Properties

Label 325.3.g.e.174.8
Level $325$
Weight $3$
Character 325.174
Analytic conductor $8.856$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(99,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.g (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,-6,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{17} + 336 x^{16} - 90 x^{15} + 18 x^{14} - 654 x^{13} + 30550 x^{12} - 9690 x^{11} + \cdots + 46656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 174.8
Root \(-1.88633 + 1.88633i\) of defining polynomial
Character \(\chi\) \(=\) 325.174
Dual form 325.3.g.e.99.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.88633 + 1.88633i) q^{2} +0.793970i q^{3} +3.11650i q^{4} +(-1.49769 + 1.49769i) q^{6} +(8.42514 - 8.42514i) q^{7} +(1.66658 - 1.66658i) q^{8} +8.36961 q^{9} +(-1.45602 - 1.45602i) q^{11} -2.47441 q^{12} +(-5.73623 + 11.6660i) q^{13} +31.7852 q^{14} +18.7534 q^{16} +2.73950 q^{17} +(15.7879 + 15.7879i) q^{18} +(2.87005 - 2.87005i) q^{19} +(6.68931 + 6.68931i) q^{21} -5.49308i q^{22} -41.2582 q^{23} +(1.32321 + 1.32321i) q^{24} +(-32.8264 + 11.1855i) q^{26} +13.7909i q^{27} +(26.2569 + 26.2569i) q^{28} +22.4912 q^{29} +(-25.5438 + 25.5438i) q^{31} +(28.7089 + 28.7089i) q^{32} +(1.15604 - 1.15604i) q^{33} +(5.16762 + 5.16762i) q^{34} +26.0839i q^{36} +(-22.4179 + 22.4179i) q^{37} +10.8277 q^{38} +(-9.26246 - 4.55439i) q^{39} +(35.3618 - 35.3618i) q^{41} +25.2365i q^{42} -4.97904 q^{43} +(4.53769 - 4.53769i) q^{44} +(-77.8267 - 77.8267i) q^{46} +(-16.0871 + 16.0871i) q^{47} +14.8897i q^{48} -92.9659i q^{49} +2.17508i q^{51} +(-36.3571 - 17.8770i) q^{52} -55.8281i q^{53} +(-26.0143 + 26.0143i) q^{54} -28.0823i q^{56} +(2.27873 + 2.27873i) q^{57} +(42.4259 + 42.4259i) q^{58} +(30.7740 + 30.7740i) q^{59} -4.68989 q^{61} -96.3681 q^{62} +(70.5151 - 70.5151i) q^{63} +33.2953i q^{64} +4.36134 q^{66} +(64.9102 + 64.9102i) q^{67} +8.53766i q^{68} -32.7578i q^{69} +(2.47898 - 2.47898i) q^{71} +(13.9486 - 13.9486i) q^{72} +(-75.2167 + 75.2167i) q^{73} -84.5750 q^{74} +(8.94451 + 8.94451i) q^{76} -24.5344 q^{77} +(-8.88097 - 26.0632i) q^{78} -67.8838 q^{79} +64.3769 q^{81} +133.408 q^{82} +(-91.5991 - 91.5991i) q^{83} +(-20.8472 + 20.8472i) q^{84} +(-9.39212 - 9.39212i) q^{86} +17.8573i q^{87} -4.85314 q^{88} +(45.9488 + 45.9488i) q^{89} +(49.9592 + 146.616i) q^{91} -128.581i q^{92} +(-20.2810 - 20.2810i) q^{93} -60.6913 q^{94} +(-22.7940 + 22.7940i) q^{96} +(-111.655 - 111.655i) q^{97} +(175.365 - 175.365i) q^{98} +(-12.1863 - 12.1863i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{6} - 20 q^{7} - 18 q^{8} - 72 q^{9} + 6 q^{11} + 120 q^{12} + 18 q^{13} + 24 q^{14} - 128 q^{16} + 16 q^{17} + 58 q^{18} + 20 q^{19} + 90 q^{21} - 28 q^{23} + 28 q^{24} - 278 q^{28} + 40 q^{29}+ \cdots + 410 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.88633 + 1.88633i 0.943166 + 0.943166i 0.998470 0.0553034i \(-0.0176126\pi\)
−0.0553034 + 0.998470i \(0.517613\pi\)
\(3\) 0.793970i 0.264657i 0.991206 + 0.132328i \(0.0422453\pi\)
−0.991206 + 0.132328i \(0.957755\pi\)
\(4\) 3.11650i 0.779125i
\(5\) 0 0
\(6\) −1.49769 + 1.49769i −0.249615 + 0.249615i
\(7\) 8.42514 8.42514i 1.20359 1.20359i 0.230525 0.973066i \(-0.425956\pi\)
0.973066 0.230525i \(-0.0740442\pi\)
\(8\) 1.66658 1.66658i 0.208322 0.208322i
\(9\) 8.36961 0.929957
\(10\) 0 0
\(11\) −1.45602 1.45602i −0.132366 0.132366i 0.637820 0.770186i \(-0.279836\pi\)
−0.770186 + 0.637820i \(0.779836\pi\)
\(12\) −2.47441 −0.206201
\(13\) −5.73623 + 11.6660i −0.441249 + 0.897385i
\(14\) 31.7852 2.27037
\(15\) 0 0
\(16\) 18.7534 1.17209
\(17\) 2.73950 0.161147 0.0805737 0.996749i \(-0.474325\pi\)
0.0805737 + 0.996749i \(0.474325\pi\)
\(18\) 15.7879 + 15.7879i 0.877104 + 0.877104i
\(19\) 2.87005 2.87005i 0.151055 0.151055i −0.627534 0.778589i \(-0.715936\pi\)
0.778589 + 0.627534i \(0.215936\pi\)
\(20\) 0 0
\(21\) 6.68931 + 6.68931i 0.318538 + 0.318538i
\(22\) 5.49308i 0.249685i
\(23\) −41.2582 −1.79384 −0.896918 0.442197i \(-0.854199\pi\)
−0.896918 + 0.442197i \(0.854199\pi\)
\(24\) 1.32321 + 1.32321i 0.0551338 + 0.0551338i
\(25\) 0 0
\(26\) −32.8264 + 11.1855i −1.26255 + 0.430212i
\(27\) 13.7909i 0.510776i
\(28\) 26.2569 + 26.2569i 0.937748 + 0.937748i
\(29\) 22.4912 0.775559 0.387780 0.921752i \(-0.373242\pi\)
0.387780 + 0.921752i \(0.373242\pi\)
\(30\) 0 0
\(31\) −25.5438 + 25.5438i −0.823993 + 0.823993i −0.986678 0.162685i \(-0.947984\pi\)
0.162685 + 0.986678i \(0.447984\pi\)
\(32\) 28.7089 + 28.7089i 0.897153 + 0.897153i
\(33\) 1.15604 1.15604i 0.0350314 0.0350314i
\(34\) 5.16762 + 5.16762i 0.151989 + 0.151989i
\(35\) 0 0
\(36\) 26.0839i 0.724552i
\(37\) −22.4179 + 22.4179i −0.605888 + 0.605888i −0.941869 0.335981i \(-0.890932\pi\)
0.335981 + 0.941869i \(0.390932\pi\)
\(38\) 10.8277 0.284940
\(39\) −9.26246 4.55439i −0.237499 0.116779i
\(40\) 0 0
\(41\) 35.3618 35.3618i 0.862483 0.862483i −0.129143 0.991626i \(-0.541223\pi\)
0.991626 + 0.129143i \(0.0412225\pi\)
\(42\) 25.2365i 0.600869i
\(43\) −4.97904 −0.115792 −0.0578958 0.998323i \(-0.518439\pi\)
−0.0578958 + 0.998323i \(0.518439\pi\)
\(44\) 4.53769 4.53769i 0.103129 0.103129i
\(45\) 0 0
\(46\) −77.8267 77.8267i −1.69189 1.69189i
\(47\) −16.0871 + 16.0871i −0.342279 + 0.342279i −0.857223 0.514945i \(-0.827812\pi\)
0.514945 + 0.857223i \(0.327812\pi\)
\(48\) 14.8897i 0.310201i
\(49\) 92.9659i 1.89726i
\(50\) 0 0
\(51\) 2.17508i 0.0426487i
\(52\) −36.3571 17.8770i −0.699175 0.343788i
\(53\) 55.8281i 1.05336i −0.850063 0.526680i \(-0.823436\pi\)
0.850063 0.526680i \(-0.176564\pi\)
\(54\) −26.0143 + 26.0143i −0.481746 + 0.481746i
\(55\) 0 0
\(56\) 28.0823i 0.501469i
\(57\) 2.27873 + 2.27873i 0.0399778 + 0.0399778i
\(58\) 42.4259 + 42.4259i 0.731481 + 0.731481i
\(59\) 30.7740 + 30.7740i 0.521592 + 0.521592i 0.918052 0.396460i \(-0.129761\pi\)
−0.396460 + 0.918052i \(0.629761\pi\)
\(60\) 0 0
\(61\) −4.68989 −0.0768835 −0.0384417 0.999261i \(-0.512239\pi\)
−0.0384417 + 0.999261i \(0.512239\pi\)
\(62\) −96.3681 −1.55432
\(63\) 70.5151 70.5151i 1.11929 1.11929i
\(64\) 33.2953i 0.520239i
\(65\) 0 0
\(66\) 4.36134 0.0660809
\(67\) 64.9102 + 64.9102i 0.968809 + 0.968809i 0.999528 0.0307193i \(-0.00977980\pi\)
−0.0307193 + 0.999528i \(0.509780\pi\)
\(68\) 8.53766i 0.125554i
\(69\) 32.7578i 0.474751i
\(70\) 0 0
\(71\) 2.47898 2.47898i 0.0349153 0.0349153i −0.689434 0.724349i \(-0.742141\pi\)
0.724349 + 0.689434i \(0.242141\pi\)
\(72\) 13.9486 13.9486i 0.193730 0.193730i
\(73\) −75.2167 + 75.2167i −1.03037 + 1.03037i −0.0308411 + 0.999524i \(0.509819\pi\)
−0.999524 + 0.0308411i \(0.990181\pi\)
\(74\) −84.5750 −1.14291
\(75\) 0 0
\(76\) 8.94451 + 8.94451i 0.117691 + 0.117691i
\(77\) −24.5344 −0.318628
\(78\) −8.88097 26.0632i −0.113859 0.334143i
\(79\) −67.8838 −0.859289 −0.429644 0.902998i \(-0.641361\pi\)
−0.429644 + 0.902998i \(0.641361\pi\)
\(80\) 0 0
\(81\) 64.3769 0.794777
\(82\) 133.408 1.62693
\(83\) −91.5991 91.5991i −1.10360 1.10360i −0.993972 0.109631i \(-0.965033\pi\)
−0.109631 0.993972i \(-0.534967\pi\)
\(84\) −20.8472 + 20.8472i −0.248181 + 0.248181i
\(85\) 0 0
\(86\) −9.39212 9.39212i −0.109211 0.109211i
\(87\) 17.8573i 0.205257i
\(88\) −4.85314 −0.0551493
\(89\) 45.9488 + 45.9488i 0.516278 + 0.516278i 0.916443 0.400165i \(-0.131047\pi\)
−0.400165 + 0.916443i \(0.631047\pi\)
\(90\) 0 0
\(91\) 49.9592 + 146.616i 0.549002 + 1.61117i
\(92\) 128.581i 1.39762i
\(93\) −20.2810 20.2810i −0.218075 0.218075i
\(94\) −60.6913 −0.645652
\(95\) 0 0
\(96\) −22.7940 + 22.7940i −0.237437 + 0.237437i
\(97\) −111.655 111.655i −1.15108 1.15108i −0.986336 0.164747i \(-0.947319\pi\)
−0.164747 0.986336i \(-0.552681\pi\)
\(98\) 175.365 175.365i 1.78943 1.78943i
\(99\) −12.1863 12.1863i −0.123094 0.123094i
\(100\) 0 0
\(101\) 86.9229i 0.860622i 0.902681 + 0.430311i \(0.141596\pi\)
−0.902681 + 0.430311i \(0.858404\pi\)
\(102\) −4.10293 + 4.10293i −0.0402248 + 0.0402248i
\(103\) −170.779 −1.65805 −0.829026 0.559210i \(-0.811105\pi\)
−0.829026 + 0.559210i \(0.811105\pi\)
\(104\) 9.88242 + 29.0021i 0.0950232 + 0.278867i
\(105\) 0 0
\(106\) 105.310 105.310i 0.993494 0.993494i
\(107\) 186.534i 1.74331i −0.490124 0.871653i \(-0.663049\pi\)
0.490124 0.871653i \(-0.336951\pi\)
\(108\) −42.9795 −0.397958
\(109\) −15.2852 + 15.2852i −0.140231 + 0.140231i −0.773737 0.633506i \(-0.781615\pi\)
0.633506 + 0.773737i \(0.281615\pi\)
\(110\) 0 0
\(111\) −17.7991 17.7991i −0.160352 0.160352i
\(112\) 158.000 158.000i 1.41072 1.41072i
\(113\) 192.529i 1.70379i 0.523709 + 0.851897i \(0.324548\pi\)
−0.523709 + 0.851897i \(0.675452\pi\)
\(114\) 8.59689i 0.0754114i
\(115\) 0 0
\(116\) 70.0938i 0.604257i
\(117\) −48.0100 + 97.6399i −0.410342 + 0.834529i
\(118\) 116.100i 0.983897i
\(119\) 23.0807 23.0807i 0.193956 0.193956i
\(120\) 0 0
\(121\) 116.760i 0.964959i
\(122\) −8.84669 8.84669i −0.0725139 0.0725139i
\(123\) 28.0762 + 28.0762i 0.228262 + 0.228262i
\(124\) −79.6072 79.6072i −0.641993 0.641993i
\(125\) 0 0
\(126\) 266.030 2.11135
\(127\) −71.8541 −0.565780 −0.282890 0.959152i \(-0.591293\pi\)
−0.282890 + 0.959152i \(0.591293\pi\)
\(128\) 52.0295 52.0295i 0.406481 0.406481i
\(129\) 3.95320i 0.0306450i
\(130\) 0 0
\(131\) 110.108 0.840517 0.420258 0.907405i \(-0.361939\pi\)
0.420258 + 0.907405i \(0.361939\pi\)
\(132\) 3.60279 + 3.60279i 0.0272939 + 0.0272939i
\(133\) 48.3611i 0.363617i
\(134\) 244.884i 1.82750i
\(135\) 0 0
\(136\) 4.56559 4.56559i 0.0335705 0.0335705i
\(137\) 86.8356 86.8356i 0.633837 0.633837i −0.315191 0.949028i \(-0.602069\pi\)
0.949028 + 0.315191i \(0.102069\pi\)
\(138\) 61.7921 61.7921i 0.447769 0.447769i
\(139\) −171.504 −1.23384 −0.616922 0.787024i \(-0.711621\pi\)
−0.616922 + 0.787024i \(0.711621\pi\)
\(140\) 0 0
\(141\) −12.7727 12.7727i −0.0905864 0.0905864i
\(142\) 9.35237 0.0658618
\(143\) 25.3380 8.63388i 0.177189 0.0603768i
\(144\) 156.959 1.08999
\(145\) 0 0
\(146\) −283.767 −1.94361
\(147\) 73.8121 0.502123
\(148\) −69.8652 69.8652i −0.472062 0.472062i
\(149\) −6.63306 + 6.63306i −0.0445172 + 0.0445172i −0.729015 0.684498i \(-0.760022\pi\)
0.684498 + 0.729015i \(0.260022\pi\)
\(150\) 0 0
\(151\) −51.6100 51.6100i −0.341788 0.341788i 0.515251 0.857039i \(-0.327699\pi\)
−0.857039 + 0.515251i \(0.827699\pi\)
\(152\) 9.56631i 0.0629363i
\(153\) 22.9286 0.149860
\(154\) −46.2800 46.2800i −0.300519 0.300519i
\(155\) 0 0
\(156\) 14.1938 28.8664i 0.0909857 0.185041i
\(157\) 62.2106i 0.396246i 0.980177 + 0.198123i \(0.0634845\pi\)
−0.980177 + 0.198123i \(0.936516\pi\)
\(158\) −128.051 128.051i −0.810452 0.810452i
\(159\) 44.3258 0.278779
\(160\) 0 0
\(161\) −347.606 + 347.606i −2.15904 + 2.15904i
\(162\) 121.436 + 121.436i 0.749606 + 0.749606i
\(163\) −53.1930 + 53.1930i −0.326338 + 0.326338i −0.851192 0.524854i \(-0.824120\pi\)
0.524854 + 0.851192i \(0.324120\pi\)
\(164\) 110.205 + 110.205i 0.671982 + 0.671982i
\(165\) 0 0
\(166\) 345.573i 2.08176i
\(167\) −104.584 + 104.584i −0.626251 + 0.626251i −0.947123 0.320871i \(-0.896024\pi\)
0.320871 + 0.947123i \(0.396024\pi\)
\(168\) 22.2965 0.132717
\(169\) −103.191 133.838i −0.610599 0.791940i
\(170\) 0 0
\(171\) 24.0212 24.0212i 0.140475 0.140475i
\(172\) 15.5172i 0.0902161i
\(173\) 280.273 1.62008 0.810038 0.586377i \(-0.199446\pi\)
0.810038 + 0.586377i \(0.199446\pi\)
\(174\) −33.6849 + 33.6849i −0.193591 + 0.193591i
\(175\) 0 0
\(176\) −27.3054 27.3054i −0.155144 0.155144i
\(177\) −24.4336 + 24.4336i −0.138043 + 0.138043i
\(178\) 173.349i 0.973873i
\(179\) 228.150i 1.27458i −0.770625 0.637289i \(-0.780056\pi\)
0.770625 0.637289i \(-0.219944\pi\)
\(180\) 0 0
\(181\) 170.242i 0.940564i 0.882516 + 0.470282i \(0.155848\pi\)
−0.882516 + 0.470282i \(0.844152\pi\)
\(182\) −182.327 + 370.806i −1.00180 + 2.03740i
\(183\) 3.72363i 0.0203477i
\(184\) −68.7600 + 68.7600i −0.373695 + 0.373695i
\(185\) 0 0
\(186\) 76.5134i 0.411362i
\(187\) −3.98878 3.98878i −0.0213304 0.0213304i
\(188\) −50.1355 50.1355i −0.266678 0.266678i
\(189\) 116.191 + 116.191i 0.614765 + 0.614765i
\(190\) 0 0
\(191\) 292.083 1.52923 0.764616 0.644487i \(-0.222929\pi\)
0.764616 + 0.644487i \(0.222929\pi\)
\(192\) −26.4355 −0.137685
\(193\) −87.6005 + 87.6005i −0.453888 + 0.453888i −0.896643 0.442754i \(-0.854001\pi\)
0.442754 + 0.896643i \(0.354001\pi\)
\(194\) 421.237i 2.17132i
\(195\) 0 0
\(196\) 289.728 1.47820
\(197\) −14.9848 14.9848i −0.0760648 0.0760648i 0.668051 0.744116i \(-0.267129\pi\)
−0.744116 + 0.668051i \(0.767129\pi\)
\(198\) 45.9749i 0.232197i
\(199\) 78.4716i 0.394330i 0.980370 + 0.197165i \(0.0631734\pi\)
−0.980370 + 0.197165i \(0.936827\pi\)
\(200\) 0 0
\(201\) −51.5367 + 51.5367i −0.256402 + 0.256402i
\(202\) −163.965 + 163.965i −0.811710 + 0.811710i
\(203\) 189.492 189.492i 0.933456 0.933456i
\(204\) −6.77865 −0.0332287
\(205\) 0 0
\(206\) −322.147 322.147i −1.56382 1.56382i
\(207\) −345.315 −1.66819
\(208\) −107.574 + 218.778i −0.517183 + 1.05182i
\(209\) −8.35771 −0.0399890
\(210\) 0 0
\(211\) −107.184 −0.507979 −0.253990 0.967207i \(-0.581743\pi\)
−0.253990 + 0.967207i \(0.581743\pi\)
\(212\) 173.988 0.820699
\(213\) 1.96824 + 1.96824i 0.00924055 + 0.00924055i
\(214\) 351.864 351.864i 1.64423 1.64423i
\(215\) 0 0
\(216\) 22.9837 + 22.9837i 0.106406 + 0.106406i
\(217\) 430.420i 1.98350i
\(218\) −57.6658 −0.264522
\(219\) −59.7198 59.7198i −0.272693 0.272693i
\(220\) 0 0
\(221\) −15.7144 + 31.9591i −0.0711060 + 0.144611i
\(222\) 67.1500i 0.302478i
\(223\) 155.987 + 155.987i 0.699491 + 0.699491i 0.964301 0.264809i \(-0.0853090\pi\)
−0.264809 + 0.964301i \(0.585309\pi\)
\(224\) 483.753 2.15961
\(225\) 0 0
\(226\) −363.173 + 363.173i −1.60696 + 1.60696i
\(227\) −109.822 109.822i −0.483798 0.483798i 0.422544 0.906342i \(-0.361137\pi\)
−0.906342 + 0.422544i \(0.861137\pi\)
\(228\) −7.10167 + 7.10167i −0.0311477 + 0.0311477i
\(229\) 268.576 + 268.576i 1.17282 + 1.17282i 0.981535 + 0.191284i \(0.0612652\pi\)
0.191284 + 0.981535i \(0.438735\pi\)
\(230\) 0 0
\(231\) 19.4795i 0.0843270i
\(232\) 37.4833 37.4833i 0.161566 0.161566i
\(233\) −144.819 −0.621542 −0.310771 0.950485i \(-0.600587\pi\)
−0.310771 + 0.950485i \(0.600587\pi\)
\(234\) −274.744 + 93.6185i −1.17412 + 0.400079i
\(235\) 0 0
\(236\) −95.9070 + 95.9070i −0.406386 + 0.406386i
\(237\) 53.8977i 0.227416i
\(238\) 87.0758 0.365865
\(239\) −164.817 + 164.817i −0.689612 + 0.689612i −0.962146 0.272534i \(-0.912138\pi\)
0.272534 + 0.962146i \(0.412138\pi\)
\(240\) 0 0
\(241\) −254.475 254.475i −1.05591 1.05591i −0.998341 0.0575708i \(-0.981664\pi\)
−0.0575708 0.998341i \(-0.518336\pi\)
\(242\) 220.248 220.248i 0.910116 0.910116i
\(243\) 175.232i 0.721119i
\(244\) 14.6160i 0.0599018i
\(245\) 0 0
\(246\) 105.922i 0.430578i
\(247\) 17.0187 + 49.9453i 0.0689018 + 0.202208i
\(248\) 85.1413i 0.343312i
\(249\) 72.7269 72.7269i 0.292076 0.292076i
\(250\) 0 0
\(251\) 111.483i 0.444157i 0.975029 + 0.222078i \(0.0712841\pi\)
−0.975029 + 0.222078i \(0.928716\pi\)
\(252\) 219.760 + 219.760i 0.872065 + 0.872065i
\(253\) 60.0729 + 60.0729i 0.237442 + 0.237442i
\(254\) −135.541 135.541i −0.533625 0.533625i
\(255\) 0 0
\(256\) 329.471 1.28700
\(257\) 102.707 0.399636 0.199818 0.979833i \(-0.435965\pi\)
0.199818 + 0.979833i \(0.435965\pi\)
\(258\) 7.45706 7.45706i 0.0289033 0.0289033i
\(259\) 377.747i 1.45848i
\(260\) 0 0
\(261\) 188.243 0.721236
\(262\) 207.700 + 207.700i 0.792747 + 0.792747i
\(263\) 60.7931i 0.231153i −0.993299 0.115576i \(-0.963129\pi\)
0.993299 0.115576i \(-0.0368715\pi\)
\(264\) 3.85325i 0.0145956i
\(265\) 0 0
\(266\) 91.2251 91.2251i 0.342952 0.342952i
\(267\) −36.4820 + 36.4820i −0.136637 + 0.136637i
\(268\) −202.293 + 202.293i −0.754823 + 0.754823i
\(269\) 413.362 1.53666 0.768330 0.640053i \(-0.221088\pi\)
0.768330 + 0.640053i \(0.221088\pi\)
\(270\) 0 0
\(271\) 33.0802 + 33.0802i 0.122067 + 0.122067i 0.765501 0.643434i \(-0.222491\pi\)
−0.643434 + 0.765501i \(0.722491\pi\)
\(272\) 51.3751 0.188879
\(273\) −116.409 + 39.6661i −0.426406 + 0.145297i
\(274\) 327.602 1.19563
\(275\) 0 0
\(276\) 102.090 0.369890
\(277\) 395.394 1.42742 0.713708 0.700444i \(-0.247015\pi\)
0.713708 + 0.700444i \(0.247015\pi\)
\(278\) −323.514 323.514i −1.16372 1.16372i
\(279\) −213.791 + 213.791i −0.766278 + 0.766278i
\(280\) 0 0
\(281\) −126.116 126.116i −0.448810 0.448810i 0.446149 0.894959i \(-0.352795\pi\)
−0.894959 + 0.446149i \(0.852795\pi\)
\(282\) 48.1870i 0.170876i
\(283\) 426.703 1.50779 0.753893 0.656998i \(-0.228174\pi\)
0.753893 + 0.656998i \(0.228174\pi\)
\(284\) 7.72575 + 7.72575i 0.0272033 + 0.0272033i
\(285\) 0 0
\(286\) 64.0823 + 31.5096i 0.224064 + 0.110173i
\(287\) 595.856i 2.07615i
\(288\) 240.282 + 240.282i 0.834314 + 0.834314i
\(289\) −281.495 −0.974032
\(290\) 0 0
\(291\) 88.6507 88.6507i 0.304642 0.304642i
\(292\) −234.413 234.413i −0.802783 0.802783i
\(293\) 15.6125 15.6125i 0.0532849 0.0532849i −0.679962 0.733247i \(-0.738004\pi\)
0.733247 + 0.679962i \(0.238004\pi\)
\(294\) 139.234 + 139.234i 0.473586 + 0.473586i
\(295\) 0 0
\(296\) 74.7221i 0.252440i
\(297\) 20.0799 20.0799i 0.0676091 0.0676091i
\(298\) −25.0243 −0.0839743
\(299\) 236.667 481.319i 0.791528 1.60976i
\(300\) 0 0
\(301\) −41.9491 + 41.9491i −0.139366 + 0.139366i
\(302\) 194.707i 0.644725i
\(303\) −69.0141 −0.227769
\(304\) 53.8233 53.8233i 0.177050 0.177050i
\(305\) 0 0
\(306\) 43.2509 + 43.2509i 0.141343 + 0.141343i
\(307\) 360.117 360.117i 1.17302 1.17302i 0.191534 0.981486i \(-0.438654\pi\)
0.981486 0.191534i \(-0.0613463\pi\)
\(308\) 76.4613i 0.248251i
\(309\) 135.594i 0.438815i
\(310\) 0 0
\(311\) 209.072i 0.672257i 0.941816 + 0.336128i \(0.109118\pi\)
−0.941816 + 0.336128i \(0.890882\pi\)
\(312\) −23.0268 + 7.84634i −0.0738039 + 0.0251485i
\(313\) 333.747i 1.06628i 0.846026 + 0.533142i \(0.178989\pi\)
−0.846026 + 0.533142i \(0.821011\pi\)
\(314\) −117.350 + 117.350i −0.373726 + 0.373726i
\(315\) 0 0
\(316\) 211.560i 0.669493i
\(317\) 158.818 + 158.818i 0.501002 + 0.501002i 0.911749 0.410747i \(-0.134732\pi\)
−0.410747 + 0.911749i \(0.634732\pi\)
\(318\) 83.6133 + 83.6133i 0.262935 + 0.262935i
\(319\) −32.7477 32.7477i −0.102657 0.102657i
\(320\) 0 0
\(321\) 148.102 0.461377
\(322\) −1311.40 −4.07268
\(323\) 7.86251 7.86251i 0.0243421 0.0243421i
\(324\) 200.631i 0.619230i
\(325\) 0 0
\(326\) −200.679 −0.615581
\(327\) −12.1360 12.1360i −0.0371130 0.0371130i
\(328\) 117.866i 0.359349i
\(329\) 271.072i 0.823928i
\(330\) 0 0
\(331\) 328.694 328.694i 0.993032 0.993032i −0.00694351 0.999976i \(-0.502210\pi\)
0.999976 + 0.00694351i \(0.00221021\pi\)
\(332\) 285.468 285.468i 0.859845 0.859845i
\(333\) −187.629 + 187.629i −0.563450 + 0.563450i
\(334\) −394.560 −1.18132
\(335\) 0 0
\(336\) 125.447 + 125.447i 0.373355 + 0.373355i
\(337\) 239.044 0.709329 0.354664 0.934994i \(-0.384595\pi\)
0.354664 + 0.934994i \(0.384595\pi\)
\(338\) 57.8095 447.116i 0.171034 1.32283i
\(339\) −152.862 −0.450921
\(340\) 0 0
\(341\) 74.3846 0.218137
\(342\) 90.6239 0.264982
\(343\) −370.419 370.419i −1.07994 1.07994i
\(344\) −8.29794 + 8.29794i −0.0241219 + 0.0241219i
\(345\) 0 0
\(346\) 528.688 + 528.688i 1.52800 + 1.52800i
\(347\) 5.90128i 0.0170066i 0.999964 + 0.00850329i \(0.00270671\pi\)
−0.999964 + 0.00850329i \(0.997293\pi\)
\(348\) −55.6524 −0.159921
\(349\) −11.5942 11.5942i −0.0332212 0.0332212i 0.690301 0.723522i \(-0.257478\pi\)
−0.723522 + 0.690301i \(0.757478\pi\)
\(350\) 0 0
\(351\) −160.885 79.1081i −0.458363 0.225379i
\(352\) 83.6015i 0.237504i
\(353\) 129.927 + 129.927i 0.368066 + 0.368066i 0.866772 0.498705i \(-0.166191\pi\)
−0.498705 + 0.866772i \(0.666191\pi\)
\(354\) −92.1798 −0.260395
\(355\) 0 0
\(356\) −143.199 + 143.199i −0.402245 + 0.402245i
\(357\) 18.3254 + 18.3254i 0.0513316 + 0.0513316i
\(358\) 430.366 430.366i 1.20214 1.20214i
\(359\) −273.927 273.927i −0.763027 0.763027i 0.213841 0.976868i \(-0.431403\pi\)
−0.976868 + 0.213841i \(0.931403\pi\)
\(360\) 0 0
\(361\) 344.526i 0.954365i
\(362\) −321.133 + 321.133i −0.887108 + 0.887108i
\(363\) 92.7039 0.255383
\(364\) −456.929 + 155.698i −1.25530 + 0.427741i
\(365\) 0 0
\(366\) 7.02401 7.02401i 0.0191913 0.0191913i
\(367\) 125.394i 0.341673i −0.985299 0.170836i \(-0.945353\pi\)
0.985299 0.170836i \(-0.0546470\pi\)
\(368\) −773.733 −2.10254
\(369\) 295.965 295.965i 0.802072 0.802072i
\(370\) 0 0
\(371\) −470.360 470.360i −1.26782 1.26782i
\(372\) 63.2057 63.2057i 0.169908 0.169908i
\(373\) 503.396i 1.34959i −0.738007 0.674793i \(-0.764233\pi\)
0.738007 0.674793i \(-0.235767\pi\)
\(374\) 15.0483i 0.0402361i
\(375\) 0 0
\(376\) 53.6208i 0.142608i
\(377\) −129.015 + 262.383i −0.342214 + 0.695975i
\(378\) 438.348i 1.15965i
\(379\) −464.950 + 464.950i −1.22678 + 1.22678i −0.261606 + 0.965175i \(0.584252\pi\)
−0.965175 + 0.261606i \(0.915748\pi\)
\(380\) 0 0
\(381\) 57.0500i 0.149738i
\(382\) 550.966 + 550.966i 1.44232 + 1.44232i
\(383\) −317.070 317.070i −0.827858 0.827858i 0.159362 0.987220i \(-0.449056\pi\)
−0.987220 + 0.159362i \(0.949056\pi\)
\(384\) 41.3099 + 41.3099i 0.107578 + 0.107578i
\(385\) 0 0
\(386\) −330.487 −0.856184
\(387\) −41.6726 −0.107681
\(388\) 347.973 347.973i 0.896837 0.896837i
\(389\) 92.1151i 0.236800i −0.992966 0.118400i \(-0.962224\pi\)
0.992966 0.118400i \(-0.0377765\pi\)
\(390\) 0 0
\(391\) −113.027 −0.289072
\(392\) −154.935 154.935i −0.395242 0.395242i
\(393\) 87.4222i 0.222448i
\(394\) 56.5325i 0.143483i
\(395\) 0 0
\(396\) 37.9787 37.9787i 0.0959058 0.0959058i
\(397\) −454.524 + 454.524i −1.14490 + 1.14490i −0.157356 + 0.987542i \(0.550297\pi\)
−0.987542 + 0.157356i \(0.949703\pi\)
\(398\) −148.023 + 148.023i −0.371918 + 0.371918i
\(399\) 38.3973 0.0962338
\(400\) 0 0
\(401\) −289.770 289.770i −0.722618 0.722618i 0.246520 0.969138i \(-0.420713\pi\)
−0.969138 + 0.246520i \(0.920713\pi\)
\(402\) −194.431 −0.483659
\(403\) −151.469 444.519i −0.375853 1.10302i
\(404\) −270.895 −0.670532
\(405\) 0 0
\(406\) 714.888 1.76081
\(407\) 65.2817 0.160397
\(408\) 3.62494 + 3.62494i 0.00888466 + 0.00888466i
\(409\) 13.9909 13.9909i 0.0342075 0.0342075i −0.689796 0.724004i \(-0.742300\pi\)
0.724004 + 0.689796i \(0.242300\pi\)
\(410\) 0 0
\(411\) 68.9449 + 68.9449i 0.167749 + 0.167749i
\(412\) 532.234i 1.29183i
\(413\) 518.550 1.25557
\(414\) −651.379 651.379i −1.57338 1.57338i
\(415\) 0 0
\(416\) −499.599 + 170.237i −1.20096 + 0.409224i
\(417\) 136.169i 0.326545i
\(418\) −15.7654 15.7654i −0.0377163 0.0377163i
\(419\) −151.917 −0.362569 −0.181285 0.983431i \(-0.558026\pi\)
−0.181285 + 0.983431i \(0.558026\pi\)
\(420\) 0 0
\(421\) 364.648 364.648i 0.866147 0.866147i −0.125897 0.992043i \(-0.540181\pi\)
0.992043 + 0.125897i \(0.0401807\pi\)
\(422\) −202.184 202.184i −0.479109 0.479109i
\(423\) −134.643 + 134.643i −0.318305 + 0.318305i
\(424\) −93.0418 93.0418i −0.219438 0.219438i
\(425\) 0 0
\(426\) 7.42550i 0.0174308i
\(427\) −39.5130 + 39.5130i −0.0925363 + 0.0925363i
\(428\) 581.332 1.35825
\(429\) 6.85504 + 20.1176i 0.0159791 + 0.0468942i
\(430\) 0 0
\(431\) 488.245 488.245i 1.13282 1.13282i 0.143112 0.989707i \(-0.454289\pi\)
0.989707 0.143112i \(-0.0457109\pi\)
\(432\) 258.628i 0.598675i
\(433\) 295.143 0.681624 0.340812 0.940132i \(-0.389298\pi\)
0.340812 + 0.940132i \(0.389298\pi\)
\(434\) −811.914 + 811.914i −1.87077 + 1.87077i
\(435\) 0 0
\(436\) −47.6362 47.6362i −0.109257 0.109257i
\(437\) −118.413 + 118.413i −0.270968 + 0.270968i
\(438\) 225.303i 0.514390i
\(439\) 54.2049i 0.123473i −0.998092 0.0617367i \(-0.980336\pi\)
0.998092 0.0617367i \(-0.0196639\pi\)
\(440\) 0 0
\(441\) 778.088i 1.76437i
\(442\) −89.9281 + 30.6428i −0.203457 + 0.0693276i
\(443\) 414.826i 0.936403i −0.883622 0.468201i \(-0.844902\pi\)
0.883622 0.468201i \(-0.155098\pi\)
\(444\) 55.4709 55.4709i 0.124934 0.124934i
\(445\) 0 0
\(446\) 588.485i 1.31947i
\(447\) −5.26645 5.26645i −0.0117818 0.0117818i
\(448\) 280.518 + 280.518i 0.626156 + 0.626156i
\(449\) −64.8500 64.8500i −0.144432 0.144432i 0.631193 0.775625i \(-0.282565\pi\)
−0.775625 + 0.631193i \(0.782565\pi\)
\(450\) 0 0
\(451\) −102.975 −0.228326
\(452\) −600.016 −1.32747
\(453\) 40.9768 40.9768i 0.0904564 0.0904564i
\(454\) 414.322i 0.912604i
\(455\) 0 0
\(456\) 7.59536 0.0166565
\(457\) 104.290 + 104.290i 0.228206 + 0.228206i 0.811943 0.583737i \(-0.198410\pi\)
−0.583737 + 0.811943i \(0.698410\pi\)
\(458\) 1013.25i 2.21233i
\(459\) 37.7804i 0.0823102i
\(460\) 0 0
\(461\) −175.305 + 175.305i −0.380271 + 0.380271i −0.871200 0.490929i \(-0.836658\pi\)
0.490929 + 0.871200i \(0.336658\pi\)
\(462\) 36.7449 36.7449i 0.0795344 0.0795344i
\(463\) 236.061 236.061i 0.509851 0.509851i −0.404629 0.914481i \(-0.632599\pi\)
0.914481 + 0.404629i \(0.132599\pi\)
\(464\) 421.787 0.909024
\(465\) 0 0
\(466\) −273.177 273.177i −0.586217 0.586217i
\(467\) 411.919 0.882054 0.441027 0.897494i \(-0.354614\pi\)
0.441027 + 0.897494i \(0.354614\pi\)
\(468\) −304.295 149.623i −0.650202 0.319708i
\(469\) 1093.75 2.33210
\(470\) 0 0
\(471\) −49.3933 −0.104869
\(472\) 102.574 0.217318
\(473\) 7.24958 + 7.24958i 0.0153268 + 0.0153268i
\(474\) 101.669 101.669i 0.214491 0.214491i
\(475\) 0 0
\(476\) 71.9310 + 71.9310i 0.151116 + 0.151116i
\(477\) 467.260i 0.979580i
\(478\) −621.801 −1.30084
\(479\) −121.114 121.114i −0.252848 0.252848i 0.569289 0.822137i \(-0.307219\pi\)
−0.822137 + 0.569289i \(0.807219\pi\)
\(480\) 0 0
\(481\) −132.933 390.121i −0.276367 0.811062i
\(482\) 960.048i 1.99180i
\(483\) −275.989 275.989i −0.571406 0.571406i
\(484\) 363.882 0.751823
\(485\) 0 0
\(486\) −330.546 + 330.546i −0.680135 + 0.680135i
\(487\) 500.824 + 500.824i 1.02839 + 1.02839i 0.999585 + 0.0288012i \(0.00916897\pi\)
0.0288012 + 0.999585i \(0.490831\pi\)
\(488\) −7.81606 + 7.81606i −0.0160165 + 0.0160165i
\(489\) −42.2337 42.2337i −0.0863674 0.0863674i
\(490\) 0 0
\(491\) 541.358i 1.10256i −0.834320 0.551281i \(-0.814139\pi\)
0.834320 0.551281i \(-0.185861\pi\)
\(492\) −87.4995 + 87.4995i −0.177845 + 0.177845i
\(493\) 61.6148 0.124979
\(494\) −62.1104 + 126.316i −0.125730 + 0.255701i
\(495\) 0 0
\(496\) −479.033 + 479.033i −0.965793 + 0.965793i
\(497\) 41.7715i 0.0840474i
\(498\) 274.374 0.550952
\(499\) −406.898 + 406.898i −0.815427 + 0.815427i −0.985442 0.170015i \(-0.945618\pi\)
0.170015 + 0.985442i \(0.445618\pi\)
\(500\) 0 0
\(501\) −83.0365 83.0365i −0.165742 0.165742i
\(502\) −210.295 + 210.295i −0.418914 + 0.418914i
\(503\) 295.334i 0.587146i 0.955937 + 0.293573i \(0.0948443\pi\)
−0.955937 + 0.293573i \(0.905156\pi\)
\(504\) 235.038i 0.466345i
\(505\) 0 0
\(506\) 226.635i 0.447895i
\(507\) 106.263 81.9308i 0.209592 0.161599i
\(508\) 223.933i 0.440814i
\(509\) 6.08665 6.08665i 0.0119581 0.0119581i −0.701102 0.713061i \(-0.747308\pi\)
0.713061 + 0.701102i \(0.247308\pi\)
\(510\) 0 0
\(511\) 1267.42i 2.48028i
\(512\) 413.374 + 413.374i 0.807371 + 0.807371i
\(513\) 39.5807 + 39.5807i 0.0771554 + 0.0771554i
\(514\) 193.739 + 193.739i 0.376923 + 0.376923i
\(515\) 0 0
\(516\) 12.3202 0.0238763
\(517\) 46.8463 0.0906119
\(518\) −712.556 + 712.556i −1.37559 + 1.37559i
\(519\) 222.528i 0.428764i
\(520\) 0 0
\(521\) 583.890 1.12071 0.560356 0.828252i \(-0.310664\pi\)
0.560356 + 0.828252i \(0.310664\pi\)
\(522\) 355.088 + 355.088i 0.680246 + 0.680246i
\(523\) 531.245i 1.01577i −0.861426 0.507883i \(-0.830428\pi\)
0.861426 0.507883i \(-0.169572\pi\)
\(524\) 343.150i 0.654867i
\(525\) 0 0
\(526\) 114.676 114.676i 0.218015 0.218015i
\(527\) −69.9773 + 69.9773i −0.132784 + 0.132784i
\(528\) 21.6797 21.6797i 0.0410600 0.0410600i
\(529\) 1173.24 2.21785
\(530\) 0 0
\(531\) 257.566 + 257.566i 0.485059 + 0.485059i
\(532\) 150.717 0.283303
\(533\) 209.688 + 615.375i 0.393410 + 1.15455i
\(534\) −137.634 −0.257742
\(535\) 0 0
\(536\) 216.356 0.403648
\(537\) 181.144 0.337326
\(538\) 779.738 + 779.738i 1.44933 + 1.44933i
\(539\) −135.360 + 135.360i −0.251132 + 0.251132i
\(540\) 0 0
\(541\) 693.346 + 693.346i 1.28160 + 1.28160i 0.939757 + 0.341844i \(0.111051\pi\)
0.341844 + 0.939757i \(0.388949\pi\)
\(542\) 124.801i 0.230259i
\(543\) −135.167 −0.248926
\(544\) 78.6482 + 78.6482i 0.144574 + 0.144574i
\(545\) 0 0
\(546\) −294.409 144.762i −0.539211 0.265133i
\(547\) 372.319i 0.680657i 0.940307 + 0.340328i \(0.110538\pi\)
−0.940307 + 0.340328i \(0.889462\pi\)
\(548\) 270.623 + 270.623i 0.493838 + 0.493838i
\(549\) −39.2526 −0.0714983
\(550\) 0 0
\(551\) 64.5509 64.5509i 0.117152 0.117152i
\(552\) −54.5933 54.5933i −0.0989010 0.0989010i
\(553\) −571.930 + 571.930i −1.03423 + 1.03423i
\(554\) 745.845 + 745.845i 1.34629 + 1.34629i
\(555\) 0 0
\(556\) 534.493i 0.961318i
\(557\) −30.1943 + 30.1943i −0.0542088 + 0.0542088i −0.733692 0.679483i \(-0.762204\pi\)
0.679483 + 0.733692i \(0.262204\pi\)
\(558\) −806.564 −1.44545
\(559\) 28.5609 58.0855i 0.0510928 0.103910i
\(560\) 0 0
\(561\) 3.16697 3.16697i 0.00564522 0.00564522i
\(562\) 475.792i 0.846606i
\(563\) −254.215 −0.451536 −0.225768 0.974181i \(-0.572489\pi\)
−0.225768 + 0.974181i \(0.572489\pi\)
\(564\) 39.8060 39.8060i 0.0705781 0.0705781i
\(565\) 0 0
\(566\) 804.904 + 804.904i 1.42209 + 1.42209i
\(567\) 542.384 542.384i 0.956586 0.956586i
\(568\) 8.26283i 0.0145472i
\(569\) 913.655i 1.60572i −0.596168 0.802860i \(-0.703311\pi\)
0.596168 0.802860i \(-0.296689\pi\)
\(570\) 0 0
\(571\) 580.894i 1.01733i −0.860965 0.508664i \(-0.830140\pi\)
0.860965 0.508664i \(-0.169860\pi\)
\(572\) 26.9075 + 78.9659i 0.0470410 + 0.138052i
\(573\) 231.905i 0.404721i
\(574\) 1123.98 1123.98i 1.95816 1.95816i
\(575\) 0 0
\(576\) 278.669i 0.483800i
\(577\) 50.8969 + 50.8969i 0.0882095 + 0.0882095i 0.749835 0.661625i \(-0.230133\pi\)
−0.661625 + 0.749835i \(0.730133\pi\)
\(578\) −530.993 530.993i −0.918674 0.918674i
\(579\) −69.5521 69.5521i −0.120125 0.120125i
\(580\) 0 0
\(581\) −1543.47 −2.65657
\(582\) 334.449 0.574655
\(583\) −81.2869 + 81.2869i −0.139429 + 0.139429i
\(584\) 250.709i 0.429296i
\(585\) 0 0
\(586\) 58.9006 0.100513
\(587\) −344.992 344.992i −0.587720 0.587720i 0.349294 0.937013i \(-0.386422\pi\)
−0.937013 + 0.349294i \(0.886422\pi\)
\(588\) 230.035i 0.391217i
\(589\) 146.624i 0.248937i
\(590\) 0 0
\(591\) 11.8975 11.8975i 0.0201311 0.0201311i
\(592\) −420.412 + 420.412i −0.710155 + 0.710155i
\(593\) −103.349 + 103.349i −0.174282 + 0.174282i −0.788858 0.614576i \(-0.789327\pi\)
0.614576 + 0.788858i \(0.289327\pi\)
\(594\) 75.7548 0.127533
\(595\) 0 0
\(596\) −20.6719 20.6719i −0.0346845 0.0346845i
\(597\) −62.3041 −0.104362
\(598\) 1354.36 461.495i 2.26481 0.771730i
\(599\) 477.029 0.796376 0.398188 0.917304i \(-0.369639\pi\)
0.398188 + 0.917304i \(0.369639\pi\)
\(600\) 0 0
\(601\) 230.164 0.382968 0.191484 0.981496i \(-0.438670\pi\)
0.191484 + 0.981496i \(0.438670\pi\)
\(602\) −158.260 −0.262890
\(603\) 543.273 + 543.273i 0.900950 + 0.900950i
\(604\) 160.842 160.842i 0.266295 0.266295i
\(605\) 0 0
\(606\) −130.184 130.184i −0.214824 0.214824i
\(607\) 532.535i 0.877323i −0.898652 0.438661i \(-0.855453\pi\)
0.898652 0.438661i \(-0.144547\pi\)
\(608\) 164.792 0.271039
\(609\) 150.451 + 150.451i 0.247045 + 0.247045i
\(610\) 0 0
\(611\) −95.3929 279.952i −0.156126 0.458186i
\(612\) 71.4569i 0.116760i
\(613\) −769.790 769.790i −1.25577 1.25577i −0.953091 0.302683i \(-0.902117\pi\)
−0.302683 0.953091i \(-0.597883\pi\)
\(614\) 1358.60 2.21271
\(615\) 0 0
\(616\) −40.8884 + 40.8884i −0.0663772 + 0.0663772i
\(617\) −730.372 730.372i −1.18375 1.18375i −0.978766 0.204981i \(-0.934287\pi\)
−0.204981 0.978766i \(-0.565713\pi\)
\(618\) 255.775 255.775i 0.413875 0.413875i
\(619\) 297.357 + 297.357i 0.480383 + 0.480383i 0.905254 0.424871i \(-0.139681\pi\)
−0.424871 + 0.905254i \(0.639681\pi\)
\(620\) 0 0
\(621\) 568.990i 0.916248i
\(622\) −394.379 + 394.379i −0.634050 + 0.634050i
\(623\) 774.250 1.24278
\(624\) −173.703 85.4105i −0.278370 0.136876i
\(625\) 0 0
\(626\) −629.557 + 629.557i −1.00568 + 1.00568i
\(627\) 6.63577i 0.0105834i
\(628\) −193.879 −0.308725
\(629\) −61.4138 + 61.4138i −0.0976372 + 0.0976372i
\(630\) 0 0
\(631\) 440.375 + 440.375i 0.697900 + 0.697900i 0.963957 0.266057i \(-0.0857210\pi\)
−0.266057 + 0.963957i \(0.585721\pi\)
\(632\) −113.134 + 113.134i −0.179009 + 0.179009i
\(633\) 85.1006i 0.134440i
\(634\) 599.166i 0.945057i
\(635\) 0 0
\(636\) 138.141i 0.217204i
\(637\) 1084.54 + 533.274i 1.70258 + 0.837165i
\(638\) 123.546i 0.193646i
\(639\) 20.7481 20.7481i 0.0324697 0.0324697i
\(640\) 0 0
\(641\) 576.939i 0.900060i −0.893013 0.450030i \(-0.851413\pi\)
0.893013 0.450030i \(-0.148587\pi\)
\(642\) 279.370 + 279.370i 0.435155 + 0.435155i
\(643\) 459.481 + 459.481i 0.714589 + 0.714589i 0.967492 0.252903i \(-0.0813852\pi\)
−0.252903 + 0.967492i \(0.581385\pi\)
\(644\) −1083.31 1083.31i −1.68217 1.68217i
\(645\) 0 0
\(646\) 29.6626 0.0459174
\(647\) 543.648 0.840260 0.420130 0.907464i \(-0.361984\pi\)
0.420130 + 0.907464i \(0.361984\pi\)
\(648\) 107.289 107.289i 0.165569 0.165569i
\(649\) 89.6151i 0.138082i
\(650\) 0 0
\(651\) −341.740 −0.524947
\(652\) −165.776 165.776i −0.254258 0.254258i
\(653\) 762.917i 1.16833i 0.811636 + 0.584163i \(0.198577\pi\)
−0.811636 + 0.584163i \(0.801423\pi\)
\(654\) 45.7849i 0.0700075i
\(655\) 0 0
\(656\) 663.155 663.155i 1.01091 1.01091i
\(657\) −629.534 + 629.534i −0.958195 + 0.958195i
\(658\) −511.332 + 511.332i −0.777101 + 0.777101i
\(659\) −810.362 −1.22968 −0.614842 0.788650i \(-0.710780\pi\)
−0.614842 + 0.788650i \(0.710780\pi\)
\(660\) 0 0
\(661\) −220.504 220.504i −0.333591 0.333591i 0.520357 0.853949i \(-0.325799\pi\)
−0.853949 + 0.520357i \(0.825799\pi\)
\(662\) 1240.05 1.87319
\(663\) −25.3745 12.4768i −0.0382723 0.0188187i
\(664\) −305.314 −0.459810
\(665\) 0 0
\(666\) −707.860 −1.06285
\(667\) −927.947 −1.39123
\(668\) −325.936 325.936i −0.487928 0.487928i
\(669\) −123.849 + 123.849i −0.185125 + 0.185125i
\(670\) 0 0
\(671\) 6.82858 + 6.82858i 0.0101767 + 0.0101767i
\(672\) 384.085i 0.571555i
\(673\) 710.668 1.05597 0.527985 0.849254i \(-0.322948\pi\)
0.527985 + 0.849254i \(0.322948\pi\)
\(674\) 450.916 + 450.916i 0.669015 + 0.669015i
\(675\) 0 0
\(676\) 417.105 321.596i 0.617020 0.475733i
\(677\) 1048.84i 1.54925i 0.632421 + 0.774625i \(0.282061\pi\)
−0.632421 + 0.774625i \(0.717939\pi\)
\(678\) −288.349 288.349i −0.425293 0.425293i
\(679\) −1881.42 −2.77087
\(680\) 0 0
\(681\) 87.1955 87.1955i 0.128040 0.128040i
\(682\) 140.314 + 140.314i 0.205739 + 0.205739i
\(683\) −607.809 + 607.809i −0.889910 + 0.889910i −0.994514 0.104604i \(-0.966643\pi\)
0.104604 + 0.994514i \(0.466643\pi\)
\(684\) 74.8621 + 74.8621i 0.109447 + 0.109447i
\(685\) 0 0
\(686\) 1397.47i 2.03712i
\(687\) −213.241 + 213.241i −0.310394 + 0.310394i
\(688\) −93.3740 −0.135718
\(689\) 651.291 + 320.243i 0.945270 + 0.464794i
\(690\) 0 0
\(691\) −374.671 + 374.671i −0.542216 + 0.542216i −0.924178 0.381962i \(-0.875249\pi\)
0.381962 + 0.924178i \(0.375249\pi\)
\(692\) 873.471i 1.26224i
\(693\) −205.343 −0.296310
\(694\) −11.1318 + 11.1318i −0.0160400 + 0.0160400i
\(695\) 0 0
\(696\) 29.7606 + 29.7606i 0.0427595 + 0.0427595i
\(697\) 96.8739 96.8739i 0.138987 0.138987i
\(698\) 43.7410i 0.0626662i
\(699\) 114.982i 0.164495i
\(700\) 0 0
\(701\) 559.394i 0.797994i 0.916952 + 0.398997i \(0.130642\pi\)
−0.916952 + 0.398997i \(0.869358\pi\)
\(702\) −154.259 452.707i −0.219742 0.644882i
\(703\) 128.681i 0.183045i
\(704\) 48.4787 48.4787i 0.0688618 0.0688618i
\(705\) 0 0
\(706\) 490.172i 0.694295i
\(707\) 732.337 + 732.337i 1.03584 + 1.03584i
\(708\) −76.1473 76.1473i −0.107553 0.107553i
\(709\) 379.510 + 379.510i 0.535276 + 0.535276i 0.922138 0.386862i \(-0.126441\pi\)
−0.386862 + 0.922138i \(0.626441\pi\)
\(710\) 0 0
\(711\) −568.161 −0.799101
\(712\) 153.154 0.215104
\(713\) 1053.89 1053.89i 1.47811 1.47811i
\(714\) 69.1355i 0.0968285i
\(715\) 0 0
\(716\) 711.028 0.993056
\(717\) −130.860 130.860i −0.182510 0.182510i
\(718\) 1033.43i 1.43932i
\(719\) 427.082i 0.593995i −0.954878 0.296997i \(-0.904015\pi\)
0.954878 0.296997i \(-0.0959852\pi\)
\(720\) 0 0
\(721\) −1438.84 + 1438.84i −1.99562 + 1.99562i
\(722\) −649.890 + 649.890i −0.900124 + 0.900124i
\(723\) 202.045 202.045i 0.279454 0.279454i
\(724\) −530.559 −0.732816
\(725\) 0 0
\(726\) 174.870 + 174.870i 0.240868 + 0.240868i
\(727\) −952.075 −1.30959 −0.654797 0.755804i \(-0.727246\pi\)
−0.654797 + 0.755804i \(0.727246\pi\)
\(728\) 327.608 + 161.086i 0.450011 + 0.221272i
\(729\) 440.263 0.603928
\(730\) 0 0
\(731\) −13.6401 −0.0186595
\(732\) 11.6047 0.0158534
\(733\) −492.664 492.664i −0.672119 0.672119i 0.286085 0.958204i \(-0.407646\pi\)
−0.958204 + 0.286085i \(0.907646\pi\)
\(734\) 236.535 236.535i 0.322254 0.322254i
\(735\) 0 0
\(736\) −1184.48 1184.48i −1.60935 1.60935i
\(737\) 189.021i 0.256474i
\(738\) 1116.58 1.51298
\(739\) −94.0595 94.0595i −0.127279 0.127279i 0.640597 0.767877i \(-0.278687\pi\)
−0.767877 + 0.640597i \(0.778687\pi\)
\(740\) 0 0
\(741\) −39.6550 + 13.5124i −0.0535156 + 0.0182353i
\(742\) 1774.51i 2.39152i
\(743\) −750.112 750.112i −1.00957 1.00957i −0.999954 0.00961857i \(-0.996938\pi\)
−0.00961857 0.999954i \(-0.503062\pi\)
\(744\) −67.5996 −0.0908597
\(745\) 0 0
\(746\) 949.572 949.572i 1.27288 1.27288i
\(747\) −766.649 766.649i −1.02630 1.02630i
\(748\) 12.4310 12.4310i 0.0166190 0.0166190i
\(749\) −1571.57 1571.57i −2.09823 2.09823i
\(750\) 0 0
\(751\) 332.394i 0.442602i −0.975206 0.221301i \(-0.928970\pi\)
0.975206 0.221301i \(-0.0710304\pi\)
\(752\) −301.688 + 301.688i −0.401181 + 0.401181i
\(753\) −88.5144 −0.117549
\(754\) −738.305 + 251.576i −0.979185 + 0.333655i
\(755\) 0 0
\(756\) −362.108 + 362.108i −0.478979 + 0.478979i
\(757\) 354.304i 0.468037i −0.972232 0.234018i \(-0.924812\pi\)
0.972232 0.234018i \(-0.0751876\pi\)
\(758\) −1754.10 −2.31412
\(759\) −47.6960 + 47.6960i −0.0628406 + 0.0628406i
\(760\) 0 0
\(761\) 800.356 + 800.356i 1.05172 + 1.05172i 0.998588 + 0.0531281i \(0.0169192\pi\)
0.0531281 + 0.998588i \(0.483081\pi\)
\(762\) 107.615 107.615i 0.141227 0.141227i
\(763\) 257.559i 0.337561i
\(764\) 910.277i 1.19146i
\(765\) 0 0
\(766\) 1196.20i 1.56162i
\(767\) −535.536 + 182.483i −0.698221 + 0.237917i
\(768\) 261.590i 0.340612i
\(769\) −628.880 + 628.880i −0.817790 + 0.817790i −0.985787 0.167998i \(-0.946270\pi\)
0.167998 + 0.985787i \(0.446270\pi\)
\(770\) 0 0
\(771\) 81.5459i 0.105766i
\(772\) −273.007 273.007i −0.353636 0.353636i
\(773\) 799.646 + 799.646i 1.03447 + 1.03447i 0.999384 + 0.0350866i \(0.0111707\pi\)
0.0350866 + 0.999384i \(0.488829\pi\)
\(774\) −78.6084 78.6084i −0.101561 0.101561i
\(775\) 0 0
\(776\) −372.163 −0.479592
\(777\) −299.920 −0.385997
\(778\) 173.760 173.760i 0.223342 0.223342i
\(779\) 202.980i 0.260565i
\(780\) 0 0
\(781\) −7.21890 −0.00924316
\(782\) −213.207 213.207i −0.272643 0.272643i
\(783\) 310.175i 0.396137i
\(784\) 1743.43i 2.22376i
\(785\) 0 0
\(786\) −164.907 + 164.907i −0.209806 + 0.209806i
\(787\) 201.754 201.754i 0.256358 0.256358i −0.567213 0.823571i \(-0.691978\pi\)
0.823571 + 0.567213i \(0.191978\pi\)
\(788\) 46.7000 46.7000i 0.0592640 0.0592640i
\(789\) 48.2679 0.0611761
\(790\) 0 0
\(791\) 1622.08 + 1622.08i 2.05067 + 2.05067i
\(792\) −40.6189 −0.0512865
\(793\) 26.9023 54.7123i 0.0339247 0.0689941i
\(794\) −1714.77 −2.15966
\(795\) 0 0
\(796\) −244.557 −0.307232
\(797\) −303.914 −0.381323 −0.190661 0.981656i \(-0.561063\pi\)
−0.190661 + 0.981656i \(0.561063\pi\)
\(798\) 72.4300 + 72.4300i 0.0907644 + 0.0907644i
\(799\) −44.0707 + 44.0707i −0.0551573 + 0.0551573i
\(800\) 0 0
\(801\) 384.574 + 384.574i 0.480117 + 0.480117i
\(802\) 1093.20i 1.36310i
\(803\) 219.034 0.272770
\(804\) −160.614 160.614i −0.199769 0.199769i
\(805\) 0 0
\(806\) 552.790 1124.23i 0.685843 1.39483i
\(807\) 328.197i 0.406687i
\(808\) 144.864 + 144.864i 0.179287 + 0.179287i
\(809\) 944.687 1.16772 0.583861 0.811854i \(-0.301541\pi\)
0.583861 + 0.811854i \(0.301541\pi\)
\(810\) 0 0
\(811\) 553.234 553.234i 0.682163 0.682163i −0.278324 0.960487i \(-0.589779\pi\)
0.960487 + 0.278324i \(0.0897790\pi\)
\(812\) 590.550 + 590.550i 0.727279 + 0.727279i
\(813\) −26.2647 + 26.2647i −0.0323059 + 0.0323059i
\(814\) 123.143 + 123.143i 0.151281 + 0.151281i
\(815\) 0 0
\(816\) 40.7903i 0.0499881i
\(817\) −14.2901 + 14.2901i −0.0174909 + 0.0174909i
\(818\) 52.7829 0.0645267
\(819\) 418.139 + 1227.12i 0.510548 + 1.49832i
\(820\) 0 0
\(821\) −251.178 + 251.178i −0.305942 + 0.305942i −0.843333 0.537391i \(-0.819410\pi\)
0.537391 + 0.843333i \(0.319410\pi\)
\(822\) 260.106i 0.316431i
\(823\) 13.4655 0.0163615 0.00818073 0.999967i \(-0.497396\pi\)
0.00818073 + 0.999967i \(0.497396\pi\)
\(824\) −284.617 + 284.617i −0.345409 + 0.345409i
\(825\) 0 0
\(826\) 978.157 + 978.157i 1.18421 + 1.18421i
\(827\) 472.099 472.099i 0.570857 0.570857i −0.361511 0.932368i \(-0.617739\pi\)
0.932368 + 0.361511i \(0.117739\pi\)
\(828\) 1076.18i 1.29973i
\(829\) 922.692i 1.11302i 0.830841 + 0.556509i \(0.187860\pi\)
−0.830841 + 0.556509i \(0.812140\pi\)
\(830\) 0 0
\(831\) 313.931i 0.377775i
\(832\) −388.423 190.990i −0.466855 0.229555i
\(833\) 254.680i 0.305739i
\(834\) 256.860 256.860i 0.307986 0.307986i
\(835\) 0 0
\(836\) 26.0468i 0.0311564i
\(837\) −352.273 352.273i −0.420876 0.420876i
\(838\) −286.565 286.565i −0.341963 0.341963i
\(839\) −373.582 373.582i −0.445270 0.445270i 0.448508 0.893779i \(-0.351955\pi\)
−0.893779 + 0.448508i \(0.851955\pi\)
\(840\) 0 0
\(841\) −335.145 −0.398508
\(842\) 1375.69 1.63384
\(843\) 100.132 100.132i 0.118781 0.118781i
\(844\) 334.038i 0.395779i
\(845\) 0 0
\(846\) −507.962 −0.600428
\(847\) −983.719 983.719i −1.16142 1.16142i
\(848\) 1046.97i 1.23463i
\(849\) 338.790i 0.399045i
\(850\) 0 0
\(851\) 924.921 924.921i 1.08686 1.08686i
\(852\) −6.13401 + 6.13401i −0.00719954 + 0.00719954i
\(853\) −724.580 + 724.580i −0.849449 + 0.849449i −0.990064 0.140615i \(-0.955092\pi\)
0.140615 + 0.990064i \(0.455092\pi\)
\(854\) −149.069 −0.174554
\(855\) 0 0
\(856\) −310.872 310.872i −0.363169 0.363169i
\(857\) 410.502 0.478999 0.239500 0.970896i \(-0.423017\pi\)
0.239500 + 0.970896i \(0.423017\pi\)
\(858\) −25.0177 + 50.8794i −0.0291581 + 0.0593000i
\(859\) 847.774 0.986932 0.493466 0.869765i \(-0.335730\pi\)
0.493466 + 0.869765i \(0.335730\pi\)
\(860\) 0 0
\(861\) 473.092 0.549468
\(862\) 1841.98 2.13687
\(863\) −102.685 102.685i −0.118986 0.118986i 0.645107 0.764093i \(-0.276813\pi\)
−0.764093 + 0.645107i \(0.776813\pi\)
\(864\) −395.923 + 395.923i −0.458244 + 0.458244i
\(865\) 0 0
\(866\) 556.738 + 556.738i 0.642884 + 0.642884i
\(867\) 223.499i 0.257784i
\(868\) −1341.40 −1.54539
\(869\) 98.8403 + 98.8403i 0.113740 + 0.113740i
\(870\) 0 0
\(871\) −1129.58 + 384.903i −1.29688 + 0.441909i
\(872\) 50.9478i 0.0584264i
\(873\) −934.509 934.509i −1.07046 1.07046i
\(874\) −446.733 −0.511136
\(875\) 0 0
\(876\) 186.117 186.117i 0.212462 0.212462i
\(877\) 490.033 + 490.033i 0.558761 + 0.558761i 0.928955 0.370194i \(-0.120709\pi\)
−0.370194 + 0.928955i \(0.620709\pi\)
\(878\) 102.248 102.248i 0.116456 0.116456i
\(879\) 12.3958 + 12.3958i 0.0141022 + 0.0141022i
\(880\) 0 0
\(881\) 1389.52i 1.57720i 0.614905 + 0.788601i \(0.289194\pi\)
−0.614905 + 0.788601i \(0.710806\pi\)
\(882\) 1467.73 1467.73i 1.66410 1.66410i
\(883\) 763.229 0.864359 0.432179 0.901788i \(-0.357745\pi\)
0.432179 + 0.901788i \(0.357745\pi\)
\(884\) −99.6004 48.9740i −0.112670 0.0554005i
\(885\) 0 0
\(886\) 782.500 782.500i 0.883183 0.883183i
\(887\) 921.219i 1.03858i −0.854599 0.519289i \(-0.826197\pi\)
0.854599 0.519289i \(-0.173803\pi\)
\(888\) −59.3271 −0.0668098
\(889\) −605.381 + 605.381i −0.680968 + 0.680968i
\(890\) 0 0
\(891\) −93.7342 93.7342i −0.105201 0.105201i
\(892\) −486.132 + 486.132i −0.544991 + 0.544991i
\(893\) 92.3416i 0.103406i
\(894\) 19.8686i 0.0222243i
\(895\) 0 0
\(896\) 876.712i 0.978473i
\(897\) 382.152 + 187.906i 0.426034 + 0.209483i
\(898\) 244.657i 0.272447i
\(899\) −574.510 + 574.510i −0.639055 + 0.639055i
\(900\) 0 0
\(901\) 152.941i 0.169746i
\(902\) −194.245 194.245i −0.215350 0.215350i
\(903\) −33.3063 33.3063i −0.0368840 0.0368840i
\(904\) 320.864 + 320.864i 0.354938 + 0.354938i
\(905\) 0 0
\(906\) 154.592 0.170631
\(907\) 952.357 1.05001 0.525004 0.851100i \(-0.324064\pi\)
0.525004 + 0.851100i \(0.324064\pi\)
\(908\) 342.261 342.261i 0.376939 0.376939i
\(909\) 727.511i 0.800342i
\(910\) 0 0
\(911\) 146.413 0.160717 0.0803586 0.996766i \(-0.474393\pi\)
0.0803586 + 0.996766i \(0.474393\pi\)
\(912\) 42.7341 + 42.7341i 0.0468575 + 0.0468575i
\(913\) 266.740i 0.292158i
\(914\) 393.452i 0.430473i
\(915\) 0 0
\(916\) −837.015 + 837.015i −0.913772 + 0.913772i
\(917\) 927.672 927.672i 1.01164 1.01164i
\(918\) −71.2663 + 71.2663i −0.0776322 + 0.0776322i
\(919\) 799.748 0.870237 0.435118 0.900373i \(-0.356707\pi\)
0.435118 + 0.900373i \(0.356707\pi\)
\(920\) 0 0
\(921\) 285.922 + 285.922i 0.310448 + 0.310448i
\(922\) −661.367 −0.717317
\(923\) 14.6998 + 43.1398i 0.0159261 + 0.0467387i
\(924\) 60.7080 0.0657013
\(925\) 0 0
\(926\) 890.580 0.961749
\(927\) −1429.36 −1.54192
\(928\) 645.698 + 645.698i 0.695795 + 0.695795i
\(929\) 78.6741 78.6741i 0.0846869 0.0846869i −0.663494 0.748181i \(-0.730927\pi\)
0.748181 + 0.663494i \(0.230927\pi\)
\(930\) 0 0
\(931\) −266.817 266.817i −0.286592 0.286592i
\(932\) 451.329i 0.484259i
\(933\) −165.997 −0.177917
\(934\) 777.016 + 777.016i 0.831923 + 0.831923i
\(935\) 0 0
\(936\) 82.7120 + 242.737i 0.0883675 + 0.259334i
\(937\) 1466.28i 1.56486i 0.622737 + 0.782431i \(0.286020\pi\)
−0.622737 + 0.782431i \(0.713980\pi\)
\(938\) 2063.18 + 2063.18i 2.19956 + 2.19956i
\(939\) −264.985 −0.282199
\(940\) 0 0
\(941\) −68.9700 + 68.9700i −0.0732944 + 0.0732944i −0.742804 0.669509i \(-0.766504\pi\)
0.669509 + 0.742804i \(0.266504\pi\)
\(942\) −93.1722 93.1722i −0.0989089 0.0989089i
\(943\) −1458.97 + 1458.97i −1.54715 + 1.54715i
\(944\) 577.117 + 577.117i 0.611353 + 0.611353i
\(945\) 0 0
\(946\) 27.3502i 0.0289115i
\(947\) −582.125 + 582.125i −0.614705 + 0.614705i −0.944168 0.329464i \(-0.893132\pi\)
0.329464 + 0.944168i \(0.393132\pi\)
\(948\) 167.972 0.177186
\(949\) −446.018 1308.94i −0.469987 1.37928i
\(950\) 0 0
\(951\) −126.096 + 126.096i −0.132594 + 0.132594i
\(952\) 76.9315i 0.0808104i
\(953\) 1341.06 1.40720 0.703602 0.710595i \(-0.251574\pi\)
0.703602 + 0.710595i \(0.251574\pi\)
\(954\) 881.407 881.407i 0.923907 0.923907i
\(955\) 0 0
\(956\) −513.653 513.653i −0.537294 0.537294i
\(957\) 26.0007 26.0007i 0.0271689 0.0271689i
\(958\) 456.924i 0.476956i
\(959\) 1463.20i 1.52576i
\(960\) 0 0
\(961\) 343.969i 0.357928i
\(962\) 485.142 986.653i 0.504306 1.02563i
\(963\) 1561.21i 1.62120i
\(964\) 793.071 793.071i 0.822687 0.822687i
\(965\) 0 0
\(966\) 1041.21i 1.07786i
\(967\) 158.077 + 158.077i 0.163471 + 0.163471i 0.784103 0.620631i \(-0.213124\pi\)
−0.620631 + 0.784103i \(0.713124\pi\)
\(968\) −194.589 194.589i −0.201022 0.201022i
\(969\) 6.24260 + 6.24260i 0.00644231 + 0.00644231i
\(970\) 0 0
\(971\) 784.890 0.808332 0.404166 0.914686i \(-0.367562\pi\)
0.404166 + 0.914686i \(0.367562\pi\)
\(972\) −546.110 −0.561842
\(973\) −1444.95 + 1444.95i −1.48504 + 1.48504i
\(974\) 1889.44i 1.93988i
\(975\) 0 0
\(976\) −87.9515 −0.0901143
\(977\) 239.209 + 239.209i 0.244840 + 0.244840i 0.818849 0.574009i \(-0.194612\pi\)
−0.574009 + 0.818849i \(0.694612\pi\)
\(978\) 159.333i 0.162918i
\(979\) 133.805i 0.136675i
\(980\) 0 0
\(981\) −127.931 + 127.931i −0.130409 + 0.130409i
\(982\) 1021.18 1021.18i 1.03990 1.03990i
\(983\) 821.678 821.678i 0.835888 0.835888i −0.152427 0.988315i \(-0.548709\pi\)
0.988315 + 0.152427i \(0.0487088\pi\)
\(984\) 93.5823 0.0951040
\(985\) 0 0
\(986\) 116.226 + 116.226i 0.117876 + 0.117876i
\(987\) −215.223 −0.218058
\(988\) −155.654 + 53.0389i −0.157545 + 0.0536831i
\(989\) 205.426 0.207711
\(990\) 0 0
\(991\) −40.5436 −0.0409119 −0.0204559 0.999791i \(-0.506512\pi\)
−0.0204559 + 0.999791i \(0.506512\pi\)
\(992\) −1466.67 −1.47850
\(993\) 260.973 + 260.973i 0.262813 + 0.262813i
\(994\) 78.7950 78.7950i 0.0792706 0.0792706i
\(995\) 0 0
\(996\) 226.653 + 226.653i 0.227564 + 0.227564i
\(997\) 966.616i 0.969525i −0.874646 0.484762i \(-0.838906\pi\)
0.874646 0.484762i \(-0.161094\pi\)
\(998\) −1535.09 −1.53817
\(999\) −309.163 309.163i −0.309473 0.309473i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.g.e.174.8 20
5.2 odd 4 325.3.j.c.226.3 yes 20
5.3 odd 4 325.3.j.d.226.8 yes 20
5.4 even 2 325.3.g.f.174.3 20
13.8 odd 4 325.3.g.f.99.3 20
65.8 even 4 325.3.j.d.151.8 yes 20
65.34 odd 4 inner 325.3.g.e.99.8 20
65.47 even 4 325.3.j.c.151.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.3.g.e.99.8 20 65.34 odd 4 inner
325.3.g.e.174.8 20 1.1 even 1 trivial
325.3.g.f.99.3 20 13.8 odd 4
325.3.g.f.174.3 20 5.4 even 2
325.3.j.c.151.3 20 65.47 even 4
325.3.j.c.226.3 yes 20 5.2 odd 4
325.3.j.d.151.8 yes 20 65.8 even 4
325.3.j.d.226.8 yes 20 5.3 odd 4