) −165.776 165.776i −0.254258 0.254258i
\(653\) −762.917 −1.16833 −0.584163 0.811636i \(-0.698577\pi\)
−0.584163 + 0.811636i \(0.698577\pi\)
\(654\) 45.7849i 0.0700075i
\(655\) 0 0
\(656\) 663.155 + 663.155i 1.01091 + 1.01091i
\(657\) 629.534 629.534i 0.958195 0.958195i
\(658\) −511.332 + 511.332i −0.777101 + 0.777101i
\(659\) 810.362 1.22968 0.614842 0.788650i \(-0.289220\pi\)
0.614842 + 0.788650i \(0.289220\pi\)
\(660\) 0 0
\(661\) −220.504 + 220.504i −0.333591 + 0.333591i −0.853949 0.520357i \(-0.825799\pi\)
0.520357 + 0.853949i \(0.325799\pi\)
\(662\) 1240.05i 1.87319i
\(663\) 12.4768 + 25.3745i 0.0188187 + 0.0382723i
\(664\) 305.314 0.459810
\(665\) 0 0
\(666\) −707.860 −1.06285
\(667\) 927.947i 1.39123i
\(668\) 325.936 + 325.936i 0.487928 + 0.487928i
\(669\) 123.849 + 123.849i 0.185125 + 0.185125i
\(670\) 0 0
\(671\) 6.82858 6.82858i 0.0101767 0.0101767i
\(672\) 384.085 0.571555
\(673\) 710.668i 1.05597i −0.849254 0.527985i \(-0.822948\pi\)
0.849254 0.527985i \(-0.177052\pi\)
\(674\) −450.916 + 450.916i −0.669015 + 0.669015i
\(675\) 0 0
\(676\) 417.105 + 321.596i 0.617020 + 0.475733i
\(677\) 1048.84 1.54925 0.774625 0.632421i \(-0.217939\pi\)
0.774625 + 0.632421i \(0.217939\pi\)
\(678\) 288.349 + 288.349i 0.425293 + 0.425293i
\(679\) 1881.42 2.77087
\(680\) 0 0
\(681\) 87.1955 + 87.1955i 0.128040 + 0.128040i
\(682\) 140.314 + 140.314i 0.205739 + 0.205739i
\(683\) −607.809 + 607.809i −0.889910 + 0.889910i −0.994514 0.104604i \(-0.966643\pi\)
0.104604 + 0.994514i \(0.466643\pi\)
\(684\) −74.8621 + 74.8621i −0.109447 + 0.109447i
\(685\) 0 0
\(686\) 1397.47i 2.03712i
\(687\) 213.241 213.241i 0.310394 0.310394i
\(688\) 93.3740i 0.135718i
\(689\) −651.291 + 320.243i −0.945270 + 0.464794i
\(690\) 0 0
\(691\) −374.671 374.671i −0.542216 0.542216i 0.381962 0.924178i \(-0.375249\pi\)
−0.924178 + 0.381962i \(0.875249\pi\)
\(692\) 873.471 1.26224
\(693\) 205.343i 0.296310i
\(694\) 11.1318 + 11.1318i 0.0160400 + 0.0160400i
\(695\) 0 0
\(696\) 29.7606 29.7606i 0.0427595 0.0427595i
\(697\) −96.8739 + 96.8739i −0.138987 + 0.138987i
\(698\) 43.7410 0.0626662
\(699\) 114.982i 0.164495i
\(700\) 0 0
\(701\) 559.394i 0.797994i −0.916952 0.398997i \(-0.869358\pi\)
0.916952 0.398997i \(-0.130642\pi\)
\(702\) −452.707 154.259i −0.644882 0.219742i
\(703\) −128.681 −0.183045
\(704\) −48.4787 48.4787i −0.0688618 0.0688618i
\(705\) 0 0
\(706\) 490.172i 0.694295i
\(707\) 732.337 + 732.337i 1.03584 + 1.03584i
\(708\) 76.1473 + 76.1473i 0.107553 + 0.107553i
\(709\) −379.510 + 379.510i −0.535276 + 0.535276i −0.922138 0.386862i \(-0.873559\pi\)
0.386862 + 0.922138i \(0.373559\pi\)
\(710\) 0 0
\(711\) −568.161 −0.799101
\(712\) 153.154i 0.215104i
\(713\) 1053.89 1053.89i 1.47811 1.47811i
\(714\) 69.1355i 0.0968285i
\(715\) 0 0
\(716\) 711.028 0.993056
\(717\) −130.860 130.860i −0.182510 0.182510i
\(718\) 1033.43 1.43932
\(719\) 427.082i 0.593995i −0.954878 0.296997i \(-0.904015\pi\)
0.954878 0.296997i \(-0.0959852\pi\)
\(720\) 0 0
\(721\) −1438.84 1438.84i −1.99562 1.99562i
\(722\) 649.890 649.890i 0.900124 0.900124i
\(723\) 202.045 202.045i 0.279454 0.279454i
\(724\) 530.559 0.732816
\(725\) 0 0
\(726\) 174.870 174.870i 0.240868 0.240868i
\(727\) 952.075i 1.30959i −0.755804 0.654797i \(-0.772754\pi\)
0.755804 0.654797i \(-0.227246\pi\)
\(728\) −161.086 327.608i −0.221272 0.450011i
\(729\) −440.263 −0.603928
\(730\) 0 0
\(731\) −13.6401 −0.0186595
\(732\) 11.6047i 0.0158534i
\(733\) 492.664 + 492.664i 0.672119 + 0.672119i 0.958204 0.286085i \(-0.0923539\pi\)
−0.286085 + 0.958204i \(0.592354\pi\)
\(734\) −236.535 236.535i −0.322254 0.322254i
\(735\) 0 0
\(736\) −1184.48 + 1184.48i −1.60935 + 1.60935i
\(737\) −189.021 −0.256474
\(738\) 1116.58i 1.51298i
\(739\) 94.0595 94.0595i 0.127279 0.127279i −0.640597 0.767877i \(-0.721313\pi\)
0.767877 + 0.640597i \(0.221313\pi\)
\(740\) 0 0
\(741\) −39.6550 13.5124i −0.0535156 0.0182353i
\(742\) −1774.51 −2.39152
\(743\) 750.112 + 750.112i 1.00957 + 1.00957i 0.999954 + 0.00961857i \(0.00306173\pi\)
0.00961857 + 0.999954i \(0.496938\pi\)
\(744\) 67.5996 0.0908597
\(745\) 0 0
\(746\) 949.572 + 949.572i 1.27288 + 1.27288i
\(747\) −766.649 766.649i −1.02630 1.02630i
\(748\) 12.4310 12.4310i 0.0166190 0.0166190i
\(749\) 1571.57 1571.57i 2.09823 2.09823i
\(750\) 0 0
\(751\) 332.394i 0.442602i 0.975206 + 0.221301i \(0.0710304\pi\)
−0.975206 + 0.221301i \(0.928970\pi\)
\(752\) 301.688 301.688i 0.401181 0.401181i
\(753\) 88.5144i 0.117549i
\(754\) 738.305 + 251.576i 0.979185 + 0.333655i
\(755\) 0 0
\(756\) −362.108 362.108i −0.478979 0.478979i
\(757\) −354.304 −0.468037 −0.234018 0.972232i \(-0.575188\pi\)
−0.234018 + 0.972232i \(0.575188\pi\)
\(758\) 1754.10i 2.31412i
\(759\) 47.6960 + 47.6960i 0.0628406 + 0.0628406i
\(760\) 0 0
\(761\) 800.356 800.356i 1.05172 1.05172i 0.0531281 0.998588i \(-0.483081\pi\)
0.998588 0.0531281i \(-0.0169192\pi\)
\(762\) −107.615 + 107.615i −0.141227 + 0.141227i
\(763\) −257.559 −0.337561
\(764\) 910.277i 1.19146i
\(765\) 0 0
\(766\) 1196.20i 1.56162i
\(767\) 182.483 535.536i 0.237917 0.698221i
\(768\) −261.590 −0.340612
\(769\) 628.880 + 628.880i 0.817790 + 0.817790i 0.985787 0.167998i \(-0.0537301\pi\)
−0.167998 + 0.985787i \(0.553730\pi\)
\(770\) 0 0
\(771\) 81.5459i 0.105766i
\(772\) −273.007 273.007i −0.353636 0.353636i
\(773\) −799.646 799.646i −1.03447 1.03447i −0.999384 0.0350866i \(-0.988829\pi\)
−0.0350866 0.999384i \(-0.511171\pi\)
\(774\) 78.6084 78.6084i 0.101561 0.101561i
\(775\) 0 0
\(776\) −372.163 −0.479592
\(777\) 299.920i 0.385997i
\(778\) 173.760 173.760i 0.223342 0.223342i
\(779\) 202.980i 0.260565i
\(780\) 0 0
\(781\) −7.21890 −0.00924316
\(782\) −213.207 213.207i −0.272643 0.272643i
\(783\) −310.175 −0.396137
\(784\) 1743.43i 2.22376i
\(785\) 0 0
\(786\) −164.907 164.907i −0.209806 0.209806i
\(787\) −201.754 + 201.754i −0.256358 + 0.256358i −0.823571 0.567213i \(-0.808022\pi\)
0.567213 + 0.823571i \(0.308022\pi\)
\(788\) 46.7000 46.7000i 0.0592640 0.0592640i
\(789\) −48.2679 −0.0611761
\(790\) 0 0
\(791\) 1622.08 1622.08i 2.05067 2.05067i
\(792\) 40.6189i 0.0512865i
\(793\) 54.7123 26.9023i 0.0689941 0.0339247i
\(794\) 1714.77 2.15966
\(795\) 0 0
\(796\) −244.557 −0.307232
\(797\) 303.914i 0.381323i −0.981656 0.190661i \(-0.938937\pi\)
0.981656 0.190661i \(-0.0610632\pi\)
\(798\) −72.4300 72.4300i −0.0907644 0.0907644i
\(799\) 44.0707 + 44.0707i 0.0551573 + 0.0551573i
\(800\) 0 0
\(801\) 384.574 384.574i 0.480117 0.480117i
\(802\) −1093.20 −1.36310
\(803\) 219.034i 0.272770i
\(804\) 160.614 160.614i 0.199769 0.199769i
\(805\) 0 0
\(806\) 552.790 + 1124.23i 0.685843 + 1.39483i
\(807\) 328.197 0.406687
\(808\) −144.864 144.864i −0.179287 0.179287i
\(809\) −944.687 −1.16772 −0.583861 0.811854i \(-0.698459\pi\)
−0.583861 + 0.811854i \(0.698459\pi\)
\(810\) 0 0
\(811\) 553.234 + 553.234i 0.682163 + 0.682163i 0.960487 0.278324i \(-0.0897790\pi\)
−0.278324 + 0.960487i \(0.589779\pi\)
\(812\) 590.550 + 590.550i 0.727279 + 0.727279i
\(813\) −26.2647 + 26.2647i −0.0323059 + 0.0323059i
\(814\) −123.143 + 123.143i −0.151281 + 0.151281i
\(815\) 0 0
\(816\) 40.7903i 0.0499881i
\(817\) 14.2901 14.2901i 0.0174909 0.0174909i
\(818\) 52.7829i 0.0645267i
\(819\) −418.139 + 1227.12i −0.510548 + 1.49832i
\(820\) 0 0
\(821\) −251.178 251.178i −0.305942 0.305942i 0.537391 0.843333i \(-0.319410\pi\)
−0.843333 + 0.537391i \(0.819410\pi\)
\(822\) 260.106 0.316431
\(823\) 13.4655i 0.0163615i −0.999967 0.00818073i \(-0.997396\pi\)
0.999967 0.00818073i \(-0.00260403\pi\)
\(824\) 284.617 + 284.617i 0.345409 + 0.345409i
\(825\) 0 0
\(826\) 978.157 978.157i 1.18421 1.18421i
\(827\) −472.099 + 472.099i −0.570857 + 0.570857i −0.932368 0.361511i \(-0.882261\pi\)
0.361511 + 0.932368i \(0.382261\pi\)
\(828\) 1076.18 1.29973
\(829\) 922.692i 1.11302i 0.830841 + 0.556509i \(0.187860\pi\)
−0.830841 + 0.556509i \(0.812140\pi\)
\(830\) 0 0
\(831\) 313.931i 0.377775i
\(832\) −190.990 388.423i −0.229555 0.466855i
\(833\) 254.680 0.305739
\(834\) −256.860 256.860i −0.307986 0.307986i
\(835\) 0 0
\(836\) 26.0468i 0.0311564i
\(837\) −352.273 352.273i −0.420876 0.420876i
\(838\) 286.565 + 286.565i 0.341963 + 0.341963i
\(839\) 373.582 373.582i 0.445270 0.445270i −0.448508 0.893779i \(-0.648045\pi\)
0.893779 + 0.448508i \(0.148045\pi\)
\(840\) 0 0
\(841\) −335.145 −0.398508
\(842\) 1375.69i 1.63384i
\(843\) 100.132 100.132i 0.118781 0.118781i
\(844\) 334.038i 0.395779i
\(845\) 0 0
\(846\) −507.962 −0.600428
\(847\) −983.719 983.719i −1.16142 1.16142i
\(848\) 1046.97 1.23463
\(849\) 338.790i 0.399045i
\(850\) 0 0
\(851\) 924.921 + 924.921i 1.08686 + 1.08686i
\(852\) 6.13401 6.13401i 0.00719954 0.00719954i
\(853\) −724.580 + 724.580i −0.849449 + 0.849449i −0.990064 0.140615i \(-0.955092\pi\)
0.140615 + 0.990064i \(0.455092\pi\)
\(854\) 149.069 0.174554
\(855\) 0 0
\(856\) −310.872 + 310.872i −0.363169 + 0.363169i
\(857\) 410.502i 0.478999i 0.970896 + 0.239500i \(0.0769834\pi\)
−0.970896 + 0.239500i \(0.923017\pi\)
\(858\) −50.8794 + 25.0177i −0.0593000 + 0.0291581i
\(859\) −847.774 −0.986932 −0.493466 0.869765i \(-0.664270\pi\)
−0.493466 + 0.869765i \(0.664270\pi\)
\(860\) 0 0
\(861\) 473.092 0.549468
\(862\) 1841.98i 2.13687i
\(863\) 102.685 + 102.685i 0.118986 + 0.118986i 0.764093 0.645107i \(-0.223187\pi\)
−0.645107 + 0.764093i \(0.723187\pi\)
\(864\) 395.923 + 395.923i 0.458244 + 0.458244i
\(865\) 0 0
\(866\) 556.738 556.738i 0.642884 0.642884i
\(867\) −223.499 −0.257784
\(868\) 1341.40i 1.54539i
\(869\) −98.8403 + 98.8403i −0.113740 + 0.113740i
\(870\) 0 0
\(871\) −1129.58 384.903i −1.29688 0.441909i
\(872\) 50.9478 0.0584264
\(873\) 934.509 + 934.509i 1.07046 + 1.07046i
\(874\) 446.733 0.511136
\(875\) 0 0
\(876\) 186.117 + 186.117i 0.212462 + 0.212462i
\(877\) 490.033 + 490.033i 0.558761 + 0.558761i 0.928955 0.370194i \(-0.120709\pi\)
−0.370194 + 0.928955i \(0.620709\pi\)
\(878\) 102.248 102.248i 0.116456 0.116456i
\(879\) −12.3958 + 12.3958i −0.0141022 + 0.0141022i
\(880\) 0 0
\(881\) 1389.52i 1.57720i −0.614905 0.788601i \(-0.710806\pi\)
0.614905 0.788601i \(-0.289194\pi\)
\(882\) −1467.73 + 1467.73i −1.66410 + 1.66410i
\(883\) 763.229i 0.864359i −0.901788 0.432179i \(-0.857745\pi\)
0.901788 0.432179i \(-0.142255\pi\)
\(884\) 99.6004 48.9740i 0.112670 0.0554005i
\(885\) 0 0
\(886\) 782.500 + 782.500i 0.883183 + 0.883183i
\(887\) −921.219 −1.03858 −0.519289 0.854599i \(-0.673803\pi\)
−0.519289 + 0.854599i \(0.673803\pi\)
\(888\) 59.3271i 0.0668098i
\(889\) 605.381 + 605.381i 0.680968 + 0.680968i
\(890\) 0 0
\(891\) −93.7342 + 93.7342i −0.105201 + 0.105201i
\(892\) 486.132 486.132i 0.544991 0.544991i
\(893\) −92.3416 −0.103406
\(894\) 19.8686i 0.0222243i
\(895\) 0 0
\(896\) 876.712i 0.978473i
\(897\) 187.906 + 382.152i 0.209483 + 0.426034i
\(898\) 244.657 0.272447
\(899\) 574.510 + 574.510i 0.639055 + 0.639055i
\(900\) 0 0
\(901\) 152.941i 0.169746i
\(902\) −194.245 194.245i −0.215350 0.215350i
\(903\) 33.3063 + 33.3063i 0.0368840 + 0.0368840i
\(904\) −320.864 + 320.864i −0.354938 + 0.354938i
\(905\) 0 0
\(906\) 154.592 0.170631
\(907\) 952.357i 1.05001i 0.851100 + 0.525004i \(0.175936\pi\)
−0.851100 + 0.525004i \(0.824064\pi\)
\(908\) 342.261 342.261i 0.376939 0.376939i
\(909\) 727.511i 0.800342i
\(910\) 0 0
\(911\) 146.413 0.160717 0.0803586 0.996766i \(-0.474393\pi\)
0.0803586 + 0.996766i \(0.474393\pi\)
\(912\) 42.7341 + 42.7341i 0.0468575 + 0.0468575i
\(913\) −266.740 −0.292158
\(914\) 393.452i 0.430473i
\(915\) 0 0
\(916\) −837.015 837.015i −0.913772 0.913772i
\(917\) −927.672 + 927.672i −1.01164 + 1.01164i
\(918\) −71.2663 + 71.2663i −0.0776322 + 0.0776322i
\(919\) −799.748 −0.870237 −0.435118 0.900373i \(-0.643293\pi\)
−0.435118 + 0.900373i \(0.643293\pi\)
\(920\) 0 0
\(921\) 285.922 285.922i 0.310448 0.310448i
\(922\) 661.367i 0.717317i
\(923\) −43.1398 14.6998i −0.0467387 0.0159261i
\(924\) −60.7080 −0.0657013
\(925\) 0 0
\(926\) 890.580 0.961749
\(927\) 1429.36i 1.54192i
\(928\) −645.698 645.698i −0.695795 0.695795i
\(929\) −78.6741 78.6741i −0.0846869 0.0846869i 0.663494 0.748181i \(-0.269073\pi\)
−0.748181 + 0.663494i \(0.769073\pi\)
\(930\) 0 0
\(931\) −266.817 + 266.817i −0.286592 + 0.286592i
\(932\) −451.329 −0.484259
\(933\) 165.997i 0.177917i
\(934\) −777.016 + 777.016i −0.831923 + 0.831923i
\(935\) 0 0
\(936\) 82.7120 242.737i 0.0883675 0.259334i
\(937\) 1466.28 1.56486 0.782431 0.622737i \(-0.213980\pi\)
0.782431 + 0.622737i \(0.213980\pi\)
\(938\) −2063.18 2063.18i −2.19956 2.19956i
\(939\) 264.985 0.282199
\(940\) 0 0
\(941\) −68.9700 68.9700i −0.0732944 0.0732944i 0.669509 0.742804i \(-0.266504\pi\)
−0.742804 + 0.669509i \(0.766504\pi\)
\(942\) −93.1722 93.1722i −0.0989089 0.0989089i
\(943\) −1458.97 + 1458.97i −1.54715 + 1.54715i
\(944\) −577.117 + 577.117i −0.611353 + 0.611353i
\(945\) 0 0
\(946\) 27.3502i 0.0289115i
\(947\) 582.125 582.125i 0.614705 0.614705i −0.329464 0.944168i \(-0.606868\pi\)
0.944168 + 0.329464i \(0.106868\pi\)
\(948\) 167.972i 0.177186i
\(949\) 446.018 1308.94i 0.469987 1.37928i
\(950\) 0 0
\(951\) −126.096 126.096i −0.132594 0.132594i
\(952\) −76.9315 −0.0808104
\(953\) 1341.06i 1.40720i −0.710595 0.703602i \(-0.751574\pi\)
0.710595 0.703602i \(-0.248426\pi\)
\(954\) −881.407 881.407i −0.923907 0.923907i
\(955\) 0 0
\(956\) −513.653 + 513.653i −0.537294 + 0.537294i
\(957\) −26.0007 + 26.0007i −0.0271689 + 0.0271689i
\(958\) 456.924 0.476956
\(959\) 1463.20i 1.52576i
\(960\) 0 0
\(961\) 343.969i 0.357928i
\(962\) −986.653 + 485.142i −1.02563 + 0.504306i
\(963\) 1561.21 1.62120
\(964\) −793.071 793.071i −0.822687 0.822687i
\(965\) 0 0
\(966\) 1041.21i 1.07786i
\(967\) 158.077 + 158.077i 0.163471 + 0.163471i 0.784103 0.620631i \(-0.213124\pi\)
−0.620631 + 0.784103i \(0.713124\pi\)
\(968\) 194.589 + 194.589i 0.201022 + 0.201022i
\(969\) −6.24260 + 6.24260i −0.00644231 + 0.00644231i
\(970\) 0 0
\(971\) 784.890 0.808332 0.404166 0.914686i \(-0.367562\pi\)
0.404166 + 0.914686i \(0.367562\pi\)
\(972\) 546.110i 0.561842i
\(973\) −1444.95 + 1444.95i −1.48504 + 1.48504i
\(974\) 1889.44i 1.93988i
\(975\) 0 0
\(976\) −87.9515 −0.0901143
\(977\) 239.209 + 239.209i 0.244840 + 0.244840i 0.818849 0.574009i \(-0.194612\pi\)
−0.574009 + 0.818849i \(0.694612\pi\)
\(978\) 159.333 0.162918
\(979\) 133.805i 0.136675i
\(980\) 0 0
\(981\) −127.931 127.931i −0.130409 0.130409i
\(982\) −1021.18 + 1021.18i −1.03990 + 1.03990i
\(983\) 821.678 821.678i 0.835888 0.835888i −0.152427 0.988315i \(-0.548709\pi\)
0.988315 + 0.152427i \(0.0487088\pi\)
\(984\) −93.5823 −0.0951040
\(985\) 0 0
\(986\) 116.226 116.226i 0.117876 0.117876i
\(987\) 215.223i 0.218058i
\(988\) −53.0389 + 155.654i −0.0536831 + 0.157545i
\(989\) −205.426 −0.207711
\(990\) 0 0
\(991\) −40.5436 −0.0409119 −0.0204559 0.999791i \(-0.506512\pi\)
−0.0204559 + 0.999791i \(0.506512\pi\)
\(992\) 1466.67i 1.47850i
\(993\) −260.973 260.973i −0.262813 0.262813i
\(994\) −78.7950 78.7950i −0.0792706 0.0792706i
\(995\) 0 0
\(996\) 226.653 226.653i 0.227564 0.227564i
\(997\) −966.616 −0.969525 −0.484762 0.874646i \(-0.661094\pi\)
−0.484762 + 0.874646i \(0.661094\pi\)
\(998\) 1535.09i 1.53817i
\(999\) 309.163 309.163i 0.309473 0.309473i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.j.d.151.8 yes 20
5.2 odd 4 325.3.g.f.99.3 20
5.3 odd 4 325.3.g.e.99.8 20
5.4 even 2 325.3.j.c.151.3 20
13.5 odd 4 inner 325.3.j.d.226.8 yes 20
65.18 even 4 325.3.g.f.174.3 20
65.44 odd 4 325.3.j.c.226.3 yes 20
65.57 even 4 325.3.g.e.174.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.3.g.e.99.8 20 5.3 odd 4
325.3.g.e.174.8 20 65.57 even 4
325.3.g.f.99.3 20 5.2 odd 4
325.3.g.f.174.3 20 65.18 even 4
325.3.j.c.151.3 20 5.4 even 2
325.3.j.c.226.3 yes 20 65.44 odd 4
325.3.j.d.151.8 yes 20 1.1 even 1 trivial
325.3.j.d.226.8 yes 20 13.5 odd 4 inner